首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors governing landscape‐scale flammability are poorly understood, yet critical to managing fire regimes. Studies of the extent and severity of the 2003 Australian alpine fires revealed marked differences in flammability between major alpine plant communities, with the occurrence and severity of fire greater in heathland compared to grassland. To understand this spatial variation in landscape flammability, we documented variation in two physical properties of fuel – load and bulk density – at the life‐form and plant community scale. We measured the load (mass per unit area) and bulk density (mass per unit volume) of fine fuels (<6 mm) at 56 sites across the Bogong High Plains, southeastern Australia. Fine fuel load was positively correlated with shrub cover, and fine fuel bulk density was negatively correlated with shrub cover. Furthermore, fine fuel load and bulk density were accurately predicted using simple measures of canopy height and shrub cover. We also conducted a burning experiment on individual shrubs and snowgrass (Poa spp.) patches to assess comparative differences in flammability between these life‐forms. The burning experiment revealed that shrubs were more flammable than snowgrass as measured by a range of flammability variables. Consequently, our results indicate that treeless alpine landscapes of southeastern Australia are differentially flammable because of inherent life‐form differences in both fine fuel load and bulk density. If shrub cover increases in these alpine landscapes, as projected under climate change, then they are likely to become more flammable and may experience more frequent and/or severe fires.  相似文献   

2.
Fire plays a role in determining the shape of the earth's ecosystems, impacts socio-economic issues, and influences our climate. In arid and semi-arid Australia (70% of the continent), individual fires frequently exceed 1 million ha, and have collectively burnt up to 9% of the total area in a single year, associated with antecedent periods of above average rainfall which boost the fuel load. People affected by these fires – Federal and State governments, pastoralists, Aboriginal communities, larger towns, conservation park managers and tourist operators – all have different outlooks and priorities about these phenomena. Little objective information about the fire regime and its drivers has been available for this vast area with its very low population density. A predictive understanding of the spatial and temporal pattern of risk of large uncontrollable fires is needed to promote pro-active management.We present a conceptual framework which serves both to summarise existing knowledge and to reduce the complexity for a quantitative statistical analysis. This conceptual framework contains four main groups of independent variables; biomass, curing, ignition source, and fire weather. For these groups of variables we identified direct data sources or spatial surrogates. To quantify different aspects of the fire regime, interpretation of NOAA-AVHRR satellite imagery was employed, which identifies both fire hotspots (FHS) and fire affected area (FAA). For temporal variables, we present a surface displaying relationships for different combinations of lag/phase. This highlights different patterns for each region, and the most appropriate timeframes to use in modelling.Results of exploratory regression analysis in arid and semi-arid Australia show that the strongest influence is exerted by biomass or fuel load. As this is highly dependent on antecedent rainfall, we can anticipate a strong effect of climate change on the fire regime. The strongest combinations of relationships may be used as spatial indicators in the development of long-lead fire risk models for these areas. This can help improve the timing of pro-active strategies to manage fire, and in the allocation of sparse funds and resources. Our analysis has highlighted regional patterns of fire across different land tenures. Heightened awareness of these patterns may encourage a more cooperative and coordinated approach to fire management amongst stakeholders.  相似文献   

3.
Although most fire research in plant ecology focuses on vegetation responses to burning, shifts in plant community composition wrought by climate change can change wildland fuelbeds and affect fire behaviour such that the nature of fire in these systems is altered. Changes that introduce substantially different fuel types can alter the spatial extent of fire, with potential impacts on community succession and biodiversity. Montane grasslands of sub-Saharan Africa are threatened by climate change because species distributions can shift with climatically determined ranges. We studied the impact of patches of the temperate C3 grass Festuca costata in C4-dominated grassland at the transition between their subalpine ranges in South Africa’s Drakensberg. We used empirical data on fuel moisture and fuel load across F. costata-dominated patches in a C4-dominated matrix in fire spread models to predict the effect of larger, higher-moisture F. costata patches on the spatial extent of fire. Results indicate F. costata reduces fire spread and burn probability in F. costata patches, and the effect increases as live fuel moisture increases and patches get larger. However, as a native species, F. costata does not appear to have the extreme, fire-suppressing effect of non-native C3 grasses in other C4 grasslands. Instead, F. costata patches likely increase variability in the spatial extent of fire in this C4-dominated grassland, which likely translates to spatial variability on vegetation succession.  相似文献   

