共查询到20条相似文献,搜索用时 15 毫秒
1.
- Applications in bioacoustics and its sister discipline ecoacoustics have increased exponentially over the last decade. However, despite knowledge about aquatic bioacoustics dating back to the times of Aristotle and a vast amount of background literature to draw upon, freshwater applications of ecoacoustics have been lagging to date.
- In this special issue, we present nine studies that deal with underwater acoustics, plus three acoustic studies on water-dependent birds and frogs. Topics include automatic detection of freshwater organisms by their calls, quantifying habitat change by analysing entire soundscapes, and detecting change in behaviour when organisms are exposed to noise.
- We identify six major challenges and review progress through this special issue. Challenges include characterisation of sounds, accessibility of archived sounds as well as improving automated analysis methods. Study design considerations include characterisation analysis challenges of spatial and temporal variation. The final key challenge is the so far largely understudied link between ecological condition and underwater sound.
- We hope that this special issue will raise awareness about underwater soundscapes as a survey tool. With a diverse array of field and analysis tools, this issue can act as a manual for future monitoring applications that will hopefully foster further advances in the field.
2.
Daniella Teixeira;Paul Roe;Berndt J. van Rensburg;Simon Linke;Paul G. McDonald;David Tucker;Susan Fuller; 《Conservation Science and Practice》2024,6(6):e13132
Passive acoustic recorders have emerged as powerful tools for ecological monitoring. However, effective monitoring is not simply an act of recording sounds. To have meaning for conservation and management, acoustic monitoring needs to be properly planned and analyzed to yield high quality information. Here, we provide a set of considerations for the design of an effective acoustic monitoring program. We argue that such a program, has the following attributes: (1) has established appropriate partnerships with landowners, Traditional Owners, researchers, or other relevant stakeholders, (2) is based on clear objectives and questions, (3) is explicit in its target sound signals, (4) has considered in-field sensor placement for a range of factors, including experimental design, statistical power, background noise, and potential impacts on human privacy and animal disturbance, (5) has a justified recording schedule and periodicity, (6) has methods to process sound data in line with objectives, and (7) has protocols for permanent data storage and access. Acoustic monitoring is increasingly used in large-scale programs and will be important in addressing global biodiversity targets and new biodiversity markets. It is critical that new monitoring programs are designed to effectively and efficiently capture data that address pertinent and emerging issues in conservation. 相似文献
3.
Jessica L. Deichmann Orlando Acevedo‐Charry Leah Barclay Zuzana Burivalova Marconi Campos‐Cerqueira Fernando d'Horta Edward T. Game Benjamin L. Gottesman Patrick J. Hart Ammie K. Kalan Simon Linke Leandro Do Nascimento Bryan Pijanowski Erica Staaterman T. Mitchell Aide 《Biotropica》2018,50(5):713-718
Knowledge that can be gained from acoustic data collection in tropical ecosystems is low‐hanging fruit. There is every reason to record and with every day, there are fewer excuses not to do it. In recent years, the cost of acoustic recorders has decreased substantially (some can be purchased for under US$50, e.g., Hill et al. 2018) and the technology needed to store and analyze acoustic data is continuously improving (e.g., Corrada Bravo et al. 2017, Xie et al. 2017). Soundscape recordings provide a permanent record of a site at a given time and contain a wealth of invaluable and irreplaceable information. Although challenges remain, failure to collect acoustic data now in tropical ecosystems would represent a failure to future generations of tropical researchers and the citizens that benefit from ecological research. In this commentary, we (1) argue for the need to increase acoustic monitoring in tropical systems; (2) describe the types of research questions and conservation issues that can be addressed with passive acoustic monitoring (PAM) using both short‐ and long‐term data in terrestrial and freshwater habitats; and (3) present an initial plan for establishing a global repository of tropical recordings. 相似文献
4.
