首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Virus infection may change not only the host‐plant phenotypic (morphological and physiological) characteristics, but can also modify the behavior of their insect vector in a mutualistic or rather antagonistic manner, to promote their spread to new hosts. Viruses differ in their modes of transmission and depend on vector behavior for successful spread. Here, we investigated the effects of the semi‐persistently transmitted Tomato chlorosis virus (ToCV, Crinivirus) and the persistent circulative Tomato severe rugose virus (ToSRV, Begomovirus) on alighting preferences and arrestment behavior of their whitefly vector Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle East Asia Minor 1 (MEAM1) on tomato plants (Solanum lycopersicum L. cv. Santa Clara, Solanaceae). The vector alighting preferences between infected and uninfected plants in choice assays were apparently influenced by the presence of ToCV and ToSRV in the whiteflies or by their previous exposure to infected plants. The observed changes in vector behavior do not seem to benefit the spread of ToCV: non‐viruliferous insects clearly preferred mock‐inoculated plants, whereas ToCV‐viruliferous insects landed on mock‐inoculated and ToCV‐infected plants, indicating a partial change in insect behavior – ToCV was able to directly affect the preference of its vector B. tabaci, but this change in insect behavior did not affect the virus spread because viruliferous insects landed on mock‐inoculated and infected plants indistinctly. In contrast, ToSRV‐viruliferous insects preferred to land on mock‐inoculated plants, a behavior that increases the probability of spread to new host plants. In the arresting behavior assay, the majority of the insects remained on mock‐inoculated plants when released on them. A greater number of insects moved toward mock‐inoculated plants when initially released on ToCV‐ or ToSRV‐infected plants, suggesting that these viruses may repel or reduce the nutritional quality of the host plants for B. tabaci MEAM1.  相似文献   

2.
Maize Iranian mosaic virus (MIMV, family Rhabdoviridae) causes an important disease in cereal crops in Iran. It is transmitted by the planthopper Laodelphax striatellus in a persistent, propagative manner. In the present study, the effect of MIMV on the energy reserves of L. striatellus was studied by comparing energy contents in viruliferous and non‐viruliferous insects. Results showed that MIMV‐infected male and female adults, and nymphs stored 1.82, 2.24 and 1.7‐fold more total energy reserves than non‐viruliferous individuals. This is consistent with a 2.55‐fold increase of the total energy (sum of energy sources in nymphs and adults) of viruliferous compared to non‐viruliferous specimens. A significant increase in glycogen (2.26‐fold), carbohydrate (2.13‐fold), lipid (1.63‐fold) and protein (1.96‐fold) was documented in viruliferous insects compared to non‐viruliferous insects. Based on these results, we conclude that MIMV enhances the energy reserves of its vector and therefore, may play a vital role in the ecology of L. striatellus.  相似文献   

3.
Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread.  相似文献   

4.
Maize Iranian mosaic virus (MIMV) was characterized and compared with isolates of Maize mosaic virus (MMV, genus Nucleorhabdovirus, family Rhabdoviridae) in insect transmission, cytopathology and ultrastructure of infected maize cells, virion proteins and serologically. MIMV is naturally transmitted by Ribautodelphax notabilis, a delphacid planthopper, in Iran. In this study, another planthopper, Peregrinus maidis, vector of MMV, transmitted MIMV with an estimated efficiency of 0.4–1.6% following feeding on MIMV‐infected maize plants and 64% following injection of MIMV into the hemolymph, suggesting that P. maidis gut tissues largely blocked MIMV transmission. MIMV and MMV‐HI (Hawaii) induced similar cytopathologies in cells of infected maize leaves, with virions budding through inner nuclear and endoplasmic reticulum membranes. In thin sections, virions of MIMV were significantly shorter than those of MMV‐HI. Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis of virions of MIMV, MMV‐HI, MMV‐CR (Costa Rica) and MMV‐FL (Florida) yielded six proteins of which four were identified as the putative G, N, P and M proteins of plant rhabdoviruses. The N, P and M proteins of MIMV migrated faster in gels than those of the MMV isolates indicating a lower molecular weight, whereas the bands corresponding to the G proteins migrated similarly for both viruses. Polyclonal antibodies to MMV‐HI failed to react with virions of MIMV in enzyme‐linked immunosorbent assay (ELISA) and with MIMV proteins in Western blots. In contrast, these antibodies reacted strongly with MMV‐HI and MMV‐FL virions in ELISA and with MMV‐HI, MMV‐CR and MMV‐FL proteins in Western blots. Further, in ELISA, polyclonal antibodies to MMV‐MR (Mauritius) reacted weakly with MIMV virions but strongly with MMV‐HI and MMV‐FL virions. Thus, it is concluded that MIMV is a new virus of the Nucleorhabdovirus genus that may be distantly related to MMV.  相似文献   

