首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen availability from dietary protein can have profound effects on the physiology and evolutionary ecology of insect herbivores. While many studies consider the effects of nutrition on consumption and gross body composition of protein and other important nutrients, few consider partitioning to storage for future use. I used chemically defined artificial diets to quantitatively manipulate the amount of dietary carbohydrates and proteins available to growing larvae of the grasshopper Schistocerca americana to determine how larval nutrient availability affects growth and all three classes of stored nutrients (proteins, lipids, and carbohydrates) carried over from larval feeding into adulthood. Larvae on poor diets increased consumption, but could not compensate for diet quality, eclosing small and containing no significant nutrient stores at adulthood. Individuals fed intermediate to high nutrient content diets as larvae were significantly larger and contained a significantly greater proportion of lipid stores at adult eclosion, but not protein or carbohydrate stores than individuals fed low nutrient content diets. This suggests that larvally derived lipid stores may be more important to adult fitness than carbohydrate or protein stores. This result is contrary to previous studies performed on the role of larval nutrition and allocation to protein stores, and this difference is likely due to variation in the relative availability of protein in adult diets across species.  相似文献   

2.
Conflicting theories have been proposed to explain variation in relative brain size across the animal kingdom. Ecological theories argue that the cognitive demands of seasonal or unpredictable environments have selected for increases in relative brain size, whereas the ‘social brain hypothesis’ argues that social complexity is the primary driver of brain size evolution. Here, we use a comparative approach to test the relative importance of ecology (diet, foraging niche and migration), sociality (social bond, cooperative breeding and territoriality) and developmental mode in shaping brain size across 1886 bird species. Across all birds, we find a highly significant effect of developmental mode and foraging niche on brain size, suggesting that developmental constraints and selection for complex motor skills whilst foraging generally imposes important selection on brain size in birds. We also find effects of social bonding and territoriality on brain size, but the direction of these effects do not support the social brain hypothesis. At the same time, we find extensive heterogeneity among major avian clades in the relative importance of different variables, implying that the significance of particular ecological and social factors for driving brain size evolution is often clade- and context-specific. Overall, our results reveal the important and complex ways in which ecological and social selection pressures and developmental constraints shape brain size evolution across birds.  相似文献   

3.
We examined seasonal patterns of fruit availability, dietary quality, and group size in the descendants of an introduced chimpanzee population on Rubondo Island, Tanzania. The site has supported a free-ranging population without provisioning for 40 years. Our goals were to determine whether Rubondo chimpanzees experience periods of fruit shortage, and whether they respond to changes in fruit availability similarly to chimpanzees at endemic sites. We indexed the fruit availability of tree and liana species on transects stratified across three chimpanzee ranging areas. We used fecal analyses to evaluate seasonal changes in diet, and used data on party size and nesting group size to examine seasonal patterns of grouping. Tree fruit availability was positively correlated with rainfall, with a period of relative tree fruit scarcity corresponding with the long dry season. Liana fruit availability was not related to rainfall, and lianas exhibited less variable fruiting patterns across seasons. Fruits made up the majority of the chimpanzee diet, with lianas accounting for 35% of dietary fruit species. Fruits of the liana Saba comorensis were available during all months of phenological monitoring, but they were consumed more when tree fruit was scarce, suggesting that Saba comorensis fruits may be a fallback food for Rubondo chimpanzees. There were no increases in consumption of lower-quality plant parts between seasons, and there were no changes in group size between seasons. These results contrast with evidence from several endemic chimpanzee study sites, and indicate that Rubondo chimpanzees may have access to abundant and high-quality foods year round.  相似文献   

4.
Testes size often predicts the winner during episodes of sperm competition. However, little is known about the source of nutrients allocated to testes development, or testes plasticity under varying nutrient availability. Among many holometabolous insects, metabolic resources can derive from the larval or adult diet. Distinguishing the source of nutrients allocated to testes can shed light on life history factors (such as maternal influences) that shape the evolution of male reproductive strategies. Here we used an experimental approach to assess resource allocation to testes development in walnut flies (Rhagoletis juglandis) from differing nutritional backgrounds. We fed adult male walnut flies on sugar and yeast diets that contrasted with the larval diet in carbon and nitrogen stable isotope ratios. This design allowed us to assess the dietary source of testes carbon and nitrogen and its change over time. We found significant incorporation of adult dietary carbon into testes, implying that walnut flies are income breeders for carbon (relying more on adult resources). In contrast, we found little evidence that walnut flies incorporate adult dietary nitrogen into testes development. We discuss the implications of these allocation decisions for life history evolution in this species.  相似文献   

