首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe patterns of geographic variation in electric signal waveforms among populations of the mormyrid electric fish species Paramormyrops kingsleyae. This analysis includes study of electric organs and electric organ discharge (EOD) signals from 553 specimens collected from 12 localities in Gabon, West-Central Africa from 1998 to 2009. We measured time, slope, and voltage values from nine defined EOD “landmarks” and determined peak spectral frequencies from each waveform; these data were subjected to principal components analysis. The majority of variation in EODs is explained by two factors: the first related to EOD duration, the second related to the magnitude of the weak head-negative pre-potential, P0. Both factors varied clinally across Gabon. EODs are shorter in eastern Gabon and longer in western Gabon. Peak P0 is slightly larger in northern Gabon and smaller in southern Gabon. P0 in the EOD is due to the presence of penetrating-stalked (Pa) electrocytes in the electric organ while absence is due to the presence of non-penetrating stalked electrocytes (NPp). Across Gabon, the majority of P. kingsleyae populations surveyed have only individuals with P0-present EODs and Pa electrocytes. We discovered two geographically distinct populations, isolated from others by barriers to migration, where all individuals have P0-absent EODs with NPp electrocytes. At two sites along a boundary between P0-absent and P0-present populations, P0-absent and P0-present individuals were found in sympatry; specimens collected there had electric organs of intermediate morphology. This pattern of geographic variation in EODs is considered in the context of current phylogenetic work. Multiple independent paedomorphic losses of penetrating stalked electrocytes have occurred within five Paramormyrops species and seven genera of mormyrids. We suggest that this key anatomical feature in EOD signal evolution may be under a simple mechanism of genetic control, and may be easily influenced by selection or drift throughout the evolutionary history of mormyrids.  相似文献   

2.
The pacemaker nucleus of Gymnotus carapo contains two types of neurons: pacemaker cells which set up the frequency of the electric organ discharge (EOD) and relay cells which convey the command signal to the spinal cord. Direct activation of a single relay cell provides enough excitation to discharge a pool of spinal electromotor neurons and electrocytes, generating a small EOD (unit EOD). Different relay cells generate unit EODs of variable size and waveform, indicating the involvement of different groups of electrocytes. A special technique of EOD recording (multiple air-gap) was combined with intracellular stimulation of relay cells to study the spatial distribution within the electric organ (EO) of the command signal arising from different relay cells. Three types of relay cells could be identified: type I commanding the rostral 10% of the EO, type II which distribute their command all along the EO and type III driving the caudal 30%. Waveform analysis of unit EODs indicates that doubly innervated electrocytes which are the most relevant for attaining the specific EOD waveform, receive a favored command from the pacemaker nucleus.Abbreviations CV conduction velocity - EMF electromotive force - EMN electromotor neuron - EO electric organ - EOD electric organ discharge - PN pacemaker nucleus - uEOD unit electric organ discharge  相似文献   

3.
Summary The electric organ of a fish represents an internal current source, and the largely isopotential nature of the body interior warrants that the current associated with the fish's electric organ discharges (EODs) recruits all electroreceptors on the fish's body surface evenly. Currents associated with the EODs of a neighbor, however, will not penetrate all portions of the fish's body surface equally and will barely affect regions where the neighbor's current flows tangentially to the skin surface. The computational mechanisms of the jamming avoidance response (JAR) in Eigenmannia exploit the uneven effects of a neighbor's EOD current to calculate the correct frequency difference between the two interfering EOD signals even if the amplitude of a neighbor's signal surpasses that of the fish's own signal by orders of magnitude. The particular geometry of the fish's own EOD current thus yields some immunity against the potentially confusing effects of unusually strong interfering EOD currents of neighbors.Abbreviations DF frequency difference - ELL electrosensory lateral line lobe - EOD electric organ discharge - JAR jamming avoidance response  相似文献   