5.
【目的】由电光叶蝉Recilia dorsalis传播的水稻条纹花叶病毒(rice stripe mosaic virus,RSMV)目前在我国华南稻区大面积发生并对水稻生产造成严重危害。本研究旨在明确RSMV对介体电光叶蝉生长繁殖及取食行为的影响。【方法】通过生物学实验测定RSMV侵染后电光叶蝉的生长和生命表参数;利用刺吸电位(electrical penetration graph,EPG)技术比较携带和未携带RSMV的电光叶蝉成虫在健康水稻上的取食行为差异;采用Y型嗅觉仪测定电光叶蝉成虫对感染和未感染RSMV水稻的寄主选择倾向性。【结果】与无毒电光叶蝉相比,携带RSMV的电光叶蝉若虫发育历期延长,而若虫存活率、成虫羽化率、雌虫繁殖力和卵孵化率下降。无毒电光叶蝉成虫倾向于选择取食RSMV侵染的水稻,而带毒电光叶蝉成虫倾向于选择取食健康水稻。与无毒电光叶蝉相比,带毒电光叶蝉成虫取食健康水稻所产生的刺探波、障碍波和唾液分泌波次数和持续时间均显著增加,被动取食波和休息波次数减少但时间均延长。【结论】与无毒电光叶蝉相比,感染RSMV使带毒电光叶蝉若虫发育历期延长且不利于其种群的繁殖。RSMV通过调控介体电光叶蝉成虫的取食和寄主选择行为而有利于自身在寄主水稻间的传播。  相似文献   

6.
Aphids are the most common vector of plant viruses, and their feeding behavior is an important determinant of virus transmission. Positive effects of global change on aphid performance have been documented, but effects on aphid behavior are not known. We assessed the plant‐mediated behavioral responses of a generalist aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), to increased CO2 and nitrogen when feeding on each of three host species: Amaranthus viridis L. (Amaranthaceae), Polygonum persicaria L. (= Persicaria maculosa Gray) (Polygonaceae), and Solanum dulcamara L. (Solanaceae). Via a family of constrained Markov models, we tested the degree to which aphid movements demonstrate preference among host species or plants grown under varying environmental conditions. Entropy rates of the estimated Markov chains were used to further quantify aphid behavior. Our statistical methods provide a general tool for assessing choice and quantitatively comparing animal behavior under different conditions. Aphids displayed strong preferences for the same host species under all growth conditions, indicating that CO2‐ and N‐induced changes in plant chemistry have minimal effects on host preference. However, entropy rates increased in the presence of non‐preferred hosts, even when preferred hosts were available. We conclude that the presence of a non‐preferred host species affected aphid‐feeding behavior more than changes in plant leaf chemistry when plants were grown under elevated CO2 and increased N availability.  相似文献   

7.
1. Ecological theory predicts that vector preference for certain host species or discrimination between infected versus uninfected hosts impacts disease incidence. However, little information exists on the extent to which vector within‐host feeding preference mediates transmission. This may be particularly important for plant pathogens, such as sharpshooter transmission of the bacterium Xylella fastidiosa, which are distributed irregularly throughout hosts. 2. We documented the within‐host distribution of two vector species that differ in transmission efficiency, the leafhoppers Draeculacephala minerva and Graphocephala atropunctata, and which are free to move throughout entirely caged alfalfa plants. The more efficient vector D. minerva fed preferentially at the base of the plant near the soil surface, whereas the less efficient G. atropunctata preferred overwhelming the top of the plant. 3. Next we documented X. fastidiosa heterogeneity in mechanically inoculated plants. Infection rates were up to 50% higher and mean bacterial population densities were 100‐fold higher near the plant base than at the top or in the taproot. 4. Finally, we estimated transmission efficiency of the two leafhoppers when they were confined at either the base or top of inoculated alfalfa plants. Both vectors were inefficient when confined at the top of infected plants and were 20–60% more efficient when confined at the plant base. 5. These results show that vector transmission efficiency is determined by the interaction between leafhopper within‐plant feeding behaviour and pathogen within‐plant distribution. Fine‐scale vector and pathogen overlap is likely to be a requirement generally for efficient transmission of vector‐borne pathogens.  相似文献   