4.
One way species of low maximum height can accrue sufficient light income to persist in vegetation is via rapid height growth immediately following disturbance. By surveying patches of known time since fire, we reconstructed height–growth trajectories for 19 post-fire recruiting species from fire-prone vegetation in south-eastern Australia. Cross-species patterns of height growth were compared to several plant traits thought to influence height strategy, including leaf mass per area, stem tissue density, stem diameter and capacity to resprout. Shorter species were found to temporarily outpace taller species, both as resprouters and within reseeders. Among reseeders, a single axis of variation summarised patterns of height–growth, time to onset of reproduction and longevity. This axis was tightly correlated with maximum height, leaf mass per area and stem diameter at a given height. These results illustrate how a range of height strategies can coexist in fire-prone vegetation, via the time-process initiated by disturbance.  相似文献   

5.
Aim To understand changes in fire persistence traits of plants along a latitudinal gradient, considering the interactions between productivity, community (fuel) structure and fire regime. Location A gradient in the south of Australia (latitude 33–37° S; longitude 140–143° E), including: Little Desert National Park (VIC), Big Desert Wilderness Park (VIC), Murray‐Sunset National Park (VIC), Danggali Conservation Park (SA) and Tarawi Nature Reserve (NSW). Methods We selected four areas along a latitudinal gradient for which information on fire history and vegetation was available. Then, we tested to what extent the four selected areas have different climate and different fire regimes. Plant cover values of different life forms provided an indication of the plant community structure and flammability, and the proportion of species with different fire persistence traits (resprouting, seedbank persistence) informed us on the trait selection. Results Precipitation decreases and temperature increases from south to north. Thus the selected sites represent a gradient from high productivity (low aridity) in the south to low productivity (high aridity) in the north. Fire statistics suggest that fire frequency parallels productivity. There is a tendency for life form dominance and community structure to shift in such a way that fuel connectivity is reduced towards the north. Resprouting species increase and obligate seeders decrease along the fire–productivity gradient. Main conclusions Changes in plant traits are difficult to understand without simultaneous consideration of both the disturbance and the productivity gradients. In our study area, fire regime and productivity interact in such a way that decreases in productivity imply changes in fuel structure that produce a reduction in fire frequency. Resprouting species are better represented at the high fire–productivity part of the gradient, while obligate seeders are better represented at the opposite end of the gradient. The results also emphasize the importance of considering not only climate changes but also changes in fuel structure to predict future fire regimes.  相似文献   

6.
Fire disturbance patterns influence forest communities at a range of spatial scales. Forest community structure may also influence fire disturbance patterns, because tree species vary in their fuel value and in their tolerance to fire damage. However, the influence of community structure on fire disturbance likely depends on latent ecological differences between fires and on the spatial scale at which patterns are observed. Using data on fire intensity, community structure, and post-fire tree survival in four systematically sampled boreal forest fires, we tested the hypotheses that: (1) patterns in post-fire tree survival reflect interactions between fire intensity and community structure; (2) these relationships change with the spatial scale of observation. To test the first hypothesis, we used information theoretic methods to compare eight generalized linear mixed effects models describing the influence of community structure and fire intensity on tree survival in a 500 m2 sample plot, accounting for latent fire-to-fire differences in response. To test the scaling hypothesis, we reaveraged the data at nine successively larger spatial resolutions up to approximately 2 km2, at each resolution tracking the parameter values of the best model. When fit to the plot-level data, the dominant feature of the best model was a strong intensity–survival correlation which varied from fire to fire, and depended on plot-level community structure. In some fires, community structure and survival became more tightly coupled at larger scales, whereas fire intensity became less important. These results support the view that fire disturbance patterns are influenced by cross-scale interactions between community structure and fire intensity.  相似文献   