5.
The basis for our knowledge of brain evolution in vertebrates rests heavily on empirical evidence from comparative studies at the species level. However, little is still known about the natural levels of variation and the evolutionary causes of differences in brain size and brain structure within‐species, even though selection at this level is an important initial generator of macroevolutionary patterns across species. Here, we examine how early life‐history decisions and sex are related to brain size and brain structure in wild populations using the existing natural variation in mating strategies among wild brown trout (Salmo trutta). By comparing the brains of precocious fish that remain in the river and sexually mature at a small size with those of migratory fish that migrate to the sea and sexually mature at a much larger size, we show, for the first time in any vertebrate, strong differences in relative brain size and brain structure across mating strategies. Precocious fish have larger brain size (when controlling for body size) but migratory fish have a larger cerebellum, the structure in charge of motor coordination. Moreover, we demonstrate sex‐specific differences in brain structure as female precocious fish have a larger brain than male precocious fish while males of both strategies have a larger telencephalon, the cognitive control centre, than females. The differences in brain size and structure across mating strategies and sexes thus suggest the possibility for fine scale adaptive evolution of the vertebrate brain in relation to different life histories.  相似文献   

6.
Large brain sizes in humans have important metabolic consequences as humans expend a relatively larger proportion of their resting energy budget on brain metabolism than other primates or non-primate mammals. The high costs of large human brains are supported, in part, by diets that are relatively rich in energy and other nutrients. Among living primates, the relative proportion of metabolic energy allocated to the brain is positively correlated with dietary quality. Humans fall at the positive end of this relationship, having both a very high quality diet and a large brain size. Greater encephalization also appears to have consequences for aspects of body composition. Comparative primate data indicate that humans are 'under-muscled', having relatively lower levels of skeletal muscle than other primate species of similar size. Conversely, levels of body fatness are relatively high in humans, particularly in infancy. These greater levels of body fatness and reduced levels of muscle mass allow human infants to accommodate the growth of their large brains in two important ways: (1) by having a ready supply of stored energy to 'feed the brain', when intake is limited and (2) by reducing the total energy costs of the rest of the body. Paleontological evidence indicates that the rapid brain evolution observed with the emergence of Homo erectus at approximately 1.8 million years ago was likely associated with important changes in diet and body composition.  相似文献   

7.
The social brain hypothesis proposes that haplorhine primates have evolved relatively large brains for their body size primarily as an adaptation for living in complex social groups. Studies that support this hypothesis have shown a strong relationship between relative brain size and group size in these taxa. Recent reports suggest that this pattern is unique to haplorhine primates; many nonprimate taxa do not show a relationship between group size and relative brain size. Rather, pairbonded social monogamy appears to be a better predictor of a large relative brain size in many nonprimate taxa. It has been suggested that haplorhine primates may have expanded the pairbonded relationship beyond simple dyads towards the evolution of complex social groups. We examined the relationship between group size, pairbonding, and relative brain size in a sample of 19 lemurs; strepsirrhine primates that last share a common ancestor with monkeys and apes approximately 75 Ma. First, we evaluated the social brain hypothesis, which predicts that species with larger social groups will have relatively larger brains. Secondly, we tested the pairbonded hypothesis, which predicts that species with a pairbonded social organization will have relatively larger brains than non-pairbonded species. We found no relationship between group size or pairbonding and relative brain size in lemurs. We conducted two further analyses to test for possible relationships between two nonsocial variables, activity pattern and diet, and relative brain size. Both diet and activity pattern are significantly associated with relative brain size in our sample. Specifically, frugivorous species have relatively larger brains than folivorous species, and cathemeral species have relatively larger brains than diurnal, but not nocturnal species. These findings highlight meaningful differences between Malagasy strepsirrhines and haplorhines, and between Malagasy strepsirrhines and nonprimate taxa, regarding the social and ecological factors associated with increases in relative brain size. The results suggest that factors such as foraging complexity and flexibility of activity patterns may have driven selection for increases in brain size in lemurs.  相似文献   

