首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
It has been estimated that there are seven million terrestrial arthropod species on Earth consisting of 6.1 million species of insects, 1.5 million of which are beetles. Tropical forests hold a majority of these species, yet few such places have been adequately sampled for alpha diversity, and there remains even more uncertainty about beta diversity. From an ecological point of view, it is the functional role of organisms within ecosystems that is the particular focus. It has been customary to classify invertebrates within ecosystems in terms of their trophic roles, but it is also useful to consider their roles in networks. In broad terms, we can classify these networks on the grounds of their basal resources. Those based directly on the photosynthetic products of plants are so-called “green” food webs, and those based on dead and dying plant material are “brown” food webs. Here, we principally discuss the diversity and functional roles of the invertebrates in tropical terrestrial ecosystems. New sampling and analytical techniques, an expanded set of focal taxa, and an enhanced concern with interactions and processes hold the promise of a productive future for invertebrate studies in the tropics. These will not only add to general understanding of the dynamics of tropical ecosystems but will also provide powerful tools for monitoring and responding to environmental change.  相似文献   

2.
    
Increasing sea surface temperatures (SST) and blooms of lipid‐poor, filamentous cyanobacteria can change mesozooplankton metabolism and foraging strategies in marine systems. Lipid shortage and imbalanced diet may challenge the build‐up of energy pools of lipids and proteins, and access to essential fatty acids (FAs) and amino acids (AAs) by copepods. The impact of cyanobacterial blooms on individual energy pools was assessed for key species temperate Temora longicornis and boreal Pseudo‐/Paracalanus spp. that dominated field mesozooplankton communities isolated by seasonal stratification in the central Baltic Sea during the hot and the cold summer. We looked at (a) total lipid and protein levels, (b) FA trophic markers and AA composition, and (c) compound‐specific stable carbon isotopes (δ13C) in bulk mesozooplankton and in a subset of parameters in particulate organic matter. Despite lipid‐poor cyanobacterial blooms, the key species were largely able to cover both energy pools, yet a tendency of lipid reduction was observed in surface animals. Omni‐ and carnivory feeding modes, FA trophic makers, and δ13C patterns in essential compounds emphasized that cyanobacterial FAs and AAs have been incorporated into mesozooplankton mainly via feeding on mixo‐ and heterotrophic (dino‐) flagellates and detrital complexes during summer. Foraging for essential highly unsaturated FAs from (dino‐) flagellates may have caused night migration of Pseudo‐/Paracalanus spp. from the deep subhalocline waters into the upper waters. Only in the hot summer (SST>19.0°C) was T. longicornis submerged in the colder subthermocline water (~4°C). Thus, the continuous warming trend and simultaneous feeding can eventually lead to competition on the preferred diet by key copepod species below the thermocline in stratified systems. A comparison of δ13C patterns of essential AAs in surface mesozooplankton across sub‐basins of low and high cyanobacterial biomasses revealed the potential of δ13C‐AA isoscapes for studies of commercial fish feeding trails across the Baltic Sea food webs.  相似文献   

3.
    
  1. Many species are expanding their distribution towards higher latitudes and altitudes in response to climate change. These range shifts are expected to change fish community structure and alter food‐web dynamics in subarctic lakes. However, the impacts of invading species on native fish and invertebrate prey communities remain understudied.
  2. The trophic ecology of invasive species determines the likelihood of direct resource competition with native taxa. In Northern Europe, perch (Perca fluviatilis), a trophic generalist, and ruffe (Gymnocephalus cernuus), a benthic specialist, are expanding their distribution ranges northwards, colonising lakes inhabited by a native generalist, whitefish (Coregonus lavaretus). We predicted that increased fish diversity and density would deplete the invertebrate community and increase resource competition between native and invasive species.
  3. To assess the degree of resource competition between native and invasive species, we compared (i) fish and invertebrate community structure; (ii) diet and stable carbon and nitrogen ratios of whitefish, ruffe and perch and (iii) growth, condition and relative population size of whitefish in two non‐invaded lakes with two lakes containing one and two lakes containing both invasive species. Each lake was sampled on a single occasion between August and September.
  4. Benthic macroinvertebrate density and community structure were unaffected by increased consumer diversity, while top‐down control of pelagic zooplankton density and size was evident in lakes with increased fish diversity.
  5. Differences in diet and stable isotope ratios were evident between all whitefish populations, although these were not directly related to the presence of invasive species. Specialised adaptations of invasive species may confer a competitive advantage in invaded lakes; ruffe dominated the profundal niche, while perch displayed an ontogenetic shift to piscivory, reducing niche overlap with native whitefish.
  6. Growth rate and population density of whitefish were largely independent of fish community structure and were governed by local variations in lake productivity. However, there was a sign of lowered condition of whitefish in invaded systems. Shallow and more productive lakes with higher food availability supported populations of native and invasive species.
  7. Our findings indicate that trophic specialisations of invasive species play a key role in determining their impacts on the systems they invade. This study focussed on early stages of invasion, and the outcome of species interactions may change following the establishment of new species. In addition, these impacts will not be uniform across the invaded landscape as lake‐specific variations in morphometry and resource availability will alter the competitive balance between native and invasive species.
  相似文献   