7.
Woody plant expansion is a global phenomenon that alters the spatial distribution of nutrients, biomass, and fuels in affected ecosystems. Altered fuel patterns across the landscape influences ecological processes including fire behavior, fire effects, and can impact post-fire plant germination and establishment. The purpose of this study was to determine how accumulations of ground fuels beneath western juniper (Juniperus occidentalis ssp. occidentalis) canopies, composed of litter and duff, affect post-fire species response in sagebrush steppe and to quantify fuel loading patterns. Field sampling and analysis was conducted across environmental gradients following the 2007 Tongue-Crutcher Wildfire in southwestern Idaho to determine conditions that were most influential in post-fire vegetation recovery patterns. Duff depth and fire severity were determined to be the most influential factors affecting post-fire vegetation response. Decreasing species richness and native perennial grass cover was represented along the increasing duff depth gradient. Species response grouped by fire severity revealed significant presence of cheatgrass (Bromus tectorum) in low severity sites and a dominance of snowbrush ceanothus (Ceanothus velutinus) in higher severity sites. Determining sub-crown surface fuel characteristics offers the potential to predict future patterns and processes as they relate to burn severity and vegetation recovery components in developing woodlands.  相似文献   

8.
The two major disturbance types of boreal black spruce forest in north–central Quebec, Canada – natural disturbance by wildfire and anthropogenic disturbance by harvest – may affect processes of recovery differently and leave distinct post‐disturbance soil and vegetation spatial patterns. We tested whether 1) spatial patterns of physico‐chemical soil organic layer properties, black spruce diameter and density, and understory ericaceous shrub cover, differ between these two principal disturbance types; 2) operations associated with forest harvest result in distinct, regular spatial patterns of these same variables related to presence of machine trails; and 3) ericaceous shrub presence is a potential factor contributing to the legacy of spatial patterns after harvest. We explored these patterns on black spruce‐feathermoss forest stands, including fire‐origin stands (18 and 98 years) and stands originating from harvest (16 and 62 years) in central Quebec, Canada. We used two spatial analysis methods, spectral analysis and principal component analysis in the frequency domain, to characterize and relate spatial patterns of these soil and vegetation variables, measured along 50‐m transects on each site. Spatial patterns of distribution of soil and vegetation variables were different on the burned and the harvested forest sites. Wildfire gave rise to spatial patterns in soil and vegetation variables at multiple scales, reflecting the complexity generated by variable burn intensity. Patterns following forest harvest were mainly related to the regular structure defined by trails created by logging operations. In contrast to burned sites, ericaceous shrub patterns on harvested sites were strongly associated with spatial arrangements of spruce diameter and density, promoting absence of canopy closure and persistence of trails. Moreover, different spatial signatures did not converge in the long‐term (62–98 years) between the two disturbance types. The divergence in spatial structure between natural and anthropogenic disturbances has implications for ecosystem structure and function in the longer term.  相似文献   

9.
Species relative importance distribution pattern changes of the ground-beetle assemblages were analyzed along elevation strata of Tenerife Island. The species importance estimates were expressed in terms of (i) activity density, as total catching of ground-beetle adults obtained with pitfall traps over each elevation stratum for one year, and (ii) biomass, as the total number of specimens caught multiplied by a mean dry weight in milligrams for the species. The K-dominance curves indicated moderate or insignificant perturbances, and patterns were sigmoidal following a truncated log-normal slightly skewed to the right, by using the Kolmogoroff–Smirnov test. The results also showed perceptible deviations from the truncated log-normal pattern (p < 0.05) mainly with biomass data. The disturbance through successional progress and perturbances by environmental warming and cooling could be assumed by deviations from the log-normal distribution among species. Thus, assuming that the assemblages of strata exhibited generally low similarity, the results will be arranged around the following four tracks: (1) the assemblage progressed toward highest abundances, dominance and a low-diversity equilibrium state in the cloud montane stratum, (2) the assemblage was subject to severe warming and dryness, lowest abundances with dominance in biomass, such that log-normal pattern was not shown in the basal stratum, (3) a non-equilibrium state in summer-xeric montane stratum maintained the highest diversity and an archetypical log-normal pattern was described for assemblage, and (4) assemblage stressed by cold semi-arid climate showed a certain tendency to log-normality and decrease in the diversity for the summit stratum. These results indicate that variation in ground-beetle assemblages by way of advanced evolutionary and adaptive trade-offs can best be understood as consequences of selective pressures by adverse climatic changes – perturbances – or seasonal climatic fluctuations and population dynamics – disturbances – according to the elevation stratum, which can generate different deviations from the log-normal pattern; these are more directly related to magnitude and frequency of local natural disturbance regimes and the productivity of the ecosystem.  相似文献   