8.
The effect of nutrients and their availability on the diet of the herbivorous Malabar giant squirrel Ratufa indica (Sciuridae) was investigated at Magod and Bhimashankar in western India. The daily consumption of food items (percent wet diet) and the intake rates of these items and the contained nutrients (wet g s-1) were determined by continuous observation of focal animals. Water content was a significant positive predictor of relative food item consumption while mineral contents in general had the opposite effect. The intake rates of water and more digestible nutrients such as nonstructural carbohydrates, as well as the intake rate of minerals such as zinc (at Magod), were significant positive predictors of the relative contribution of an item to the daily diet, thus indicating considerations of feeding costs versus benefits. Tannins, some alkaloids, and other secondary metabolites may negatively influence food choice. Protein content, relative to digestibility reducers, influenced food item consumption only at Bhimashankar. There was seasonal variation in daily biomass consumption. At Bhimashankar, daily biomass consumption increased with the proportion of fruit in the diet while this did not occur at Magod. This is perhaps a result of the higher water content and the lower content of some soluble nutrients within fruit at Bhimashankar relative to Magod. There was also intra-month variation between individual squirrels in daily biomass of food consumed. Squirrels consumed ephemeral food items opportunistically and non-ephemeral items such as mature leaves and bark on a regular daily basis. Squirrels probably obtained minerals and nitrogen from both fruit (especially seeds) and non-fruit sources (mature leaves and bark in the case of minerals, young and mature leaves in the case of nitrogen). However, they obtained lipid and non-structural carbohydrates mostly from fruit. Squirrels were selective in their utilization of tree species on a monthly basis, but this selectivity was not evident over a longer time period because individuals were constrained to use different phenological stages of tree species present within their territories. Large body size in this squirrel permits dietary flexibility and enables an overall generalist feeding strategy.  相似文献   

9.
Sexual selection may cause dietary requirements for reproduction to diverge across the sexes and promote the evolution of different foraging strategies in males and females. However, our understanding of how the sexes regulate their nutrition and the effects that this has on sex‐specific fitness is limited. We quantified how protein (P) and carbohydrate (C) intakes affect reproductive traits in male (pheromone expression) and female (clutch size and gestation time) cockroaches (Nauphoeta cinerea). We then determined how the sexes regulate their intake of nutrients when restricted to a single diet and when given dietary choice and how this affected expression of these important reproductive traits. Pheromone levels that improve male attractiveness, female clutch size and gestation time all peaked at a high daily intake of P:C in a 1:8 ratio. This is surprising because female insects typically require more P than males to maximize reproduction. The relatively low P requirement of females may reflect the action of cockroach endosymbionts that help recycle stored nitrogen for protein synthesis. When constrained to a single diet, both sexes prioritized regulating their daily intake of P over C, although this prioritization was stronger in females than males. When given the choice between diets, both sexes actively regulated their intake of nutrients at a 1:4.8 P:C ratio. The P:C ratio did not overlap exactly with the intake of nutrients that optimized reproductive trait expression. Despite this, cockroaches of both sexes that were given dietary choice generally improved the mean and reduced the variance in all reproductive traits we measured relative to animals fed a single diet from the diet choice pair. This pattern was not as strong when compared to the single best diet in our geometric array, suggesting that the relationship between nutrient balancing and reproduction is complex in this species.  相似文献   

10.
The geometric framework of nutrition predicts that populations restricted to a single imbalanced diet should evolve post-ingestive nutritional compensation mechanisms bringing the blend of assimilated nutrients closer to physiological optimum. The evolution of such nutritional compensation is thought to be mainly driven by the ratios of major nutrients rather than overall nutritional content of the diet. We report experimental evolution of divergence in post-ingestive nutritional compensation in populations of Drosophila melanogaster adapted to diets that contained identical imbalanced nutrient ratios but differed in total nutrient concentration. Larvae from ‘Selected’ populations maintained for over 200 generations on a nutrient-poor diet with a 1 : 13.5 protein : carbohydrate ratio showed enhanced assimilation of nitrogen from yeasts and reduced assimilation of carbon from sucrose than ‘Control’ populations evolved on a diet with the same nutrient ratio but fourfold greater nutrient concentration. Compared to the Controls, the Selected larvae also accumulated less triglycerides relative to protein. This implies that the Selected populations evolved a higher assimilation rate of amino acids from the poor imbalanced diet and a lower assimilation of carbohydrates than Controls. Thus, the evolution of nutritional compensation may be driven by changes in total nutrient abundance, even if the ratios of different nutrients remain unchanged.  相似文献   