4.
1. Stable isotopes of carbon are useful for differentiating between freshwater food chains based on planktonic algae or benthic algae, but are reported to be of limited use for identifying food chains based on sedimentary detritus. Because data from marine systems suggest that stable isotopes of sulphur (δ34S values) have potential in this regard, we tested their utility in freshwater lakes.
2. We found that sulphate in the water column of four boreal lakes was enriched in 34S compared to the sulphur in bulk sediments from these lakes. Furthermore, within a given lake, insects known to feed on sediment (directly or via predation) had δ34S values similar to those of sediment, whereas planktonic and benthic invertebrates known to feed on suspended particles had δ34S values similar to those of sulphate in the water column.
3. Using the stable S isotope values of invertebrates that obtain their S from either the sediment or the water column as end members in a two-source mixing model, we show that two fish species obtain their food from both planktonic and sedimentary sources. Furthermore, model results suggest that, as expected, the more benthic-feeding fish species obtains more of its S from the sediment compartment than does the species that feeds in the water-column.
4. Our results suggest that measurements of stable sulphur isotopes provide a means of distinguishing between members of food chains that are based in the water column from those based on sedimentary detritus. As such, they would be a useful complement to stable C isotopes that are used to distinguish between food chains based on planktonic or benthic algae.  相似文献   

5.
    
  1. Benthic animals readily consume benthic algae, phytoplankton and terrestrial organic matter and are themselves a major component of fish diets. However, the effect of variation in resource availability on resource use by littoral macroinvertebrates remains poorly resolved.
  2. Using stable isotopes of carbon, we quantified depth‐specific resource use by zoobenthic functional feeding groups in five lakes in northern Wisconsin. The littoral zoobenthos was collected from soft sediments at several depths in conjunction with samples of bulk periphyton (top 5 mm of sediment and biofilm) and measurements of benthic algal primary productivity.
  3. Periphyton δ13C was positively correlated with depth‐specific benthic algal primary productivity, but grazer δ13C was consistently higher than that of the periphyton.
  4. The δ13C of infaunal collectors and predators was tightly correlated with, and nearly identical to, bulk periphyton δ13C (collectors: R2, 0.88; slope, 0.97; < 0.0001; predators: R2, 0.78; slope, 0.88; < 0.0001). Reliance of collectors and predators on benthic algal carbon varied between 43 and 100%, depending on whether grazers or bulk periphyton was used as the benthic algal end‐member.
  5. Despite the apparent homogeneity of the sediments, benthic grazers and collectors partitioned resources in a consistent way in our study lakes, indicating either selective ingestion or assimilation of different components of the biofilm.
  相似文献   

6.
  1. The cascading effect of predators on the functioning of adjacent ecosystems can occur when the life cycles of their prey include two ecosystems. However, there has been little consideration of which habitat attributes can modify the strength of these cross‐ecosystem trophic cascades. Habitat size can mediate the strength of predator–prey interactions, and thus affect within‐ecosystem trophic cascades. We hypothesise that similar effects of habitat size might affect cross‐ecosystem trophic cascades.
  2. It has been shown that terrestrial predators (e.g. spiders) can capture terrestrial adult insects as they attempt to oviposit in the waters of bromeliads. Such terrestrial predators could therefore alter the trophic structure and functioning of the aquatic food web. If spiders affect an aquatic trophic level that is influenced by bromeliad size, then the strength of the cross‐ecosystem trophic cascade will also depend on bromeliad size.
  3. To test this general hypothesis, we manipulated the presence of a funnel‐web spider (Aglaoctenus castaneus, Lycosidae), which builds a single web over water‐filled bromeliads, in bromeliads differing in size and examined effects on the aquatic invertebrate community and on ecosystem functions (decomposition, detrital nitrogen flux).
  4. The effects of spiders were largely independent of bromeliad size. Spiders did initiate changes in the trophic structure of aquatic food webs, reducing the biomass of predators, especially damselflies and dytiscid beetles. Spiders also increased decomposition despite having no effect on detritivore biomass or composition.
  5. These results are most parsimoniously explained by (i) a behaviourally mediated trophic cascade, whereby damselfly adults avoid bromeliads with spiders, and aquatic detritivores increase rates of detrital processing in the absence of damselfly larvae, and (ii) stimulation of decomposition through nutrients added from spider faeces and prey carcasses. We believe that this is the first study to show that terrestrial predators can affect decomposition by reducing the flux of keystone aquatic predators with complex life cycles.
  相似文献   

7.
    