10.
Mechanical clearing of understory vegetation is increasingly used in Euro-Mediterranean forests to reduce fire hazard, yet its long-term consequences for biodiversity remain poorly understood. This study analysed the influence of time since understory management and management frequency, on herbaceous species richness, cover and composition, functional richness and composition, and richness and cover within functional groups (life and growth forms, dispersal strategy, clonality, and plant height), using a chronosequence of cork oak (Quercus suber) stands spanning about 70 years. Overall species richness was virtually constant over time, but the richness of species with annual life form and plasticity in height was much higher in recently and recurrently treated stands; the opposite was found for perennial (mainly hemicryptophytes and chamaephytes), tussock-forming and clonal species richness, and functional richness. Overall herbaceous cover and that of annual, semi-basal, non-clonal and plastic species (in height) were favoured by recent and recurrent fuel treatments; cover by perennial (hemicryptophytes and chamaephytes), short basal, tussock-forming, and clonal species tended to increase for >10–20 years after management, and declined with management frequency. There was a marked shift in species and functional composition associated with time since understory management and management frequency. These findings suggest that widespread fuel management at <10 year intervals may shift understory herb communities to early-successional stages, impairing the persistence of species and functional groups recovering slowly after disturbance. Fuel management needs to balance the dual goals of fire hazard reduction and biodiversity conservation, retaining undisturbed patches in landscapes otherwise managed to reduce fuel accumulation.  相似文献   

11.
Abstract Ecosystem patterns and disturbance processes at one spatial scale often interact with processes at another scale, and the result of such cross-scale interactions can be nonlinear dynamics with thresholds. Examples of cross-scale pattern-process relationships and interactions among forest dieback, fire, and erosion are illustrated from northern New Mexico (USA) landscapes, where long-term studies have recently documented all of these disturbance processes. For example, environmental stress, operating on individual trees, can cause tree death that is amplified by insect mortality agents to propagate to patch and then landscape or even regional-scale forest dieback. Severe drought and unusual warmth in the southwestern USA since the late 1990s apparently exceeded species-specific physiological thresholds for multiple tree species, resulting in substantial vegetation mortality across millions of hectares of woodlands and forests in recent years. Predictions of forest dieback across spatial scales are constrained by uncertainties associated with: limited knowledge of species-specific physiological thresholds; individual and site-specific variation in these mortality thresholds; and positive feedback loops between rapidly-responding insect herbivore populations and their stressed plant hosts, sometimes resulting in nonlinear “pest” outbreak dynamics. Fire behavior also exhibits nonlinearities across spatial scales, illustrated by changes in historic fire regimes where patch-scale grazing disturbance led to regional-scale collapse of surface fire activity and subsequent recent increases in the scale of extreme fire events in New Mexico. Vegetation dieback interacts with fire activity by modifying fuel amounts and configurations at multiple spatial scales. Runoff and erosion processes are also subject to scale-dependent threshold behaviors, exemplified by ecohydrological work in semiarid New Mexico watersheds showing how declines in ground surface cover lead to non-linear increases in bare patch connectivity and thereby accelerated runoff and erosion at hillslope and watershed scales. Vegetation dieback, grazing, and fire can change land surface properties and cross-scale hydrologic connectivities, directly altering ecohydrological patterns of runoff and erosion. The interactions among disturbance processes across spatial scales can be key drivers in ecosystem dynamics, as illustrated by these studies of recent landscape changes in northern New Mexico. To better anticipate and mitigate accelerating human impacts to the planetary ecosystem at all spatial scales, improvements are needed in our conceptual and quantitative understanding of cross-scale interactions among disturbance processes.  相似文献   