4.
The sensory cues for a less known form of frequency shifting behavior, gradual frequency falls, of electric organ discharges (EODs) in a pulse-type gymnotiform electric fish, Rhamphichthys rostratus, were identified. We found that the gradual frequency fall occurs independently of more commonly observed momentary phase shifting behavior, and is due to perturbation of sensory feedback of the fish's own EODs by EODs of neighboring fish. The following components were identified as essential features in the signal mixture of the fish's own and the neighbor's EOD pulses: (1) the neighbor's pulses must be placed within a few millisecond of the fish's own pulses, (2) the neighbor's pulses, presented singly at low frequencies (0.2–4 Hz), were sufficient, (3) the frequency of individual pulse presentation must be below 4 Hz, (4) amplitude modulation of the sensory feedback of the fish's own pulses induced by such insertions of the neighbor's pulses must contain a high frequency component: sinusoidal amplitude modulation of the fish's own EOD feedback at these low frequencies does not induce gradual frequency falls. Differential stimulation across body surfaces, which is required for the jamming avoidance response (JAR) of wave-type gymnotiform electric fish, was not necessary for this behavior. We propose a cascade of high-pass and low-pass frequency filters within the amplitude processing pathway in the central nervous system as the mechanism of the gradual frequency fall response.Abbreviations EOD electric organ discharge - f frequency of EOD or pacemaker command signal - JAR jamming avoidance response - S 1 stimulus mimicking fish's own EOD - f 1 frequency of S1 - S 2 stimulus mimicking neighbor's EOD - f 2 frequency of S2  相似文献   

5.
6.
Striking trait polymorphisms are worthy of study in natural populations because they can often shed light on processes of phenotypic divergence and specialization, adaptive evolution, and (in some cases) the early stages of speciation. We examined patterns of genetic variation within and between populations of mormyrid fishes that are morphologically cryptic in sympatry but produce alternate types of electric organ discharge (EOD). Other species in a large group containing a clade of these morphologically cryptic EOD types produce stereotyped, species-typical EOD waveforms thought to function in mate recognition. First, for six populations from Gabon's Brienomyrus species flock, we confirm that forms of electric fish that exhibit distinctive morphologies and unique EOD waveforms (i.e., good reference species) are reproductively isolated from coexisting congeners. These sympatric species deviate from genetic panmixia across five microsatellite loci. Given this result, we examined three focal pairs of syntopic and morphologically cryptic EOD waveform types that are notable exceptions to the pattern of robust genetic partitioning among unique waveform classes within assemblages. These exceptional pairs constitute a monophyletic group within the Brienomyrus flock known as the magnostipes complex. One member of each pair (type I) produces a head-negative EOD, while the other member (either type II or type III, depending on location) produces a longer duration EOD differing in waveform from type I. We show that signal development in these pairs begins with juveniles of all magnostipes-complex morphs emitting head-positive EODs resembling those of type II adults. Divergence of EOD waveforms occurs with growth such that there are two discrete and fixed signal types in morphologically indistinguishable adults at each of several localities. Strong microsatellite partitioning between allopatric samples of any of these morphologically cryptic signal types suggests that geographically isolated populations are genetically decoupled from one another. By contrast, sympatric morphs appear genetically identical across microsatellite loci in Mouvanga Creek and the Okano River and only very weakly diverged, if at all, in the Ivindo River. Our results for the magnostipes complex fail to detect species boundaries between the focal morphs and are, instead, fully consistent with the existence of relatively stable signal dimorphisms at each of several different localities. No mechanism for the maintenance of this electrical polymorphism is suggested by the known natural history of the magnostipes complex. Despite a lack of evidence for genetic differentiation, the possibility of incipient sympatric speciation between morphs (especially type I and type II within the Ivindo River) merits further testing due to behavioral and neurobiological lines of evidence implying a general role for stereotyped EOD waveforms in species recognition. We discuss alternative hypotheses concerning the origins, stability, and evolutionary significance of these intriguing electrical morphs in light of geographical patterns of population structure and signal variation.  相似文献   