11.
Mammalian brain volumes vary considerably, even after controlling for body size. Although several hypotheses have been proposed to explain this variation, most research in mammals on the evolution of encephalization has focused on primates, leaving the generality of these explanations uncertain. Furthermore, much research still addresses only one hypothesis at a time, despite the demonstrated importance of considering multiple factors simultaneously. We used phylogenetic comparative methods to investigate simultaneously the importance of several factors previously hypothesized to be important in neural evolution among mammalian carnivores, including social complexity, forelimb use, home range size, diet, life history, phylogeny, and recent evolutionary changes in body size. We also tested hypotheses suggesting roles for these variables in determining the relative volume of four brain regions measured using computed tomography. Our data suggest that, in contrast to brain size in primates, carnivoran brain size may lag behind body size over evolutionary time. Moreover, carnivore species that primarily consume vertebrates have the largest brains. Although we found no support for a role of social complexity in overall encephalization, relative cerebrum volume correlated positively with sociality. Finally, our results support negative relationships among different brain regions after accounting for overall endocranial volume, suggesting that increased size of one brain regions is often accompanied by reduced size in other regions rather than overall brain expansion.  相似文献   

12.
The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large‐ and small‐brained animals and only minor sex‐specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions.  相似文献   

13.
Aim Our aim was to address the potential effect of the geographical range size of species on the relationships between plant traits, soil and climate in Chinese grasslands. Previous analyses tended to examine plant–environment relationships across many species while ignoring that species with different range sizes may respond differently to the environment. Here we hypothesized that leaf traits of narrow‐ranging species would be more strongly correlated with soil and climatic variables than those of wide‐ranging species. Location Chinese grasslands. Methods Data on leaf traits, including nitrogen and phosphorus concentrations, carbon/nitrogen ratio, nitrogen/phosphorus ratio and specific leaf area, as well as species range sizes for 208 species distributed across 178 sites in Chinese grasslands were collected. Soil and climate information for each study site was also gathered. The effects of range size on leaf traits were tested using one‐way ANOVA. Correlations between leaf traits, soil and climate were calculated for all species pooled together and for species partitioned into range size quartiles, from the first (narrowest‐ ranging 25%) to the fourth (widest‐ranging 25%). Results Narrow‐ranging species tended to occur at high altitude with lower temperature but higher soil nutrient concentrations compared with wide‐ranging species. No direct link between leaf traits and species range sizes was detected. However, patterns of leaf–soil nutrient relationships changed significantly across levels of range size. Narrow‐ranging species tended to be more sensitive to variation in soil nutrient availability than wide‐ranging species, resulting in a shift from a positive leaf–soil nutrient relationship for narrow‐ranging plants to no relationship for wide‐ranging plants. Species responses to climatic variables were unrelated to their range sizes. Main conclusions The close relationship between leaf and soil nutrients indicates a specialization of narrow‐ranging species to particular habitats whereas wide‐ranging species may be able to better withstand changes in environment such as soil fertility over a large area.  相似文献   

14.
The anatomical basis and adaptive function of the expansion in primate brain size have long been studied; however, we are only beginning to understand the genetic basis of these evolutionary changes. Genes linked to human primary microcephaly have received much attention as they have accelerated evolutionary rates along lineages leading to humans. However, these studies focus narrowly on apes, and the link between microcephaly gene evolution and brain evolution is disputed. We analyzed the molecular evolution of four genes associated with microcephaly (ASPM, CDK5RAP2, CENPJ, MCPH1) across 21 species representing all major clades of anthropoid primates. Contrary to prevailing assumptions, positive selection was not limited to or intensified along the lineage leading to humans. In fact we show that all four loci were subject to positive selection across the anthropoid primate phylogeny. We developed clearly defined hypotheses to explicitly test if selection on these loci was associated with the evolution of brain size. We found positive relationships between both CDK5RAP2 and ASPM and neonatal brain mass and somewhat weaker relationships between these genes and adult brain size. In contrast, there is no evidence linking CENPJ and MCPH1 to brain size evolution. The stronger association of ASPM and CDK5RAP2 evolution with neonatal brain size than with adult brain size is consistent with these loci having a direct effect on prenatal neuronal proliferation. These results suggest that primate brain size may have at least a partially conserved genetic basis. Our results contradict a previous study that linked adaptive evolution of ASPM to changes in relative cortex size; however, our analysis indicates that this conclusion is not robust. Our finding that the coding regions of two widely expressed loci has experienced pervasive positive selection in relation to a complex, quantitative developmental phenotype provides a notable counterexample to the commonly asserted hypothesis that cis-regulatory regions play a dominant role in phenotypic evolution.  相似文献   