Simone Cominelli;Nicolo' Bellin;Carissa D. Brown;Valeria Rossi;Jack Lawson; 《Ecology and evolution》2024,14(2):e10951
Passive Acoustic Monitoring (PAM) is emerging as a solution for monitoring species and environmental change over large spatial and temporal scales. However, drawing rigorous conclusions based on acoustic recordings is challenging, as there is no consensus over which approaches are best suited for characterizing marine acoustic environments. Here, we describe the application of multiple machine-learning techniques to the analysis of two PAM datasets. We combine pre-trained acoustic classification models (VGGish, NOAA and Google Humpback Whale Detector), dimensionality reduction (UMAP), and balanced random forest algorithms to demonstrate how machine-learned acoustic features capture different aspects of the marine acoustic environment. The UMAP dimensions derived from VGGish acoustic features exhibited good performance in separating marine mammal vocalizations according to species and locations. RF models trained on the acoustic features performed well for labeled sounds in the 8 kHz range; however, low- and high-frequency sounds could not be classified using this approach. The workflow presented here shows how acoustic feature extraction, visualization, and analysis allow establishing a link between ecologically relevant information and PAM recordings at multiple scales, ranging from large-scale changes in the environment (i.e., changes in wind speed) to the identification of marine mammal species. 相似文献
5.
- Globally, water abstraction for human consumption and irrigated agriculture leads to significant changes in aquatic ecosystems. To counter these detrimental effects, water releases—often termed environmental water allocations—restore overbank flow or are delivered to artificially disconnected wetlands. While a suite of monitoring methods is available, few programmes track continuous change in biota, mainly because repeated remote site visits can be prohibitively expensive.
- In this paper, we propose a new approach to environmental flow monitoring, using ecoacoustic methods. We test acoustic monitoring of frog and waterbird responses to environmental water deliveries in the Goulburn Broken, a valley in the southern Murray–Darling river system. Response to three major environmental water deliveries within 2 years was monitored at four sites along Reedy swamp. Every 2 weeks, 30 s were recorded every 30 min, for a total of 24 hr.
- We used two analysis strategies—manual counts of bird calls, as well as ecoacoustic indices, which describe the sonic properties of the acoustic spectrum at a site. Manual counts demonstrated that water-dependent birds were clearly responding to environmental water deliveries, whereas non-water-dependent species did not show any increases in activity. After restricting the analysis to the dawn chorus of birds and frogs, two acoustic indices (the median amplitude and the acoustic complexity index) showed responses to watering events.
- Ecoacoustic methods show promise for continuous response monitoring to environmental water allocations. However, the first strategy—manual annotation of calls—might be too labour intensive for standard monitoring programmes. The second strategy—index-based approaches—can also detect ecological responses, although further investigation using control sites is needed. Automated call classifiers are an alternative that is currently being developed for endangered species. We also encourage simultaneous monitoring of the soundscape above and under water.
6.
M.G. Chapman 《Journal of Aquatic Ecosystem Stress and Recovery (Formerly Journal of Aquatic Ecosystem Health)》1998,6(3):235-251
Restoration of degraded habitat is an increasingly important toll for management. Unfortunately, much of the emphasis has been on restoring large structural elements of habitat (e.g. planting vegetation,removing weeds), with little consideration about how well these activities restore ecologically functioning habitat. There has been considerable research in recent years into improving sampling designs and analytical techniques to measure the effects of environmental impacts taking into account the large spatial and temporal variability that occurs naturally in undisturbed habitats. In a similar manner to detection of impacts, restoration needs to be measured as an interaction between spatial and temporal components of variation against a variable background. Very few studies of restoration have explicitly addressed how best to do this. Neither have they attempted to assess the usefulness of some of these new techniques for measuring restoration. This review discusses some of the problems that need to be considered when measuring restoration and the potential value of some of these new methodologies. This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
7.