8.
Maize yellow stripe virus (MYSV), associated with tenuivirus-like filaments, is transmitted in a persistent manner by the leafhopper Cicadulina chinai. In this vector, MYSV acquisition and inoculation threshold times were 30 min each, latent period ranged from 4.5 to 8 days depending on temperature (14-25 °C), and retention periods were as long as 27 days. Up to 26 % of C, chinai collected from maize fields in Giza, Egypt, during September and October 1985 were naturally infective with MYSV. Two symptom-types (fine and coarse stripe) appeared on experimentally infected plants, usually on separate leaves of the same plant. However, these two symptom-types could not be isolated on separate plants through transmission by single C. chinai leafhoppers. MYSV was transmitted by nymphs and adults of C. chinai from maize to maize, wheat and barley, and from wheat to maize plants. Up to 6 % of the wheat plants examined in Naga Hamadi (Southern Egypt) in February 1986, were naturally infected. It is suggested that wheat, barley and possibly graminaceous weeds may serve as winter hosts or reservoirs for MYSV and its leafhopper vector in Egypt.  相似文献   

9.
Pathogens may alter their hosts, which consequently increases transmission efficiency by vectors. We examined the effects of Raspberry leaf mottle virus [RLMV; Closterovirus (Closteroviridae)] and Raspberry latent virus [RpLV; Reovirus (Reoviridae)], alone and in a co‐infection in raspberry, Rubus idaeus L. (Rosaceae) cv. Meeker, on the behavior and performance of its vector, Amphorophora agathonica Hottes (Hemiptera: Aphididae). Longevity was increased in aphids feeding on all infected‐plant treatments compared with healthy plants, but aphid fecundity only increased in the co‐infection treatment. In a two‐way choice study between infected and healthy plants, aphids showed no difference in preference between plants after 30 min of exposure. After 24 h, aphids significantly preferred to settle on plants infected with RLMV over healthy, but healthy plants over plants infected with RpLV. There were no differences in settling preferences between healthy and co‐infected plants. An electrical penetration graph study showed no differences in aphid feeding behavior on plants infected with RLMV and RLMV+RpLV when compared with healthy controls. Our results are consistent with past findings that infected plant's impact vector performance and behavior, but also highlight the need to further investigate greater virus diversity and effects of mixed infections.  相似文献   

10.
Myrmecophytes depend on symbiotic ants (plant‐ants) to defend against herbivores. Although these defensive mechanisms are highly effective, some herbivorous insects can use myrmecophytes as their host‐plants. The feeding habits of these phytophages on myrmecophytes and the impacts of the plant‐ants on their feeding behavior have been poorly studied. We examined two phasmid species, Orthomeria alexis and O. cuprinus, which are known to feed on Macaranga (Euphorbiaceae) myrmecophytes in a Bornean primary forest. Our observations revealed that: (i) each phasmid species relied on two closely‐related myrmecophytic Macaranga species for its host‐plants in spite of their normal plant‐ant symbioses; and (ii) there was little overlap between their host‐plant preferences. More O. cuprinus adults and nymphs were found on new leaves, which were attended by more plant‐ants than mature leaves, while most adults and nymphs of O. alexis tended to avoid new leaves. In a feeding choice experiment under ant‐excluded conditions, O. alexis adults chose a non‐host Macaranga myrmecophyte that was more intensively defended by plant‐ants and was more palatable than their usual host‐plants almost as frequently as their usual host‐plant, suggesting that the host‐plant range of O. alexis was restricted by the presence of plant‐ants on non‐host‐plants. Phasmid behavior that appeared to minimize plant‐ant attacks is described.  相似文献   

11.
Phytophagous insects may choose host plants based on conditions that enhance offspring performance. However, some insect species may also select plants based on attributes that enhance their own performance regardless of the consequences for offspring survival. An approach evaluating both hypotheses could provide a more comprehensive understanding of the host plant selection by phytophagous insects. In this study, we described the life stages of a Neotropical stink bug, Edessa contermina, co-occurring on Byrsonima verbascifolia plants in a conservation area of the Brazilian Savannah. We also empirically evaluated how food supply, shelter availability and competitors’ density on the host plants affected the densities of nymphs, adults and mating pairs. We identified and described five life stages of E. contermina. The amount of plant resources did not explain the nymph, adult and mating pairs’ density. However, adults and mating pairs chose plants with a low density of nymphs, probably because egg laying on the host plants with a high density of competitors may negatively affect offspring performance.  相似文献   