12.
澳大利亚森林火灾的管理与火生态的研究   总被引:9,自引:1,他引:9  
澳大利亚是火灾频发的地区.每年因森林火灾的危害都要造成相当的社会、经济损失及生态环境的破坏,故火生态的研究及火的管理在澳大利亚的生态学研究中一直占有重要地位.本文主要讨论了澳洲森林大火起燃的物理过程和机制、可燃物的特征、林火的特点、习性及对生态环境的影响和如何控制和减少火灾的危害性,达到对火进行利用、控制和管理的目的.  相似文献   

13.
Large grazing herbivores can change fire regimes by altering fuel types and abundance, particularly in savanna biomes where the dominant fuel is grass. The use of herbivores as a fire management tool is receiving increasing consideration globally, but this intervention has a limited evidence‐base and is controversial because of potential deleterious ecological effects. These issues are well illustrated by the political and scientific debate about the capacity of cattle grazing to reduce fire hazard in the Victorian Alps of Australia; there have been remarkably few scientific studies to illuminate this issue. Here we use remote sensing and geographic information system analysis to determine the effect of active grazing licences on fire severity (crown scorch) in eucalypt forests and woodlands following large fires in the Alps during the summers of 2002/2003 and 2006/2007. Our statistical analyses, which controlled for spatial autocorrelation, found crown scorch was strongly related to vegetation type but there was no evidence that cattle grazing reduced fire severity. There was some evidence that grazing could increase fire severity by possibly changing fuel arrays. Such landscape analyses are a critical approach given that large‐scale grazing × fire trials are prohibitively expensive and impractical to conduct.  相似文献   

14.
Landscape rehabilitation following mining is required to be resilient to disturbance impacts such as fire, drought and disease. As mining companies undergo the process of rehabilitation certification and mine closure, there are notable knowledge gaps on the ecological risks associated with mature rehabilitated landscapes, based largely on the assumption that rehabilitation is analogous to reference communities. However, the response to fire disturbance across a range of landscapes remains largely untested and in particular there is limited understanding of recovery traits of plant species that occur naturally or are commonly seeded into rehabilitation. In August 2018, a controlled fire was applied to 37 hectares of 12-year-old coal-mine rehabilitation in central Queensland, Australia. We used a combination of (i) ground plot surveys and (ii) drone imagery to compare the vegetation response of burnt woody species to unburnt controls prior to, and for, two years following the fire. The survival of the most dominant shrub species found on the rehabilitation site was significantly impacted by the fire. Old Man Saltbush (Atriplex nummularia Lindl. subsp. nummularia) recorded significant post-fire mortality, with ground surveys recording an average reduction of 89% of stems per hectare across the burnt site, while unburnt controls remained unchanged. The plot data analysis was supported with high spatial and temporal resolution drone imagery, classified using a Random Forest machine-learning approach. Change analysis of these maps showed a significant decline of 82% in Old Man Saltbush plant density and 92% reduction in foliage cover following the fire. In addition, the mean canopy area of individual Old Man Saltbush shrubs reduced significantly from a pre-fire mean of 11.3 to 4.8 m2 two years following the fire. A spatial proximity analysis showed that those individuals that survived the fire were located significantly closer to unburnt areas and bare spoil, indicating that discontinuous ground fuel loads can greatly improve the survivability of individuals. This study provides new evidence on the contested fire sensitivity of Old Man Salt bush and demonstrates the risk that future climate-driven extreme events may have on the resilience of novel ecosystems.  相似文献   