7.
Mormyrid fishes produce and sense weak electric organ discharges (EODs) for object detection and communication, and they have been increasingly recognized as useful model organisms for studying signal evolution and speciation. EOD waveform variation can provide important clues to sympatric species boundaries between otherwise similar or morphologically cryptic forms. Endemic to the watersheds of Gabon (Central Africa), Ivindomyrus marchei and Ivindomyrus opdenboschi are morphologically similar to one another. Using morphometric, electrophysiological and molecular characters [cytochrome b sequences and amplified fragment length polymorphism (AFLP) genotypes], we investigated to what extent these nominal mormyrid species have diverged into biological species. Our sampling covered the known distribution of each species with a focus on the Ivindo River, where the two taxa co-occur. An overall pattern of congruence among datasets suggests that I. opdenboschi and I. marchei are mostly distinct. Electric signal analysis showed that EODs of I. opdenboschi tend to have a smaller initial head-positive peak than those of I. marchei, and they often possess a small third waveform peak that is typically absent in EODs of I. marchei. Analysis of sympatric I. opdenboschi and I. marchei populations revealed slight, but significant, genetic partitioning between populations based on AFLP data (F(ST) approximately 0.04). Taken separately, however, none of the characters we evaluated allowed us to discriminate two completely distinct or monophyletic groups. Lack of robust separation on the basis of any single character set may be a consequence of incomplete lineage sorting due to recent ancestry and/or introgressive hybridization. Incongruence between genetic datasets in one individual, which exhibited a mitochondrial haplotype characteristic of I. marchei but nevertheless fell within a genetic cluster of I. opdenboschi based on AFLP genotypes, suggests that a low level of recent hybridization may also be contributing to patterns of character variation in sympatry. Nevertheless, despite less than perfect separability based on any one dataset and inconclusive evidence for complete reproductive isolation between them in the Ivindo River, we find sufficient evidence to support the existence of two distinctive species, I. opdenboschi and I. marchei, even if not 'biological species' in the Mayrian sense.  相似文献   

8.
Fish of the family Mormyridae emit weak, pulse-like electric organ discharges (EODs). The discharge rhythm is variable, but the waveform of the EOD is constant for each fish, with species- and individual characteristics. The ability of Pollimyrus isidori and Gnathonemus petersii (Mormyridae) to discriminate between different EOD waveforms was tested using a differential conditioning procedure. Fish were first trained to respond to a reference signal in swimming to a dish to receive a bloodworm (food reward). The reference signal consisted of a 10-Hz train of the digitally recorded EOD of a conspecific. Second, an alternative signal (10-Hz train of a different EOD, either from another species, or from a conspecific of the other sex) was associated with air bubbles as punishment. The two signals were played at successive trials in random order. On each trial the latency was measured between the onset of the signal and the response. 7 out of the 8 P. isidori tested and both of the two G. petersii tested associated the reference EOD with food. Among these, five P. isidori and two G. petersii responded differentially (p < 0.01) to EODs of different species. P. isidori similarly discriminated between conspecific EODs of different sexes. The quantity of different alternative EODs which could be tested was limited when fish eventually habituated to the punishment. Even when the amplitude of the EODs was randomly changed at each trial, two out of two G. petersii differentiated between EODs of the two species, and three out of three P. isidori tested differentiated between EODs within their own species. Response latencies to the rewarded signal during the basic training and during discrimination (when it had to be distinguished from the S-) were similar. G. petersii showed differential responses for S+ and S- also in the rhythm of discharge exhibited during playback, after five EOD pulses for one fish, and after a single pulse for the other. Mormyrids may therefore distinguish between conspecifics and members of other species, and even between individual conspecifics, by their EOD waveform.  相似文献   

9.
10.
This paper is the first detailed analysis of situation-specific temporal patterning of electric organ discharges (EODs) in a strong electric fish. Using a resident-intruder paradigm EODs were recorded during interactions between dyads composed of Malapterurus electricus (Gmelin) and four different types of fish: (1) conspecifics; (2) large prey-type mid-water fish, goldfish ( Carassius auratus , Linnaeus 1758) and tilapia ( Oreochromis melanotheron , Rüppel, 1852); (3) a sympatric competitor, Polypterus palmas (Ayres 1850) and (4) a larger, threatening catfish, Clarias sp.
An analysis of the EODs emitted showed that in the presence of conspecifics the average EOD volley consisted of a single long-duration, low frequency train of EODs. The presence of the midwater fish (goldfish and Tilapia) elicited volleys consisting of two short trains, and P. palmas elicited long duration volleys with two trains and long inter-train intervals. Finally, an attacking Clarias resulted on average in volleys consisting of two high-frequency trains of EODs. With nonconspecific partner species resident electric catfish emitted volleys with more pulses, more trains that were longer in duration and higher in frequency than the EODs in volleys emitted by intruder electric catfish with the same species stimulus fish.  相似文献   