12.
Insect-vectored plant viruses can induce changes in plant phenotypes,thus influencing plant-vector interactions in a way that may promote their dispersal according to their mode of transmission (i.e.,circulative vs.noncirculative).This indirect vector manipulation requires host-virus-vector coevolution and would thus be effective solely in very specific plant-virus-vector species associations.Some studies suggest this manipulation may depend on multiple factors relative to various intrinsic characteristics of vectors such as transmission efficiency.In anintegrative study,we tested the effects of infection of the Brassicaceae Camelina sativa with the noncirculative Cauliflower mosaic virus (CaMV)or the circulative Turnip yellows virus (TuYV)on the host-plant colonization of two aphid species differing in their virus transmission efficiency:the polyphagous Myzus persicae,efficient vector of both viruses,and the Brassicaceae specialist Brevicoryne brassicae,poor vector of TuYV and efficient vector of CaMV.Results confirmed the important role of virus mode of transmission as plant-mediated effects of CaMV on the two aphid species induced negative alterations of feeding behavior (i.e.,decreased phloem sap ingestion)and performance that were both conducive for virus fitness by promoting dispersion after a rapid acquisition.In addition,virus transmission efficiency may also play a role in vector manipulation by viruses as only the responses of the efficient vector to plant-mediated effects of TuYV,that is,enhanced feeding behavior and performances,were favorable to their acquisition and further dispersal.Altogether,this work demonstrated that vector transmission efficiency also has to be considered when studying the mechanisms underlying vector manipulation by viruses.Our results also re- inforce the idea that vector manipulation requires coevolution between plant,virus and vector.  相似文献   

13.
Phaseolus vulgaris L. cv. 'Black Valentine' is a systemic host for the plant viruses Southern bean mosaic virus (SBMV) and bean pod mottle virus (BPMV). The Mexican bean beetle, Epilachna varivestis Mulsant, is a vector of SBMV and BPMV. Our objective was to determine if the interaction of SBMV and BPMV with 'Black Valentine' bean plants would affect beetle behavior and growth. In adult feeding preference test assays, beetles preferred and ingested more of the virus-infected bean leaf tissue than the noninfected leaf tissue. Beetle larvae that fed on SBMV- or BPMV-infected plants weighed more than those that fed on healthy plants. Our experiments suggest that there might be a mutually beneficial relationship between the beetle and the viruses that it vectors. The virus benefits from being transmitted and the beetle benefits from better larval growth when feeding on virus-infected leaf tissue. This study further demonstrates the complexity of relationships between multiple organisms.  相似文献   

14.
Host acceptance by gynoparae and winged virginoparae of the bird cherry‐oat aphid Rhopalosiphum padi (L.) is investigated utilizing leaves and aqueous extracts of the primary and secondary hosts, as well as nonhost plants. Gynoparae are specialized to reproduce on bird cherry Prunus padus L., whereas virginoparae reproduce and feed on various grasses. Host acceptance is assessed using levels of reproduction and survival for adults, as well as survival for nymphs. Little is known of host acceptance by nymphs. The data show that gynoparae and winged virginoparae produce nymphs almost exclusively on their host plants, bird cherry and barley leaves, respectively, over 72 h. When tested with aqueous plant extracts, however, gynoparae produce nymphs almost exclusively on bird cherry extract and progeny numbers are found to be similar to those on plant leaves. Few nymphs are produced on artificial diet. By contrast, winged virginoparae produce nymphs on aqueous extracts of barley, bird cherry and bean, as well as on artificial diet. The numbers of nymphs deposited by gynoparae are similar on aqueous extracts of bird cherry leaves collected at different times during the growing season. When extracts from leaves of various Prunus species are tested, only leaves of P. padus and Prunus virginiana stimulate parturition. Oviparae, the sexual female nymphs of gynoparae, survive well for 96 h on both bird cherry and barley leaves but not on bean seedlings, whereas nymphs of winged virginoparae survive well only on barley leaves. They do not survive for 96 h on any plant‐leaf extracts, although they do survive on artificial diet.  相似文献   