Yoshinori Yabuki Takashi Nagai Keiya Inao Junko Ono Nobuyuki Aiko Nobutoshi Ohtsuka 《Bioscience, biotechnology, and biochemistry》2016,80(10):2069-2075
Laboratory experiments were performed to determine the sampling rates of pesticides for the polar organic chemical integrative samplers (POCIS) used in Japan. The concentrations of pesticides in aquatic environments were estimated from the accumulated amounts of pesticide on POCIS, and the effect of water temperature on the pesticide sampling rates was evaluated. The sampling rates of 48 pesticides at 18, 24, and 30 °C were obtained, and this study confirmed that increasing trend of sampling rates was resulted with increasing water temperature for many pesticides. 相似文献
8.
Jamie N. McWilliam Rob D. McCauley Christine Erbe Miles J. G. Parsons 《Bioacoustics.》2018,27(3):295-311
Passive acoustic monitoring can provide valuable information on coral reefs, and examining the acoustic attributes of these ecosystems has the potential to provide an insight into their status and condition. From 2014 to 2016, a series of underwater recordings were taken at field sites around Lizard Island in the Great Barrier Reef, Australia. Six individual fish choruses were identified where each chorus displayed distinct acoustic characteristics. Choruses exhibited diurnal activity and some field sites displayed consistently higher diversity of choruses and levels than others, suggesting that particular locations are important aggregation areas for soniferous fish species. During peak activity, choruses were a prominent component of reef soundscapes, where received levels of a chorus reached upwards of 120 dB re 1μPa rms over the 450–650 Hz band, equating to a 40 dB increase above ambient noise levels of ≈80 dB re 1μPa rms. Three out of the six detected choruses exhibited spectral and temporal characteristics similar to choruses previously documented at these sites and elsewhere, produced by planktivorous fish species. Three of these choruses appear to be undocumented and could hold information on the presence, abundance and dispersal patterns of important fish species, which may have potential long-term management applications. Future research should focus on extricating the temporal patterns associated with bioacoustic activity and determining the potential environmental drivers of biological choruses. Additionally, developing appropriate techniques for direct identification of vocalizing species would strongly increase the management applicability of passive acoustic monitoring. 相似文献
9.
Naysa E. Balcazar Holger Klinck Sharon L. Nieukirk David K. Mellinger Karolin Klinck Robert P. Dziak Tracey L. Rogers 《Marine Mammal Science》2017,33(1):172-186
Understanding species distribution and behavior is essential for conservation programs of migratory species with recovering populations. The critically endangered Antarctic blue whale (Balaenoptera musculus intermedia) was heavily exploited during the whaling era. Because of their low numbers, highly migratory behavior, and occurrence in remote areas, their distribution and range are not fully understood, particularly in the southwest Pacific Ocean. This is the first Antarctic blue whale study covering the southwest Pacific Ocean region from temperate to tropical waters (32°S to 15°S). Passive acoustic data were recorded between 2010 and 2011 across the southwest Pacific (SWPO) and southeast Indian (SEIO) oceans. We detected Antarctic blue whale calls in previously undocumented SWPO locations off eastern Australia (32°S, 152°E) and within the Lau Basin (20°S, 176°W and 15°S, 173°W), and SEIO off northwest Australia (19°S, 115°E).In temperate waters, adjacent ocean basins had similar seasonal occurrence, in that calling Antarctic blue whales were present for long periods, almost year round in some areas. In northern tropical waters, calling whales were mostly present during the austral winter. Clarifying the occurrence and distribution of critically endangered species is fundamental for monitoring population recovery, marine protected area planning, and in mitigating anthropogenic threats. 相似文献
10.