11.
Electric signals of mormyrid fishes have recently been described from several regions of Africa. Members of the Mormyridae produce weak electric organ discharges (EODs) as part of a specialized electrosensory communication and orientation system. Sympatric species often express distinctive EODs, which may contribute to species recognition during mate choice in some lineages. Striking examples of interspecific EOD variation within assemblages have been reported for two monophyletic radiations: the Paramormyrops of Gabon and the Campylomormyrus of Lower Congo. Here, we describe a speciose assemblage of Petrocephalus in the Lékoli River system of Odzala National Park, Republic of Congo. This widespread genus comprises the subfamily (Petrocephalinae) that is the sister group to all other mormyrids (Mormyrinae). Eleven Petrocephalus species were collected in Odzala, five of which are not described taxonomically. We quantify EOD variation within this assemblage and show that all eleven species produce EOD waveforms of brief duration (species means range from 144 to 663 μs) compared to many other mormyrids. We also present reconstructed phylogenetic relationships among species based on cytochrome b sequences. Discovery of the Odzala assemblage greatly increases the number of Petrocephalus species for which EODs and DNA sequence data are available, permitting a first qualitative comparison between mormyrid subfamilies of the divergence patterns that have been described within lineages. We find that the Petrocephalus assemblage in Odzala is not a monophyletic radiation. Genetic divergence among Petrocephalus species often appears higher than among Paramormyrops or Campylomormyrus species. In contrast, results of this study and others suggest that Petrocephalus may generally exhibit less interspecific EOD divergence, as well as smaller sex differences in EOD waveforms, compared to Paramormyrops and Campylomormyrus. We discuss possible causes and consequences of EOD diversification patterns observed within mormyrid subfamilies as a framework for future comparative studies of signal evolution using this emerging model system.  相似文献   

12.
I recorded the electric organ discharges (EODs) of 331 immature Brachyhypopomus pinnicaudatus 6–88 mm long. Larvae produced head-positive pulses 1.3 ms long at 7 mm (6 days) and added a second, small head-negative phase at 12 mm. Both phases shortened duration and increased amplitude during growth. Relative to the whole EOD, the negative phase increased duration until 22 mm and amplitude until 37 mm. Fish above 37 mm produced a “symmetric” EOD like that of adult females. I stained cleared fish with Sudan black, or fluorescently labeled serial sections with anti-desmin (electric organ) or anti-myosin (muscle). From day 6 onward, a single electric organ was found at the ventral margin of the hypaxial muscle. Electrocytes were initially cylindrical, overlapping, and stalk-less, but later shortened along the rostrocaudal axis, separated into rows, and formed caudal stalks. This differentiation started in the posterior electric organ in 12-mm fish and was complete in the anterior region of fish with “symmetric” EODs. The lack of a distinct “larval” electric organ in this pulse-type species weakens the hypothesis that all gymnotiforms develop both a temporary (larval) and a permanent (adult) electric organ. Accepted: 1 March 1997  相似文献   

13.
This study explores the evolutionary origins of waveform complexity in electric organ discharges (EODs) of weakly electric fish. I attempt to answer the basic question of what selective forces led to the transition from the simplest signal to the second simplest signal in the gymnotiform electric fishes. The simplest electric signal is a monophasic pulse and the second simplest is a biphasic pulse. I consider five adaptive hypotheses for the evolutionary transition from a monophasic to a biphasic EOD: (i) electrolocation, (ii) sexual selection, (iii) species isolation, (iv) territory defense, (v) crypsis from electroreceptive predators. Evaluating these hypotheses with data drawn largely from the literature, I find best support for predation. Predation is typically viewed as a restraining force on evolution of communication signals, but among the electric fishes, predation appears to have served as a creative catalyst. In suppressing spectral energy in the sensitivity range of predators (a spectral simplification), the EOD waveforms have become more complex in their time domain structure. Complexity in the time domain is readily discernable by the high frequency electroreceptor systems of gymnotiform and mormyrid electric fish. The addition of phases to the EOD can cloak the EOD from predators, but also provides a substrate for subsequent modification by sexual selection. But, while juveniles and females remain protected from predators, breeding males modify their EODs in ways that enhance their conspicuousness to predators.  相似文献   