  1. Lake food webs can be supported by primary production from within the lake, organic matter imported from the catchment or some mixture of these two sources. Generalisations about food‐web subsidies to lake ecosystems are often based on data from only a few ecosystems and therefore do not consider the potential variability of subsidies among diverse ecosystems in a landscape.
  2. We measured the variation among lake ecosystems in terrestrial (allochthonous) utilisation by pelagic consumers and developed models to describe the variability. Stable isotope ratios of hydrogen and carbon were measured for Chaoborus spp. and crustacean zooplankton taxa in 40 lakes to quantify consumer allochthonous resource use (allochthony).
  3. The median fraction of consumer allochthony estimated using a two‐source Bayesian mixing model varied between 4 and 82% (mean among all lakes = 36%) for Chaoborus sp. among lakes and between 1 and 76% in a more limited sample of crustacean zooplankton consumers. The degree of allochthonous resource use increased linearly with the availability of allochthonous resources.
  4. Terrestrial support of Chaoborus was correlated (using best fitting relationships) with covariates for lake organic matter sources including dissolved inorganic carbon, total phosphorus, chlorophyll α, colour and catchment area. However, the most parsimonious model was an inverse relationship between lake surface area and consumer allochthony, indicating that allochthonous subsidies are more important in smaller than larger systems. Given the preponderance of small waterbodies, allochthonous subsidies are important in a large number of lake ecosystems.
  相似文献   

8.
    
Increasing direct human pressures on the marine environment, coupled with climate‐driven changes, is a concern to marine ecosystems globally. This requires the development and monitoring of ecosystem indicators for effective management and adaptation planning. Plankton lifeforms (broad functional groups) are sensitive indicators of marine environmental change and can provide a simplified view of plankton biodiversity, building an understanding of change in lower trophic levels. Here, we visualize regional‐scale multi‐decadal trends in six key plankton lifeforms as well as their correlative relationships with sea surface temperature (SST). For the first time, we collate trends across multiple disparate surveys, comparing the spatially and temporally extensive Continuous Plankton Recorder (CPR) survey (offshore) with multiple long‐term fixed station‐based time‐series (inshore) from around the UK coastline. These analyses of plankton lifeforms showed profound long‐term changes, which were coherent across large spatial scales. For example, ‘diatom’ and ‘meroplankton’ lifeforms showed strong alignment between surveys and coherent regional‐scale trends, with the 1998–2017 decadal average abundance of meroplankton being 2.3 times that of 1958–1967 for CPR samples in the North Sea. This major, shelf‐wide increase in meroplankton correlated with increasing SSTs, and contrasted with a general decrease in holoplankton (dominated by small copepods), indicating a changing balance of benthic and pelagic fauna. Likewise, inshore‐offshore gradients in dinoflagellate trends, with contemporary increases inshore contrasting with multi‐decadal decreases offshore (approx. 75% lower decadal mean abundance), urgently require the identification of causal mechanisms. Our lifeform approach allows the collation of many different data types and time‐series across the NW European shelf, providing a crucial evidence base for informing ecosystem‐based management, and the development of regional adaptation plans.  相似文献   

9.
10.
1. The native amphipod Diporeia spp. was once the dominant benthic organism in Lake Michigan and served as an important pathway of energy flow from lower to upper trophic levels. Lake‐wide surveys were conducted in 1994/1995, 2000 and 2005, and abundances of Diporeia and the invasive bivalves Dreissena polymorpha (zebra mussel) and Dreissena rostriformis bugensis (quagga mussel) were assessed. In addition, more frequent surveys were conducted in the southern region of the lake between 1980 and 2007 to augment trend interpretation. 2. Between 1994/1995 and 2005, lake‐wide density of Diporeia declined from 5365 to 329 m−2, and biomass (dry weight, DW) declined from 3.9 to 0.4 g DW m−2. The percentage of all sites with no Diporeia increased over time: 1.1% in 1994/1995, 21.7% in 2000 and 66.9% in 2005. On the other hand, total dreissenid density increased from 173 to 8816 m−2, and total biomass increased from 0.4 to 28.6 g DW m−2. Over this 10‐year time period, D. r. bugensis displaced D. polymorpha as the dominant dreissenid, comprising 97.7% of the total population in 2005. In 2007, Diporeia was rarely found at depths shallower than 90 m and continued to decline at greater depths, whereas densities of D. r. bugensis continued to increase at depths greater than 50 m. 3. The decline in Diporeia occurred progressively from shallow to deep regions, and was temporally coincident with the expansion of D. polymorpha in nearshore waters followed by the expansion of D. r. bugensis in offshore waters. In addition, Diporeia density was negatively related to dreissenid density within and across depth intervals; the latter result indicated that dreissenids in shallow waters remotely influenced Diporeia in deep waters. 4. With the loss of Diporeia and increase in D. r. bugensis, the benthic community has become a major energy sink rather that a pathway to upper trophic levels. With this replacement of dominant taxa, we estimate that the relative benthic energy pool increased from 17 to 109 kcal m−2 between 1994/1995 and 2005, and to 342 kcal m−2 by 2007. We project that previously observed impacts on fish populations will continue and become more pronounced as the D. r. bugensis population continues to expand in deeper waters.  相似文献   

11.
    