15.
Aim A major endeavour of community ecology is documenting non‐random patterns in the composition and body size of coexisting species, and inferring the processes, or assembly rules, that may have given rise to the observed patterns. Such assembly rules include species sorting resulting from interspecific competition, aggregation at patchily distributed resources, and co‐evolutionary dynamics. However, for any given taxon, relatively little is known about how these patterns and processes change through time and vary with habitat type, disturbance history, and spatial scale. Here, we tested for non‐random patterns of species co‐occurrence and body size in assemblages of ground‐foraging ants and asked whether those patterns varied with habitat type, disturbance history, and spatial scale. Location Burned and unburned forests and fens in the Siskiyou Mountains of southern Oregon and northern California, USA. Methods We describe ground‐foraging ant assemblages sampled over two years in two discrete habitat types, namely Darlingtonia fens and upland forests. Half of these sites had been subject to a large‐scale, discrete disturbance – a major fire – in the year prior to our first sample. We used null model analyses to compare observed species co‐occurrence patterns and body‐size distributions in these assemblages with randomly generated assemblages unstructured by competition both within (i.e. at a local spatial scale) and among (i.e. at a regional scale) sites. Results At local spatial scales, species co‐occurrence patterns and body‐size ratios did not differ from randomness. At regional scales, co‐occurrence patterns were random or aggregated, and there was evidence for constant body‐size ratios of forest ants. Although these patterns varied between habitats and years, they did not differ between burned and unburned sites. Main conclusions Our results suggest that the operation of assembly rules depends on spatial scale and habitat type, but that it was not affected by disturbance history from fire.  相似文献   

16.

Questions

Are factors influencing plant diversity in a fire‐prone Mediterranean ecosystem of southeast Australia scale‐dependent?

Location

Heathy woodland, Otways region, Victoria, southeast Australia

Methods

We measured patterns of above‐ground and soil seed bank vegetation diversity and associated them with climatic, biotic, edaphic, topographic, spatial and disturbance factors at multiple scales (macro to micro) using linear mixed effect and generalized dissimilarity modelling.

Results

At the macro‐scale, we found species richness above‐ground best described by climatic factors and in the soil seed bank by disturbance factors. At the micro‐scale we found species richness best described above‐ground and in the soil seed bank by disturbance factors, in particular time‐since‐last‐fire. We found variance in macro‐scale β‐diversity (species turnover) best explained above‐ground by climatic and disturbance factors and in the soil seed bank by climatic and biotic factors.

Conclusions

Regional climatic gradients interact with edaphic factors and fire disturbance history at small spatial scales to influence species richness and turnover in the studied ecosystem. Current fire management regimes need to incorporate key climatic–disturbance–diversity interactions to maintain floristic diversity in the studied system.
  相似文献   

17.
Fire is a common disturbance in the North American boreal forest that influences ecosystem structure and function. The temporal and spatial dynamics of fire are likely to be altered as climate continues to change. In this study, we ask the question: how will area burned in boreal North America by wildfire respond to future changes in climate? To evaluate this question, we developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5° (latitude × longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was substantially more predictable in the western portion of boreal North America than in eastern Canada. Burned area was also not very predictable in areas of substantial topographic relief and in areas along the transition between boreal forest and tundra. At the scale of Alaska and western Canada, the empirical fire models explain on the order of 82% of the variation in annual area burned for the period 1960–2002. July temperature was the most frequently occurring predictor across all models, but the fuel moisture codes for the months June through August (as a group) entered the models as the most important predictors of annual area burned. To predict changes in the temporal and spatial dynamics of fire under future climate, the empirical fire models used output from the Canadian Climate Center CGCM2 global climate model to predict annual area burned through the year 2100 across Alaska and western Canada. Relative to 1991–2000, the results suggest that average area burned per decade will double by 2041–2050 and will increase on the order of 3.5–5.5 times by the last decade of the 21st century. To improve the ability to better predict wildfire across Alaska and Canada, future research should focus on incorporating additional effects of long‐term and successional vegetation changes on area burned to account more fully for interactions among fire, climate, and vegetation dynamics.  相似文献   

