首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Theory predicts that males should evolve mechanisms to assess competition and allocate resources accordingly. This requires phenotypic plasticity, to accurately match responses to the environment. Plastic responses in males to sexual competition are diverse and widespread. However, our ability to understand and predict how they evolve is limited because their benefits are rarely measured, and costs are, as yet, entirely unquantified. In the fruit fly Drosophila melanogaster, males that anticipate strong competition for matings or fertilizations subsequently mate for longer and transfer more of two key seminal fluid proteins. This results in significantly elevated reproductive output. In this study, we examined the fitness effects of male responses to rivals across the entire male life span. Males were exposed to rivals or not throughout life while controlling mating opportunities. Males showed significant responses to rivals throughout their lifetimes, associated with significant early‐life fitness benefits. However, these disappeared after the third mating. There were also significant costs—males exposed to rivals took significantly fewer mating opportunities in later life and had significantly shorter life spans than controls. The data suggest that there are substantial costs for males of mounting plastic responses to the threat of sexual competition.  相似文献   

2.
Phenotypic plasticity can allow animals to adapt their behavior, such as their mating effort, to their social and sexual environment. However, this relies on the individual receiving accurate and reliable cues of the environmental conditions. This can be achieved via the receipt of multimodal cues, which may provide redundancy and robustness. Male Drosophila melanogaster detect presence of rivals via combinations of any two or more redundant cue components (sound, smell, and touch) and respond by extending their subsequent mating duration, which is associated with higher reproductive success. Although alternative combinations of cues of rival presence have previously been found to elicit equivalent increases in mating duration and offspring production, their redundancy in securing success under sperm competition has not previously been tested. Here, we explicitly test this by exposing male D. melanogaster to alternative combinations of rival cues, and examine reproductive success in both the presence and absence of sperm competition. The results supported previous findings of redundancy of cues in terms of behavioral responses. However, there was no evidence of reproductive benefits accrued by extending mating duration in response to rivals. The lack of identifiable fitness benefits of longer mating under these conditions, both in the presence and absence of sperm competition, contrasted with some previous results, but could be explained by (a) damage sustained from aggressive interactions with rivals leading to reduced ability to increase ejaculate investment, (b) presence of features of the social environment, such as male and female mating status, that obscured the fitness benefits of longer mating, and (c) decoupling of behavioral investment with fitness benefits.  相似文献   

3.
Across many species, males exhibit plastic responses when they encounter mating rivals. The ability to tailor responses to the presence of rivals allows males to increase investment in reproduction only when necessary. This is important given that reproduction imposes costs that limit male reproductive capacity, particularly when sperm competition occurs. Fruitfly (Drosophila melanogaster) males exposed to rivals subsequently mate for longer and thus accrue fitness benefits under increased competition, in line with theory. Here, we show that male D. melanogaster detect rivals by using a suite of cues and that the resulting responses lead directly to significant fitness benefits. We used multiple techniques to systematically remove auditory, olfactory, tactile, and visual cues, first singly and then in all possible combinations. No single cue alone was sufficient to allow males to detect rivals. However, the perception of any two cues from sound, smell, or touch permitted males to detect and respond adaptively to rivals through increased offspring production. Vision was only of marginal importance in this context. The findings indicate adaptive redundancy through the use of multiple, but interchangeable, cues. We reveal the robust mechanisms by which males assess their socio-sexual environment to precisely attune responses via the expression of plastic behavior.  相似文献   

4.
Plasticity in behaviour is of fundamental significance when environments are variable. Such plasticity is particularly important in the context of rapid changes in the socio-sexual environment. Males can exhibit adaptive plastic responses to variation in the overall level of reproductive competition. However, the extent of behavioural flexibility within individuals, and the degree to which rapidly changing plastic responses map onto fitness are unknown. We addressed this by determining the behaviour and fitness profiles of individual Drosophila melanogaster males subjected to up to three episodes of exposure to rivals or no rivals, in all combinations. Behaviour (mating duration) was remarkably sensitive to the level of competition and fully reversible, suggesting that substantial costs arise from the incorrect expression of even highly flexible behaviour. However, changes in mating duration matched fitness outcomes (offspring number) only in scenarios in which males experienced zero then high competition. Following the removal of competition, mating duration, but not offspring production, decreased to below control levels. This indicates that the benefit of increasing reproductive investment when encountering rivals may exceed that of decreasing investment when rivals disappear. Such asymmetric fitness benefits and mismatches with behavioural responses are expected to exert strong selection on the evolution of plasticity.  相似文献   