Dante Francomano;Andrea N. Raya Rey;Benjamin L. Gottesman;Bryan C. Pijanowski; 《Ibis》2024,166(1):38-54
In the face of global biodiversity loss that threatens social–ecological sustainability, we must improve our knowledge of species' behaviours, life histories and populations. Enhanced understanding is especially critical for taxa like seabirds that live in remote habitats where monitoring is logistically challenging, and technology-based approaches could lead to major advances. Considering conservation threats and breeding behaviours, penguins represent a promising taxon for further exploration of monitoring methods. Only five of 18 penguin species are currently considered species of Least Concern by the IUCN, and the sensitivity of penguins to ecological disturbances makes them important indicators of ecosystem dynamics. Penguins regularly congregate in dense breeding colonies and are visually and aurally conspicuous animals, making them relatively easy to monitor in some respects. In situ observations and visual remote sensing monitoring methods (i.e. camera traps, uncrewed aerial vehicles and satellite imagery) currently provide highly valuable information on penguin behaviour and population dynamics, but these methods have a number of shortcomings. Several rely on human presence in remote areas, some require clean lines of sight with no visual obstructions, and some offer limited spatial and temporal resolution. In this study we explore the use of passive acoustic monitoring (PAM) as a complementary remote sensing method to monitor penguin behaviour and populations at high spatial and temporal resolution without visual constraints or the need for continuous human presence. We conducted observations of vocalization rates and placed automated acoustic recorders in colonies of Magellanic Penguins Spheniscus magellanicus and Southern Rockhopper Penguins Eudyptes chrysocome in conjunction with camera traps. We found positive relationships between acoustic activity and counts of Magellanic Penguins in camera trap photos. We also identified clear diel patterns of acoustic activity that differed between breeding stages, and we found positive correlations between acoustic activity and estimates of colony density for various times of day and radii around recorders. While much work remains to improve this method and refine interpretation, PAM holds great promise as a complementary tool for monitoring the relative abundance and behavioural dynamics of penguins and other colonial animals, particularly those that burrow or nest in dense vegetation that impairs visual monitoring techniques. 相似文献
11.
Johnston DW McDonald M Polovina J Domokos R Wiggins S Hildebrand J 《Biology letters》2008,4(2):208-211
Seamounts may influence the distribution of marine mammals through a combination of increased ocean mixing, enhanced local productivity and greater prey availability. To study the effects of seamounts on the presence and acoustic behaviour of cetaceans, we deployed a high-frequency acoustic recording package on the summit of Cross Seamount during April through October 2005. The most frequently detected cetacean vocalizations were echolocation sounds similar to those produced by ziphiid and mesoplodont beaked whales together with buzz-type signals consistent with prey-capture attempts. Beaked whale signals occurred almost entirely at night throughout the six-month deployment. Measurements of prey presence with a Simrad EK-60 fisheries acoustics echo sounder indicate that Cross Seamount may enhance local productivity in near-surface waters. Concentrations of micronekton were aggregated over the seamount in near-surface waters at night, and dense concentrations of nekton were detected across the surface of the summit. Our results suggest that seamounts may provide enhanced foraging opportunities for beaked whales during the night through a combination of increased productivity, vertical migrations by micronekton and local retention of prey. Furthermore, the summit of the seamount may act as a barrier against which whales concentrate prey. 相似文献
12.
13.
- Biodiversity in freshwater habitats is decreasing faster than in any other type of environment, mostly as a result of human activities. Monitoring these losses can help guide mitigation efforts. In most studies, sampling strategies predominantly rely on collecting animal and vegetal specimens. Although these techniques produce valuable data, they are invasive, time-consuming and typically permit only limited spatial and temporal replication. There is need for the development of complementary methods.
- As observed in other ecosystems, freshwater environments host animals that emit sounds, either to communicate or as a by-product of their activity. The main freshwater soniferous groups are amphibians, fish, and macroinvertebrates (mainly Coleoptera and Hemiptera, but also some Decapoda, Odonata, and Trichoptera). Biophysical processes such as flow or sediment transport also produce sounds, as well as human activities within aquatic ecosystems.
- Such animals and processes can be recorded, remotely and autonomously, and provide information on local diversity and ecosystem health. Passive acoustic monitoring (PAM) is an emerging method already deployed in terrestrial environments that uses sounds to survey environments. Key advantages of PAM are its non-invasive nature, as well as its ability to record autonomously and over long timescales. All these research topics are the main aims of ecoacoustics, a new scientific discipline investigating the ecological role of sounds.
- In this paper, we review the sources of sounds present in freshwater environments. We then underline areas of research in which PAM may be helpful emphasising the role of PAM for the development of ecoacoustics. Finally, we present methods used to record and analyse sounds in those environments.