18.
Wildland fire activity has increased in many parts of the world in recent decades. Ecological disturbance by fire can accelerate ecosystem degradation processes such as erosion due to combustion of vegetation that otherwise provides protective cover to the soil surface. This study employed a novel ecological indicator based on remote sensing of vegetation greenness dynamics (phenology) to estimate variability in the window of time between fire and the reemergence of green vegetation. The indicator was applied as a proxy for short-term, post-fire disturbance windows in rangelands; where a disturbance window is defined as the time required for an ecological or geomorphic process that is altered to return to pre-disturbance levels. We examined variability in the indicator determined for time series of MODIS and AVHRR NDVI remote sensing data for a database of ∼100 historical wildland fires, with associated post-fire reseeding treatments, that burned 1990–2003 in cold desert shrub steppe of the Great Basin and Columbia Plateau of the western USA. The indicator-based estimates of disturbance window length were examined relative to the day of the year that fires burned and seeding treatments to consider effects of contemporary variability in fire regime and management activities in this environment. A key finding was that contemporary changes of increased length of the annual fire season could have indirect effects on ecosystem degradation, as early season fires appeared to result in longer time that soils remained relatively bare of the protective cover of vegetation after fires. Also important was that reemergence of vegetation did not occur more quickly after fire in sites treated with post-fire seeding, which is a strategy commonly employed to accelerate post-fire vegetation recovery and stabilize soil. Future work with the indicator could examine other ecological factors that are dynamic in space and time following disturbance – such as nutrient cycling, carbon storage, microbial community composition, or soil hydrology – as a function of disturbance windows, possibly using simulation modeling and historical wildfire information.  相似文献   

19.
The dynamics of vegetation regeneration after burning were examined in three dry sclerophyll communities near Canberra, in south-eastern Australia. Changes in seedling and regrowth populations were followed in permanent quadrats during the first two years after burning, compared with both the preburn vegetation and population changes over the same period in adjacent, unburnt plots. All species represented either by living plants in the tree and shrub strata and/or by seed in the soil and litter prior to burning regenerated during the first year after the fire treatments. No new species invaded the areas after burning. Species varied in their regenerative strategy and recovered after the fires either by germination of seed residual in the soil and ash or released from trees after burning, by regrowth from surviving vegetative organs, or by a combination of germination and regrowth. Both seedling input and the vegetative recovery of populations were higher during the first than second year after burning. The vegetative multiplication and seed gertnination of many species were stimulated by fire. It was concluded that the regeneration of the communities studied, as well as the post-fire recovery of numerous different communities reported in the literature, closely resembled an initial floristic composition model. It is considered that the process of vegetation redevelopment after a disturbance (i.e. secondary succession) will be influenced greatly by the species composition at the time of disturbance, and by the type of disturbing agent. A single model would not be expected to adequately describe secondary succession following disturbance by agents imposing different stress conditions on a community.  相似文献   

20.
Fire Severity in Conifer Forests of the Sierra Nevada, California   总被引:3,自引:2,他引:1  
Natural disturbances are an important source of environmental heterogeneity that have been linked to species diversity in ecosystems. However, spatial and temporal patterns of disturbances are often evaluated separately. Consequently, rates and scales of existing disturbance processes and their effects on biodiversity are often uncertain. We have studied both spatial and temporal patterns of contemporary fires in the Sierra Nevada Mountains, California, USA. Patterns of fire severity were analyzed for conifer forests in the three largest fires since 1999. These fires account for most cumulative area that has burned in recent years. They burned relatively remote areas where there was little timber management. To better characterize high-severity fire, we analyzed its effect on the survival of pines. We evaluated temporal patterns of fire since 1950 in the larger landscapes in which the three fires occurred. Finally, we evaluated the utility of a metric for the effects of fire suppression. Known as Condition Class it is now being used throughout the United States to predict where fire will be uncharacteristically severe. Contrary to the assumptions of fire management, we found that high-severity fire was uncommon. Moreover, pines were remarkably tolerant of it. The wildfires helped to restore landscape structure and heterogeneity, as well as producing fire effects associated with natural diversity. However, even with large recent fires, rates of burning are relatively low due to modern fire management. Condition Class was not able to predict patterns of high-severity fire. Our findings underscore the need to conduct more comprehensive assessments of existing disturbance regimes and to determine whether natural disturbances are occurring at rates and scales compatible with the maintenance of biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号