5.
Increasing evidence shows that spermatogenesis is costly. As a consequence, males should optimize the use of their sperm to maximize their reproductive outputs in their lifetime. However, experimental evidence on this prediction is largely lacking. Here, we examine how a male moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) responds to the presence of rivals or additional mates and how such response influences his lifetime reproductive fitness. We show that when rival males are present around a copulating pair, the male ejaculates more sperm to win a sperm competition battle but in such an environment he inseminates fewer females, sires fewer offspring and lives shorter. The opposite is the case when additional females are present during copulation. These findings reveal that elevated reproductive expenditure owing to sperm competition intensity is made at the expense of longevity and future reproduction.  相似文献   

6.
Abstract. The number of spermatozoa that a male transfers to the female during copulation is a main component of its individual fitness, especially under the pressure of sperm competition. This paper presents experimental results on the direct relationship between the male's sperm investment and its paternity in the offspring of dual-mated females. An eye colour mutant (red-eyed) is used to study the differences in the mating and fertilization abilities of males through observation of single and dual matings of females in Anisopteromalus calandrae (Hymenoptera, Chalcidoidea, Pteromalidae). Experimentally, females accept dual matings only in the simultaneous presence of two males. Counts of spermatozoa in the seminal vesicles of virgin males show that red-eyed males have more sperm than wild-eyed ones (approximately 1.46-fold greater). Red- and wild-eyed males do not differ in their mating behaviour and females mate indifferently with both phenotypes. Compared with once-mated females, double-mated females increase neither sperm storage nor lifetime fecundity, and the offspring sex ratio is female-biased. Females mated with two males of different phenotypes produce offspring of both phenotypes throughout their reproductive life, whatever the order of males in the copulation sequence. Any mating pattern appears to produce more red- than wild-eyed offspring (between 1.45- and 1.88-fold greater). Thus, proportions of offspring of each male match the proportions of their sperm potential. With no preference of female for red-eye or wild-eye males being demonstrated at either behavioural or physiological levels, a male's investment in sperm quantity appears to determine its individual reproductive success, at least in these experimental conditions.  相似文献   

7.
Between-individual variance in potential reproductive rate theoretically creates a load in reproducing populations by driving sexual selection of male traits for winning competitions, and female traits for resisting the costs of multiple mating. Here, using replicated experimental evolution under divergent operational sex ratios (OSR, 9:1 or 1:6 ♀:♂) we empirically identified the parallel reproductive fitness consequences for females and males in the promiscuous flour beetle Tribolium castaneum. Our results revealed clear evidence that sexual conflict resides within the T. castaneum mating system. After 20 generations of selection, females from female-biased OSRs became vulnerable to multiple mating, and showed a steep decrease in reproductive fitness with an increasing number of control males. In contrast, females from male-biased OSRs showed no change in reproductive fitness, irrespective of male numbers. The divergence in reproductive output was not explained by variation in female mortality. Parallel assays revealed that males also responded to experimental evolution: individuals from male-biased OSRs obtained 27% greater reproductive success across 7-day competition for females with a control male rival, compared to males from the female-biased lines. Subsequent assays suggest that these differences were not due to postcopulatory sperm competitiveness, but to precopulatory/copulatory competitive male mating behavior.  相似文献   

8.
The outcome of male–male contest competition is known to affect male mating success and is believed to confer fitness benefits to females through preference for dominant males. However, by mating with contest winners, females can incur significant costs spanning from decreased fecundity to negative effects on offspring. Hence, identifying costs and benefits of male dominance on female fitness is crucial to unravel the potential for a conflict of interests between the sexes. Here, we investigated males' pre‐ and post‐copulatory reproductive investment and its effect on female fitness after a single contest a using the field cricket Gryllus bimaculatus. We allowed males to fight and immediately measured their mating behaviour, sperm quality and offspring viability. We found that males experiencing a fight, independently of the outcome, delayed matings, but their courtship effort was not affected. However, winners produced sperm of lower quality (viability) compared to losers and to males that did not experience fighting. Results suggest a trade‐off in resource allocation between pre‐ and post‐mating episodes of sexual selection. Despite lower ejaculate quality, we found no fitness costs (fecundity and viability of offspring) for females mated to winners. Overall, our findings highlight the importance of considering fighting ability when assessing male reproductive success, as winners may be impaired in their competitiveness at a post‐mating level.  相似文献   