15.
M. Denise Dearing 《Oecologia》1996,108(3):467-478
The North American pika, Ochotona princeps, is a generalist herbivore that simultaneously selects two distinct diets: one consumed immediately (summer diet), the other harvested, transported, and stored for later consumption (winter diet). I investigated factors influencing diet selection at two sites on the West Knoll of Niwot Ridge, Boulder County, Colorado during 1991 and 1992. The composition of summer and winter diets differed significantly from each other as well as from the relative abundance of food items in the environment. Thus, pikas were not foraging randomly for either diet. To explore winter and summer diet selection, I tested two existing hypotheses: (1) that plant morphology restricts the winter diet breadth to plants that are easily harvested and large, and thereby maximizes the amount collected per foraging effort, or (2) to compensate for nutrients lost during storage, pikas bias their winter diet with high-nutrient species. I also tested the hypothesis that plant secondary compounds may be higher in the winter diet either because they function as preservatives or because pikas delay consumption of these species until the toxins degrade. For individual dietary items, I measured energy, nitrogen, water, fiber, total phenolic, condensed tannin, and astringency contents. There was little evidence to suggest that morphology excluded plants from the winter diet. Plant size was not a good predictor of abundance in the winter diet. Even after harvesting costs had been experimentally removed, cushion plants were still not included in the winter diet. There was weak support for an effect of nutrients on winter diet selection; in three of four cases, the winter diet was significantly lower in water and higher in total energy content as predicted by the nutrient compensation hypothesis. However, other nutrients exhibited no consistent pattern. Nutrients were not reliable predictors of the winter diet in multiple regression analyses. There was strong support for the hypothesis of manipulation of secondary compounds. The winter diet was significantly higher in total phenolics and astringency. Total phenolics were consistent predictors of the winter diet in multiple regression analyses. The winter diets of six additional pika populations contained plant species high in secondary compounds. The results suggest that pikas preferentially select plants with high levels of secondary compounds for their winter diet, possibly because the presence of such compounds promotes preservation of the cache. This behavior may also enable the exploitation of an otherwise unusable food resource, i.e., toxic plants.  相似文献   

16.
Understanding covariance of plant genetics and soil processes may improve our understanding the role of plant genetics in structuring soils and ecosystem function across landscapes. We measured soil nitrogen (N) and phosphorus (P) availability using ion exchange resin bags within three river drainages across Utah and Arizona, USA. The three drainages spanned more than 1,000 km in distance, 8° of latitude, and varying climatic regimes, but were similarly dominated by stands of Populus fremontii (S. Watts), P. angustifolia (James), or natural hybrids between the two species. Soil N availability was consistently greater in P. fremontii stands compared to P. angustifolia stands, and hybrid stands were intermediate. However, we found that the influence of overstory type on soil P availability depended on the river drainage. Our study suggests that, even with a near doubling of mean soil N availability across these drainages, the relative genetic-based effects of the dominant plant on N availability remained consistent. These results expand upon previous work by: 1) providing evidence for linkages between plant genetic factors and ecosystem function across geographic scales; and 2) indicating that plant genetic-based effects on nutrient dynamics in a given ecosystem may differ among nutrients (e.g., N vs. P).  相似文献   

17.
The Eugongylus species group of Australian lygosomine skinks provides an unparalleled opportunity to study the evolution of placentotrophy. Viviparity and placentotrophy have evolved in two lineages, currently recognised as the genera Pseudemoia and Niveoscincus. The genus Niveoscincus is important because it is the only lineage of squamates in which variation in placental morphology and in the pattern of embryonic nutrition is known. Niveoscincus coventryi has the least complex placental morphology among species currently assigned to the genus. We quantified the net uptake of nutrients across the placenta of N. coventryi for comparison with other species in the genus and with other viviparous and oviparous lizards. The pattern of embryonic nutrition of N. coventryi is similar to other viviparous lizards with simple placentae in that there is no net uptake of dry matter during development but there is a net uptake of water, calcium, potassium, and sodium. There is no net uptake of lipid, nitrogen (an index of protein), or magnesium. We conclude that N. coventryi is predominantly lecithotrophic. Further, if N. coventryi is the sister taxon to Tasmanian Niveoscincus, then the distribution of patterns of embryonic nutrition among members of this clade suggests that the evolution of placentotrophy occurred during radiation of this lineage in Tasmania.  相似文献   