- Passive acoustics represents a potentially revolutionary development in freshwater ecology, enabling continuous monitoring of dynamic bio-physical processes to inform conservation practitioners and managers.
14.
Miles J. G. Parsons Chandra P. Salgado Kent Angela Recalde-Salas Robert D. McCauley 《Bioacoustics.》2017,26(2):135-152
Australian waters are home to a number of vocal species of fish. Cataloguing the acoustic characteristics and temporal patterns of choruses and their locations can provide significant information for long-term monitoring of vocal fishes and their ecosystems. In coastal waters off Port Hedland, Western Australia, two seafloor positioned sea-noise loggers, located 21.5 km apart in 8 and 18 m of water, recorded for an 18-month period. Numerous sound sources were detected, including mooring and vessel noise, humpback whale song and a large variety of fish signal types. Seven fish choruses were identified, occurring predominantly between late spring and early autumn (wet season) and displaying energy from 50 Hz to >4 kHz. Many of these choruses exhibited acoustic characteristics similar to choruses previously reported elsewhere, for some of which the source species or families have been identified. Distinct diurnal patterns in the choruses were observed, associated with sunrise or sunset and in some cases, both. While choruses were predominantly recorded on different days, there were at total of 80 days when more than one chorus was present at the same site. Some pairs of choruses present on the same day exhibited various combinations of temporal and frequency partitioning, while others displayed predominant overlap in both spaces. 相似文献
15.
The Rio Agrio and Lake Caviahue system (RAC), in Northwestern Patagonia, is a natural acidic environment. The aims of this study were to characterize the yeast community and to provide the first ecological assessment of yeast diversity of this extreme aquatic environment. Yeast occurrence and diversity were studied at seven sites where the water pH varied between 1.8 and 6.7. Yeast CFU counts in the river ranged from 30 to 1200 CFU L−1 , but in the Lake the values were lower (30–60 CFU L−1 ). A total of 25 different yeast species were found, 11 of which belonged to undescribed taxa. Among these was an unusual strongly acidophilic Cryptococcus species. The RAC yeast community resembles that of acidic aquatic environments resulting from anthropic activities such as the São Domingos mines in Portugal and the Rio Tinto in Spain, respectively. The isolated yeast species were organized into different grades of adaptation to the RAC aquatic system. Based on the proposed grades, Rhodotorula mucilaginosa , Rhodosporidium toruloides and two novel Cryptococcus species were the most adapted species. These Cryptococcus species are apparently specialists of acidic aquatic environments, and might bear physiological features that possibly account for their ability to thrive in such extreme environments. 相似文献
16.
Abraham L. Borker Rachel T. Buxton Ian L. Jones Heather L. Major Jeffrey C. Williams Bernie R. Tershy Donald A. Croll 《Restoration Ecology》2020,28(1):252-260
Measuring restoration outcomes is essential, but challenging and expensive, particularly on remote islands. Acoustic recording increases the scale of monitoring inexpensively; however, extracting biological information from large volumes of recordings remains challenging. Soundscape approaches, characterizing communities using acoustic indices, rapidly analyze large acoustic datasets and can be used to compare restoration sites against reference conditions. We tested this approach to measure nocturnal seabird recovery following invasive predator removal in the Aleutian Islands. We used recordings of nocturnal seabird soundscapes from six islands with varied histories of predators, from never invaded (one island) to 9–34 years post‐predator removal (four islands) and currently invaded (one island). We calculated 10 indices of acoustic intensity and complexity, and two pairwise indices of acoustic differences. Three indices reflected patterns of seabird recovery. Acoustic richness (measuring temporal entropy and amplitude) increased with time since predator removal and presence of historical predator refugia (r2 = 0.44). These factors and moonlight accounted for 30% of variation in cumulative spectral difference from the reference island. Over 10% of acoustic richness and temporal entropy was explained by Leach's Storm‐petrel (Oceanodroma leucorhoa) calls. However, indices characterized the soundscape of rat‐invaded Kiska Island like a never invaded island, likely due to high abiotic noise and few seabird calls. Soundscape indices have potential to monitor outcomes of seabird restoration quickly and cheaply, if confounding factors are considered and controlled in experimental design. We suggest soundscape indices become part of the expanding acoustic monitoring toolbox to cost‐effectively measure restoration outcomes at scale and in remote areas. 相似文献
17.