14.
The ultimate aim of this study is to better understand the diversification of African weakly electric fish in the Congo River. Based on a robust phylogenetic hypothesis we examined the radiation within the mormyrid genus Campylomormyrus. Morphological traits relevant for the divergence between the identified species were detected. Among them, the variation in the shape of the trunk-like elongated snout suggested the presence of different trophic specializations. Furthermore, the chosen model taxon, the genus Campylomormyrus, exhibits a wide diversity of electric organ discharge (EOD) waveforms. A comparison of EOD waveform types and phylogenetic relationships showed major differences in EOD between closely related species. This indicates that the EOD might function as a reproductive isolation mechanism. In conclusion, we provide a plausible scenario of an adaptive radiation triggered by sexual selection and assortative mating based on EOD characteristics, but caused by a divergent selection on the feeding apparatus. These findings point towards an adaptive radiation of at least some Campylomormyrus species occurring in the Lower Congo River.  相似文献   

15.
Summary Hypopomus occidentalis is a weakly electric Gymnotiform fish with a pulse-type electric organ discharge (EOD).Hypopomus used in this study were taken from one of the northernmost boundaries of this species, the Atlantic drainage of Panama where the animals breed at the beginning of the dry season (December). In normal breeding populations,Hypopomus occidentalis exhibit a sexual dimorphism in EOD and morphology. Mature males are large with a broad tail and have an EOD characterized by a low peak power frequency. Females and immature males are smaller, having a slender tail and EODs with higher peak power frequencies (Fig. 1). This study describes differences in the EOD and electric organ morphology between breeding field populations of male and femaleHypopomus. Changes in physiology, morphology and EOD shape which may accompany this seasonal change were examined in steroid injected fish, using standard histological and physiological techniques.A group of females were injected with hormones (5-dihydrotestosterone (DHT), estrogen or saline) to assess changes in their morphology and EOD. Animals treated with DHT developed characteristics which mimicked the sexually dimorphic characteristics of a male, while the other groups did not (see Fig. 5). Tissue from the tails of breeding males and females, and females treated with DHT, were sampled to measure the size of the electrocytes in the tail. The broader tail of males and DHT-females is composed of large electrocytes, whereas the slender tail of normal females is composed of smaller electrocytes. Therefore, the increase in the tail width in the female DHT group is caused by an enlargement of the electrocytes in this area.Intracellular recordings from the electrocytes of saline and DHT injected females show a difference in the responses of the rostral faces of the electrocytes from the two groups, which reflect the differences in their EODs. Saline-treated animals had symmetrical EODs (the first and second phase of the EOD were equal in duration and amplitude), while the physiological responses from each face of the electrocytes yielded responses that were similarly equal in duration and amplitude. DHT-treated animals had asymmetrical EODs (the first phase of the EOD was similar to that of saline treated fish and larger in amplitude and shorter in duration than the second phase) and the physiological responses of the electrocytes reflected this asymmetry. The differential recordings across the caudal face were similar to those from saline treated fish, while the responses from the rostral face were longer in duration and smaller in amplitude.These data suggest that the effects of androgens underlie the changes in single electrocytes which produce the sexually dimorphic signals and morphology present in natural breeding populations ofHypopomus occidentalis.  相似文献   

16.
The electric organ discharges (EODs) of five mormyrid species ( Marcusenius senegalensis , Brevimyrus niger , Petrocephalus bovei , Pollimyrus isidori , Hippopotamyrus pictus ) from different sampling sites from the Upper Volta system in West Africa were investigated. EOD waveforms were recorded at high sampling rates in order to compare signal waveform parameters of the different species from different locations. Except for H. pictus , EODs within a species differed significantly from one another in some parameters and waveform variability at least between some sampling sites. In addition, each species showed a continuous spectrum of waveform variations, all or only parts of which were found at certain localities. Although there was variability and sometimes similarities between species, the EOD waveforms were species specific. Knowing their variation spectrum, they can be used for species determination and are probably used for species recognition by the mormyrids. Similarities or differences in EOD waveform expression within a species were not related to geographical distance. By contrast, we suggest that biotic environmental factors at a given location influence the expression of EOD waveforms. These factors affect absolute measurements such as EOD duration and fast Fourier transformation peak frequency as well as the amount of variation for certain waveform parameters across species in a similar manner for a given site. Although EOD waveform might be important for the establishment of reproductive barriers between species, our results suggest that differences in waveforms may not necessarily reflect different species or speciation processes in progress.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 61–80.  相似文献   