15.
Abstract Information on host plant preference of agriculturally important insect pests, such as Lygus hesperus (Knight), can be helpful in predicting its occurrence and future movement among crop and non-crop host plants. A field study was conducted during 2005 and 2006 to evaluate the host preference of Lygus to cotton and four other host plants in the Texas High Plains, including alfalfa (Medicago sativa L.), wild sunflower (Helianthus annuus L.), Russian thistle (Salsola iberica L.) and pigweed (Amaranthus palmeri L.). Sampling for both nymphs and adults during 2005 (July to November) and 2006 (June to November) showed that alfalfa and Russian thistle were the two most preferred hosts out of the five hosts evaluated. Abundance of nymphs (numbers per 50 sweeps per host plant) during the sampling period also indicated the superior reproductive suitability of alfalfa and Russian thistle. Cotton appeared to be the least attractive host plant for Lygus when Russian thistle and alfalfa were available in the host mosaic. Seasonal abundance of Lygus was found to be lower during 2006 compared to 2005, which may be explained by the difference in rainfall patterns during these two years. In terms of species dominance, L. hesperus was the most dominant species in the sampled population followed by an inconsiderable fraction of L. elisus and L. lineolaris.  相似文献   

16.
The relationship between oviposition preference and offspring performance of herbivores is an essential question in the field of plant–insect interactions and may have important implications on integrated pest management practices. Here, we investigated the preference–performance relationship of a generalist herbivore, the true armyworm, Mythimna unipuncta (Haworth) (Lepidoptera: Noctuidae, Leucaniini). We evaluated the effect of crop species, cultivars, and fertilization rate on host use by adult and larval M. unipuncta in both laboratory and field experiments. Female M. unipuncta preferred to oviposit on cereals (Triticum aestivum L., Hordeum vulgare L., Zea mays L., all Poaceae) compared to oilseed (Brassica napus L., Brassicaceae) or pulse (Pisum sativum L., Fabaceae) crops. The preference–performance relationship was examined further on four cereal crops, spring wheat (T. aestivum cv. CDC Go), winter wheat (T. aestivum cv. CDC Buteo), feed barley (H. vulgare cv. Xena), and malt barley (H. vulgare cv. Copeland). Feed barley was the least preferred cereal by female moths but resulted in the highest larval performance of all tested plants suggesting that females did not select the host on which their offspring performs best, based on nutrient content. In contrast, late-instar larvae selected the hosts, feed barley and malt barley, on which they performed the best, suggesting that larvae have a more active role in host selection for development, compared to adult females. The addition of fertilizer to host plants did not influence adult female oviposition preference. Larvae reared on plants treated with the half (70 mg N) or full (140 mg N) dose of fertilizer resulted in heavier pupae, compared to those reared on unfertilized plants, regardless of crop variety. However, under field conditions fertilization did not enhance larval performance on feed barley plants. The generalist herbivore M. unipuncta does not exhibit the ‘mother knows best’ principle on the tested hosts and potentially employs a bet-hedging strategy instead.  相似文献   

17.
Earthworm‐produced compost or vermicompost has been shown to increase resistance of plants to a variety of insect pests, but it is still unclear whether this resistance is dose dependent and whether the mechanisms responsible are the same for insect species with differing feeding habits and preferences. Therefore, we tested the effects of plants grown in various vermicompost concentrations (0, 20, 40, and 60%) on the preference and performance of generalist, Myzus persicae L., and specialist, Brevicoryne brassicae L. (both Hemiptera: Aphididae), aphid pests. Preference was evaluated with leaf disk (apterous) and whole plant (alate) choice assays. After 24 h of feeding, there was no significant negative effect on the feeding preference noted for apterae of either species of any of the treatments tested. To the contrary, apterae B. brassicae showed a significant preference for vermicompost treatments over control leaf disks. Alate M. persicae preferred alighting on control plants over vermicompost‐grown plants, but B. brassicae showed no preference toward any of the treatments tested. Both aphid species deposited significantly more nymphs on control plants than on those grown in 20% vermicompost. Furthermore, plants grown in soil amended with 20% vermicompost significantly suppressed mass accumulation, as well as numbers of adults and nymphs of both aphid species compared to controls. These data clearly show that vermicompost soil amendments can significantly influence pest aphid preference and performance on plants and that these effects are not dose dependent, but rather species and morph dependent.  相似文献   