In this paper, the larva of Kempnyia colossica (Navás 1934) is described based on material collected in Parque Estadual Intervales, São Paulo State, and biological notes are presented. 相似文献
18.
High concentrations of near-surface ozone are known to have negative impacts on human health, especially among risk groups such as persons with respiratory problems, children, and the elderly. The aim of this work was to identify regions with high ozone concentrations and very low concentrations of other pollutants, where further studies will be performed regarding the specific impact of ozone on childhood asthma. For that, the concentrations of ozone and of its precursors at remote areas were assessed and compared with those observed at an urban area influenced by traffic. Measurements using passive samplers were compared with those performed with continuous monitors and it was possible to conclude that measurements with passive samplers had satisfactory reproducibility and precision. For O3, the comparison of both methods showed a maximum absolute difference of +4.10 μ g.m?3 and relative differences lower than ?8.8%. The maximum absolute difference for NO2 was +5.2 μ g.m?3 and the relative differences were greater than 12% only for very low concentrations (2–3 μ g.m?3). Comparing with one urban site, the results obtained at remote sites showed significantly lower concentrations of nitrogen dioxide (12 to 20 times) and volatile organic compounds (2 to 8 times) and greater ozone concentrations (2 to 3 times). It was inferred that the lower concentrations of nitrogen dioxide were the main reason for the greater ozone concentrations found at the remote sites. The remote areas studied showed very high ozone concentrations and very low concentrations of other pollutants, being an adequate zone to perform further studies regarding the specific impact of ozone on childhood asthma without the confounding effects of other pollutants. 相似文献
19.
重点流域水生态功能一级二级分区研究是当前我国正在开展的一项重要工作,如何进行科学、合理的分区是值得深入探讨且亟待回答的重要问题。从水生态功能分区与水生态区划的关系、水生生物在分区中的应用、以及如何选取合适的定量分析方法等方面入手,阐述了对分区目的、指标体系和技术方法等关键问题的理解。并建议:(1)统一选用流域水生态系统结构、功能空间差异的环境驱动因子作为分区指标体系;(2)用生境尺度的水环境、水生生物指标来验证分区结果;(3)尽可能统一定量分析方法,以便为不同流域间分区结果的比较,以及为将来在全国尺度上开展分区工作奠定基础。 相似文献
20.
The timing and levels of black drum Pogonias cromis sound production and egg production were compared in an estuarine canal basin of Cape Coral in south-west Florida. Surface plankton samples were collected hourly from 1800 to 0400 on two consecutive nights while continuous acoustic recordings were made simultaneously at five locations in the canal basin. Five pairs of nights were sampled during a part of the spawning season from late January to early April 2006. Pogonias cromis sound production and egg production occurred on all evenings that samples were collected; however, both the timing and levels of sound production were negatively associated with those of egg production. Egg production estimates ranged from a low of 4·8 eggs m(-3) in February to a high of 2889·2 eggs m(-3) in April. Conversely, maximum nightly sound pressure levels (SPL) ranged from a low of 89·5 dB in April to a high of 131·9 dB (re: 1 μPa) in February. The temporal centre of sound production was relatively stable among all nights sampled but spawning occurred earlier in the day as the season progressed and exhibited a strong, positive association with increased water temperature. The negative relationship between the levels of sound production and egg production was unexpected given the usefulness of sound production as a proxy for reproduction on a seasonal basis and may possibly be explained by differences in the spawning potential of the female population in the study area on nights sampled. Egg mortality rates increased throughout the season and were positively associated with densities of hydrozoans and ctenophores. 相似文献