9.
Polygynous parasitoid males may be limited by the amount of sperm they can transmit to females, which in turn may become sperm limited. In this study, I tested the effect of male mating history on copula duration, female fecundity, and offspring sex ratio, and the likelihood that females will have multiple mates, in the gregarious parasitoid Cephalonomia hyalinipennis Ashmead (Hymenoptera: Bethylidae: Epyrinae), a likely candidate for sperm depletion due to its local mate competition system. Males were eager to mate with the seven females presented in rapid succession. Copula duration did not differ with male mating history, but latency before a first mating was significantly longer than before consecutive matings. Male mating history had no bearing on female fecundity (number of offspring), but significantly influenced offspring sex ratio. The last female to mate with a given male produced significantly more male offspring than the first one, and eventually became sperm depleted. In contrast, the offspring sex ratio of first‐mated females was female biased, denoting a high degree of sex allocation control. Once‐mated females, whether sperm‐depleted or not, accepted a second mating after a period of oviposition. Sperm‐depleted females resumed production of fertilized eggs after a second mating. Young, recently mated females also accepted a second mating, but extended in‐copula courtship was observed. Carrying out multiple matings in this species thus seems to reduce the cost of being constrained to produce only haploid males after accepting copulation with a sperm‐depleted male. I discuss the reproductive fitness costs that females experience when mating solely with their sibling males and the reproductive fitness gain of males that persist in mating, even when almost sperm‐depleted. Behavioural observations support the hypothesis that females monitor their sperm stock. It is concluded that C. hyalinipennis is a species with a partial local mating system.  相似文献   

10.
Reproductive interference is any interspecific sexual interaction that adversely affects female fitness through indiscriminate reproductive activities. It can be a driving force of resource partitioning in conjunction with resource competition. We previously showed that the bean beetle Callosobruchus maculatus is superior in larval resource competition, but vulnerable in reproductive interference, compared with its congener C. chinensis. We hypothesized that these two species might use two resources differently if one of the resources modified the intensity of reproductive interference or resource competition. We observed that C. maculatus females often enter gaps between beans to avoid mating attempts of heterospecific males, and hypothesized that removing bean gaps would strengthen reproductive interference. Therefore, we provided normal beans with gaps and split beans without gaps to females of the two species housed with conspecific or heterospecific males or no males and compared the number of eggs on each bean type among treatments. Callosobruchus maculatus females housed with heterospecific males were more likely to oviposit on normal beans than C. chinensis females. As a result, more C. chinensis adults hatched from split beans and more C. maculatus hatched from normal beans when females and males of both species were housed together. Thus, oviposition resource partitioning resulted from the combination of female avoidance of reproductive interference and resource competition.  相似文献   

11.
Female mate choice can result in direct benefits to the female or indirect benefits through her offspring. Females can increase their fitness by mating with males whose genes encode increased survivorship and reproductive output. Alternatively, male investment in enhanced mating success may come at the cost of reduced investment in offspring fitness. Here, we measure male mating success in a mating arena that allows for male–male, male–female and female–female interactions in Drosophila melanogaster. We then use isofemale line population measurements to correlate male mating success with sperm competitive ability, the number of offspring produced and the indirect benefits of the number of offspring produced by daughters and sons. We find that males from populations that gain more copulations do not increase female fitness through increased offspring production, nor do these males fare better in sperm competition. Instead, we find that these populations have a reduced reproductive output of sons, indicating a potential reproductive trade‐off between male mating success and offspring quality.  相似文献   

12.
Inbreeding depression, asymmetries in costs or benefits of dispersal, and the mating system have been identified as potential factors underlying the evolution of sex-biased dispersal. We use individual-based simulations to explore how the mating system and demographic stochasticity influence the evolution of sex-specific dispersal in a metapopulation with females competing over breeding sites, and males over mating opportunities. Comparison of simulation results for random mating with those for a harem system (locally, a single male sires all offspring) reveal that even extreme variance in local male reproductive success (extreme male competition) does not induce male-biased dispersal. The latter evolves if the between-patch variance in reproductive success is larger for males than females. This can emerge due to demographic stochasticity if the habitat patches are small. More generally, members of a group of individuals experiencing higher spatio-temporal variance in fitness expectations may evolve to disperse with greater probability than others.  相似文献   