18.
Persistent plant viruses, by altering phenotypic and physiological traits of their hosts, could modulate the host preference and fitness of hemipteran vectors. A majority of such modulations increase vector preference for virus-infected plants and improve vector fitness, ultimately favouring virus spread. Nevertheless, it remains unclear how these virus-induced modulations on vectors vary temporally, and whether host resistance to the pathogen influences such effects. This study addressed the two questions using a Begomovirus-whitefly-tomato model pathosystem. Tomato yellow leaf curl virus (TYLCV) -susceptible and TYLCV-resistant tomato genotypes were evaluated by whitefly-mediated transmission assays. Quantitative PCR revealed that virus accumulation decreased after an initial spike in all genotypes. TYLCV accumulation was less in resistant than in susceptible genotypes at 3, 6, and 12 weeks post inoculation (WPI). TYLCV acquisition by whiteflies over time from resistant and susceptible genotypes was also consistent with virus accumulation in the host plant. Furthermore, preference assays indicated that non-viruliferous whiteflies preferred virus-infected plants, whereas viruliferous whiteflies preferred non-infected plants. However, this effect was prominent only with the susceptible genotype at 6 WPI. The development of whiteflies on non-infected susceptible and resistant genotypes was not significantly different. However, developmental time was reduced when a susceptible genotype was infected with TYLCV. Together, these results suggest that vector preference and development could be affected by the timing of infection and by host resistance. These effects could play a crucial role in TYLCV epidemics.  相似文献   

19.
Plant pathogens are able to influence the behaviour and fitness of their vectors in such a way that changes in plant–pathogen–vector interactions can affect their transmission. Such influence can be direct or indirect, depending on whether it is mediated by the presence of the pathogen in the vector's body or by host changes as a consequence of pathogen infection. We report the effect that the persistently aphid‐transmitted Cucurbit aphid‐borne yellows virus (CABYV, Polerovirus) can induce on the alighting, settling and probing behaviour activities of its vector, the cotton aphid Aphis gossypii. Only minor direct changes on aphid feeding behaviour were observed when viruliferous aphids fed on non‐infected plants. However, the feeding behaviour of non‐viruliferous aphids was very different on CABYV‐infected than on non‐infected plants. Non‐viruliferous aphids spent longer time feeding from the phloem in CABYV‐infected plants compared to non‐infected plants, suggesting that CABYV indirectly manipulates aphid feeding behaviour through its shared host plant in order to favour viral acquisition. Viruliferous aphids showed a clear preference for non‐infected over CABYV‐infected plants at short and long time, while such behaviour was not observed for non‐viruliferous aphids. Overall, our results indicate that CABYV induces changes in its host plant that modifies aphid feeding behaviour in a way that virus acquisition from infected plants is enhanced. Once the aphids become viruliferous they prefer to settle on healthy plants, leading to optimise the transmission and spread of this phloem‐limited virus.  相似文献   

20.
  • 1 Aphids are the major group of insects that vector plant viruses, and they often display a preference for foliage showing disease symptoms. Although this behaviour will increase the numbers of vectors acquiring the pathogen, it will not in itself result in a greater spread of the disease.
  • 2 The present study examined how infection of Vicia faba by the nonpersistently transmitted virus bean yellow mosaic virus (BYMV) affected colonization by pea aphids Acyrthosiphon pisum. We then examined how foraging by the hymenopterous parasitoid Aphidius ervi affected aphid settling/movement behaviour and the consequences for dissemination of the virus.
  • 3 In Petri dish arenas, aphids colonized discs from BYMV‐infected leaves more rapidly than discs from uninfected plants. Reflectance from infected foliage was approximately 20% higher than from uninfected leaves in the green–yellow wavelengths, indicating that aphids might be responding to visual cues from the brighter foliage. Settling was reduced by A. ervi, with the foraging wasps preventing the aphids reaching and/or remaining on the leaf tissue.
  • 4 In multiple plant arenas, A. ervi caused a reduction in aphid numbers but also a nine‐fold increase in BYMV infection. It is hypothesized that disturbance by the parasitoids resulted in more aphid movement as well as more cases of aphids probing on a BYMV‐infected plant and then a new host within the critical time period for successful inoculation to occur. This effect of parasitoids on virus dispersal should be considered in epidemiological models of insect‐vectored plant diseases, and also when evaluating the use of natural enemies in biocontrol strategies of insect herbivore/vector pests.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号