18.
The transition zone between terrestrial and freshwater habitats is highly dynamic, with large variability in environmental characteristics. Here, we investigate how these characteristics influence the nutritional status and performance of plant life forms inhabiting this zone. Specifically, we hypothesised that: (i) tissue nutrient content differs among submerged, amphibious and terrestrial species, with higher content in submerged species; and (ii) PNUE gradually increases from submerged over amphibious to terrestrial species, reflecting differences in the availability of N and P relative to inorganic C across the land–water ecotone. We found that tissue nutrient content was generally higher in submerged species and C:N and C:P ratios indicated that content was limiting for growth for ca. 20% of plant individuals, particularly those belonging to amphibious and terrestrial species groups. As predicted, the PNUE increased from submerged over amphibious to terrestrial species. We suggest that this pattern reflects that amphibious and terrestrial species allocate proportionally more nutrients into processes of importance for photosynthesis at saturating CO2 availability, i.e. enzymes involved in substrate regeneration, compared to submerged species that are acclimated to lower availability of CO2 in the aquatic environment. Our results indicate that enhanced nutrient loading may affect relative abundance of the three species groups in the land–water ecotone of stream ecosystems. Thus, species of amphibious and terrestrial species groups are likely to benefit more from enhanced nutrient availability in terms of faster growth compared to aquatic species, and that this can be detrimental to aquatic species growing in the land–water ecotone, e.g. Ranunculus and Callitriche.  相似文献   

19.
被子植物基因组大小的种间差异巨大,约为2400倍.基因组大小与植物从细胞核到个体水平的一系列性状密切相关,进而影响植物对环境变化的响应.作为水分和养分共同限制的生态系统,内蒙古草原植物群落对氮素、水分有效性变化的响应具有明显的种间差异,这种差异可能与种间基因组大小不同有关.本研究利用流式细胞术测定了内蒙古典型草原水分、氮素添加实验平台植物的基因组大小,研究了不同基因组大小植物地上净初级生产力(ANPP)和物种丰富度对水分、氮素添加及其交互作用的响应.结果表明:基因组大小显著影响了不同植物ANPP对水分的响应,小基因组植物ANPP对氮水添加响应更敏感,加水和氮水共同添加显著增加了小基因组植物ANPP,而大基因组植物ANPP对所有处理响应均不显著.加氮对大小基因组植物ANPP都无显著影响.大小基因组植物的物种丰富度对氮水添加的响应也均不显著.基因组大小影响内蒙古草原不同植物ANPP对水分增加的响应.作为植物细胞核水平上十分稳定且种间差异巨大的物种性状,将基因组大小引入生态学研究将对全球变化背景下生态系统结构与功能变化研究起到重要作用.  相似文献   

20.
BackgroundGaining extrapair copulations (EPCs) is a complicated behavior process. The interaction between males and females to procure EPCs may be involved in brain function evolution and lead to a larger brain. Thus, we hypothesized that extrapair paternity (EPP) rate can be predicted by relative brain size in birds. Past work has implied that the EPP rate is associated with brain size, but empirical evidence is rare.MethodsWe collated data from published references on EPP levels and brain size of 215 bird species to examine whether the evolution of EPP rate can be predicted by brain size using phylogenetically generalized least square (PGLS) models and phylogenetic path analyses.ResultsWe found that EPP rates (both the percentage EP offspring and percentage of broods with EP offspring) are negatively associated with relative brain size. We applied phylogenetic path analysis to test the causal relationship between relative brain size and EPP rate. Best‐supported models (ΔCICc < 2) suggested that large brain lead to reduced EPP rate, which failed to support the hypothesis that high rates of EPP cause the evolution of larger brains.ConclusionThis study indicates that pursuing EPCs may be a natural instinct in birds and the interaction between males and females for EPCs may lead to large brains, which in turn may restrict their EPC level for both sexes across bird species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号