13.
Male reproductive phenotypes can evolve in response to the social and sexual environment. The expression of many such phenotypes may also be plastic within an individual's lifetime. For example, male Drosophila melanogaster show significantly extended mating duration following a period of exposure to conspecific male rivals. The costs and benefits of reproductive investment, and plasticity itself, can be shaped by the prevailing sociosexual environment and by resource availability. We investigated these ideas using experimental evolution lines of D. melanogaster evolving under three fixed sex ratios (high, medium, and low male‐male competition) on either rich or poor adult diets. We found that males evolving in high‐competition environments evolved longer mating durations overall. In addition, these males expressed a novel type of plastic behavioral response following exposure to rival males: they both significantly reduced and showed altered courtship delivery, and exhibited significantly longer mating latencies. Plasticity in male mating duration in response to rivals was maintained in all of the lines, suggesting that the costs of plasticity were minimal. None of the evolutionary responses tested were consistently affected by dietary resource regimes. Collectively, the results show that fixed behavioral changes and new augmentations to the repertoire of reproductive behaviors can evolve rapidly.  相似文献   

14.
Phenotypic plasticity allows animals to maximize fitness by conditionally expressing the phenotype best adapted to their environment. Although evidence for such adjustment in reproductive tactics is common, little is known about how phenotypic plasticity evolves in response to sexual selection. We examined the effect of sexual selection intensity on phenotypic plasticity in mating behavior using the beetle Callosobruchus maculatus. Male genital spines harm females during mating and females exhibit copulatory kicking, an apparent resistance trait aimed to dislodge mating males. After exposing individuals from male‐ and female‐biased experimental evolution lines to male‐ and female‐biased sociosexual environments, we examined behavioral plasticity in matings with standard partners. While females from female‐biased lines kicked sooner after exposure to male‐biased sociosexual contexts, in male‐biased lines this plasticity was lost. Ejaculate size did not diverge in response to selection history, but males from both treatments exhibited plasticity consistent with sperm competition intensity models, reducing size as the number of competitors increased. Analysis of immunocompetence revealed reduced immunity in both sexes in male‐biased lines, pointing to increased reproductive costs under high sexual selection. These results highlight how male and female reproductive strategies are shaped by interactions between phenotypically plastic and genetic mechanisms of sexual trait expression.  相似文献   

15.
Although age-based effects on the reproductive success of males have been reported in several animal taxa the cost of aging on male mating success in lekking species has not been fully explored. We used the Mediterranean fruit fly, a lekking species, to investigate possible cost of aging on male reproductive success. We performed no choice and choice mating tests to test the hypothesis that aging does not affect the mating performance (mating success in conditions lacking competition) or the mating competitiveness (mating success against younger rivals) of males. The mating probability of older males decreased significantly when competing with younger males. Aging gradually reduced the mating performance of males but older males were still accepted as mating partners in conditions lacking competition. Therefore, older males are capable of performing the complete repertoire of sexual performance but fail to be chosen by females in the presence of young rivals. Older males achieved shorter copulations than younger ones, and female readiness to mate was negatively affected by male age. Older and younger males transferred similar amount of spermatozoids to female spermathecae. Females stored spermatozoids asymmetrically in the two spermathecae regardless the age of their mating partner. Aging positively affected the amount of spermatozoids in testes of both mated and nonmated males. No significant differences were observed on the amount of spermatozoids between mated and nonmated males.  相似文献   

16.
The effect of host size on male fitness was tested in the parasitoid wasp Dinarmus basalis (Hymenoptera, Pteromalidae) using hosts of different fresh weight. Fitness was measured as the sperm stock in seminal vesicles, and the ability to access females in single or competition situations. Both body size and sperm in seminal vesicles increased with host fresh weight. Males from small hosts had a reduced size and sperm stock compared to those from larger hosts. In single situations, males from both small and large hosts had similar reproductive capacities, whereas in multiple mating or competition situations, males from small hosts were at a disadvantage, inseminating fewer females and copulating less frequently. However, females did not appear to choose between males, and no effect on sperm stored in the spermatheca was observed. Being small does not prevent a D. basalis male mating and producing progeny in single situations, although more offspring could be expected from larger males because of their better competitive abilities.  相似文献   