17.
Summary Members of the family of African electric fish, Mormyridae, exhibit a novelty response, consisting of an acceleration in the rate of electric organ discharges (EODs), when faced with changes in feedback arising from their EODs. In this study, the novelty responses of three different species of mormyrids to shunts with different electrical characteristics were noted. The three species differed in the frequency contents of their EODs: two species had relatively high spectral frequencies in their EODs (>10 kHz), while the third species had only lower spectral frequencies (< 10 kHz). Primarily resistive shunts elicited novelty response accelerations in all three species, and the magnitudes of these responses, when normalized to the responses obtained for a shunt with no introduced resistance, were comparable for all three species. For primarily capacitive shunts, however, the magnitudes of the normalized responses were different for the three species: the two species with high spectral frequencies in their EODs showed larger normalized responses than the third species which had only low EOD spectral frequencies.The differences in species responses for capacitive shunts, and the similarities in species responses for resistive shunts, suggest that electric fish detect the complex impedance of objects in their near field environment: a circuit model consisting of a fish emitting discharges into the surrounding water, which can be shunted by a variable complex impedance, conforms well to the data. Thus, electrolocation is a frequency dependent sensory process, and this frequency dependency should be considered in any speculation about the adaptive value of different EOD waveforms.Abbreviation EOD electric organ discharge  相似文献   

18.
There is a sexual dimorphism in the frequency of the quasi-sinusoidal electric organ discharge (EOD) of Sternopygus macrurus, with males, on average, an octave lower. EODs are detected by tuberous electroreceptor organs, which exhibit V-shaped frequency tuning with maximal sensitivity near the fish's own EOD frequency. This would seem to limit the ability of a fish to detect the EODs of opposite-sex conspecifics. However, electroreceptor tuning has always been based on single-frequency stimulation, while actual EOD detection involves the addition of a conspecific EOD to the fish's own. In the present study, recordings were made from single electroreceptive units while the fish were stimulated with pairs of sine waves: one (S1) representing the fish's own EOD added to a second (S2) representing a conspecific EOD. T unit response was easily predicted by assuming that the electroreceptor acts as a linear filter in series with a threshold-sensitive spike initiator. P unit response was more complex, and unexpectedly high sensitivity was found for frequencies of S2 well displaced from the fish's EOD frequency. For both P and T units, detection thresholds for S2 were much lower when added to S1, than when presented alone.  相似文献   

19.
Environmental hypoxia has effected numerous and well-documented anatomical, physiological and behavioural adaptations in fishes. Comparatively little is known about hypoxia's impacts on sensing because it is difficult to quantify sensory acquisition in vivo. Weakly electric fishes, however, rely heavily on an easily-measurable sensory modality—active electric sensing—whereby individuals emit and detect electric organ discharges (EODs). In this study, hypoxia tolerance of a mormyrid weakly electric fish, Marcusenius victoriae, was assessed by examining both its metabolic and EOD rates using a critical threshold (pcrit) paradigm. The routine metabolic rate was 1.42 mg O2 h−1, and the associated critical oxygen tension was 14.34 mmHg. Routine EOD rate was 5.68 Hz with an associated critical tension of 15.14 mmHg. These metabolic indicators of hypoxia tolerance measured in this study were consistent with those in previous studies on M. victoriae and other weakly electric fishes. Furthermore, our results suggest that some aerobic processes may be reduced in favour of maintaining the EOD rate under extreme hypoxia. These findings underscore the importance of the active electrosensory modality to these hypoxia-tolerant fish.  相似文献   

20.
Communication signals are highly diverse traits. This diversity is usually assumed to be shaped by selective forces, whereas the null hypothesis of divergence through drift is often not considered. In Panama, the weakly electric fish Brachyhypopomus occidentalis is widely distributed in multiple independent drainage systems, which provide a natural evolutionary laboratory for the study of genetic and signal divergence in separate populations. We quantified geographic variation in the electric signals of 109 fish from five populations, and compared it to the neutral genetic variation estimated from cytochrome oxidase I (COI) sequences of the same individuals, to test whether drift may be driving divergence of their signals. Signal distances were highly correlated with genetic distances, even after controlling for geographic distances, suggesting that drift alone is sufficient to explain geographic variation in electric signals. Significant differences at smaller geographic scales (within drainages) showed, however, that electric signals may evolve at a faster rate than expected under drift, raising the possibility that additional adaptive forces may be contributing to their evolution. Overall, our data point to stochastic forces as main drivers of signal evolution in this species and extend the role of drift in the evolution of communication systems to fish and electrocommunication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号