17.
Males often fight with rival males for access to females. However, some males display nonfighting tactics such as sneaking, satellite behavior, or female mimicking. When these mating tactics comprise a conditional strategy, they are often thought to be explained by resource holding potential (RHP), that is, nonfighting tactics are displayed by less competitive males who are more likely to lose a fight. The alternative mating tactics, however, can also be explained by life‐history theory, which predicts that young males avoid fighting, regardless of their RHP, if it pays off to wait for future reproduction. Here, we test whether the sneaking tactic displayed by young males of the two‐spotted spider mite can be explained by life‐history theory. We tested whether young sneaker males survive longer than young fighter males after a bout of mild or strong competition with old fighter males. We also investigated whether old males have a more protective outer skin—a possible proxy for RHP—by measuring cuticle hardness and elasticity using nanoindentation. We found that young sneaker males survived longer than young fighter males after mild male competition. This difference was not found after strong male competition, which suggests that induction of sneaking tactic is affected by male density. Hardness and elasticity of the skin did not vary with male age. Given that earlier work could also not detect morphometric differences between fighter and sneaker males, we conclude that there is no apparent increase in RHP with age in the mite and age‐dependent male mating tactics in the mite can be explained only by life‐history theory. Because it is likely that fighting incurs a survival cost, age‐dependent alternative mating tactics may be explained by life‐history theory in many species when reproduction of old males is a significant factor in fitness.  相似文献   

18.
Kin selection operates through the fitness of an organism's relatives. In the polyandry context, kin selection may be observable on the one hand in competition between rival males and, on the other hand, in competition between litter mates. Sperm competition theory predicts that males should invest less into mating when competing for fertilizations against a close relative as compared to an unrelated male. We tested this hypothesis with bank voles (Myodes glareolus) by mating each focal male to two females: one of which had previously mated with a full sibling of the focal male and the other one with a male unrelated to the focal male. However, we found no effect of rival male relatedness on mating behavior or proportion of offspring sired by the 2nd male to mate. Possibly, the probability of successive mating of related males with the same female is too low in natural bank vole populations for selection to have fine‐tuned mating behavior in relation to rival male relatedness. Further, polyandry often results in litters sired by multiple males. Litter mates of such litters have a reduced relatedness and are thus expected to be less cooperative during gestation and lactation, which may impair growth. Following double matings with either two full‐sibling males or two unrelated males, we compared offspring growth at birth and during lactation. Against our prediction, there was no difference in growth between litters sired either by two full‐sibling males or by two unrelated males. Either the conflict was not severe enough to be visible with our sample size (N = 16) or it may have been resolved by maternal control of offspring provisioning.  相似文献   

19.
I have examined the adaptive significance of polyandry using the Australian field cricket Teleogryllus oceanicus. Previous studies of polyandry have examined differences in offspring production by females mated multiply to a single male or females mated multiply to different males. Here I combine this approach with a study of parentage of offspring produced in the later group. Females mated to two different males had a higher proportion of their eggs hatching than did females mating twice with a single male. Offspring fitness parameters were not effected. There was little evidence to suggest that females elevate their hatching success via fertilizing their eggs with sperm from genetically compatible males. Although the average paternity points towards random sperm mixing, there was considerable individual variation in sperm competition success. Patterns of parentage were consistent across females mating twice or four times. Sperm competition success was not related to offspring viability or performance. Thus, the notion that competitively superior sperm produce competitively superior offspring is not supported either. The mechanism underlying increased hatching success with polyandry requires further study.  相似文献   

20.
The accessory gland protein (Acp) ejaculate molecules of male Drosophila melanogaster mediate sexual selection and sexual conflict at the molecular level. However, to date no studies have comprehensively measured the timing and magnitude of fitness benefits to males of transferring specific Acps. This is an important omission because without this information it is not possible to fully understand the strength and form of selection acting on adaptations such as Acps. Here, we measured the fitness benefits to males of ejaculate sex peptide (SP) transfer. SP is of interest because it is a candidate for mediating sexual conflict: its frequent receipt reduces female fitness. In single matings with virgin females SP is known to increase egg laying and decrease receptivity. Hence, we predicted that SP could: (i) boost a male’s absolute paternity by increasing offspring production and delaying female remating and/or (ii) boost relative paternity share. We tested these predictions using two different lines of SP‐lacking males, in both two‐mating and free‐mating assay conditions. SP transfer conferred higher absolute, but not relative, male reproductive success. In matings with virgin females, SP transfer increased mating productivity and delayed remating and hence the onset of sperm competition. In already mated females, SP transfer did not elevate absolute progeny production, but did increase intermating intervals and hence the period over which a male could gain paternity. Consistent with this, under free‐mating conditions over an extended period, we detected a ‘per‐mating’ fitness benefit for males transferring SP. These benefits are consistent with a role for SP in mediating conflict, with SP acting to maximize short‐term fitness benefits for males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号