We determined the biomass and community structure of macroinvertebrates (>500 µm) associated with macrophytes, sediments, and unvegetated open water in three oligosaline (0.8 to 8.0 mS cm–1) and three mesosaline (8.0 to 30.0 mS cm–1) lakes in the Wyoming High Plains, USA. Total biomass of epiphytic and benthic invertebrates did not change with salinity, but biomass of macroinvertebrate zooplankton in open water was significantly higher in mesosaline lakes. Community composition of invertebrates differed between the two salinity categories: large grazer/detritivores (gastropods and amphipods) were dominant in oligosaline lakes, whereas small planktivores and their insect predators were more prevalent in mesosaline lakes. Both direct physiological effects of salinity, as well as a shift in the form of primary production from macrophytes to phytoplankton, probably explain these changes in community composition. Salinity effects on invertebrate communities appear to be less important to top avian consumers than are costs of osmoregulation.  相似文献   

12.
1. A substantial fraction of the freshwater available in neotropical forests is impounded within the rosettes of bromeliads that form aquatic islands in a terrestrial matrix. The ecosystem functioning of bromeliads is known to be influenced by the composition of the contained community but it is not clear whether bromeliad food webs remain functionally similar against a background of variation in the understorey environment. 2. We considered a broad range of environmental conditions, including incident light and incoming litter, and quantified the distribution of a very wide range of freshwater organisms (from viruses to macroinvertebrates) to determine the factors that influence the functional structure of bromeliad food webs in samples taken from 171 tank‐bromeliads. 3. We observed a gradient of detritus‐based to algal‐based food webs from the understorey to the overstorey. Algae, rotifers and collector and predatory invertebrates dominated bromeliad food webs in exposed areas, whereas filter‐feeding insects had their highest densities in shaded forest areas. Viruses, bacteria and fungi showed no clear density patterns. Detritus decomposition is mainly due to microbial activity in understorey bromeliads where filter feeders are the main consumers of microbial and particulate organic matter (POM). Algal biomass may exceed bacterial biomass in sun‐exposed bromeliads where amounts of detritus were lower but functional diversity was highest. 4. Our results provide evidence that tank‐bromeliads, which grow in a broad range of ecological conditions, promote aquatic food web diversity in neotropical forests. Moreover, although bromeliad ecosystems have been categorised as detritus‐based systems in the literature, we show that algal production can support a non‐detrital food web in these systems.  相似文献   

13.
14.
    
  1. Tank bromeliads form a conspicuous, yet neglected freshwater habitat in Neotropical forests. Recent studies driven by interests in medical entomology, fundamental aspects of bromeliad ecology and experimental research on food webs have, however, prompted increasing interest in bromeliad aquatic ecosystems. As yet, there is nothing in the literature about the life histories and environmental drivers of invertebrate population dynamics in tank bromeliads.
  2. Based on fortnightly samples taken over one year, size frequency plots and individual dry masses allowed us to establish the life cycles and growth rates of the dominant aquatic invertebrates in a common bromeliad species of French Guiana. Linear mixed‐effect models and Mantel tests were used to predict changes in density, biomass, and growth rates in relation to temperature, rainfall, humidity and detrital resources.
  3. Annual variations in invertebrate densities and biomasses could be described according to three types of distribution: unimodal, bimodal or almost constant. Despite seasonal variations, precipitation, temperature, relative humidity and detritus concentration accounted significantly for changes in density and biomass, but we found no significant responses in growth rates of most invertebrate species. Species rather displayed non‐seasonal life cycles with overlapping cohorts throughout the year. There was also a trend for delayed abundance peaks among congeneric species sharing similar functional traits, suggesting temporal partitioning of available resources.
  4. Beyond novel knowledge, quantitative information on life histories is important to predict food‐web dynamics under the influence of external forcing and self‐organisation. Our results suggest that changes in species distribution that will affect population dynamics through biotic interactions in space and/or time could have greater effects on food webs and ecosystem functioning than changes in environmental factors per se.
  相似文献   

15.
  总被引:2,自引:0,他引:2  
Due to the complex interactions between species in food webs, the extinction of one species could lead to a cascade of further extinctions and hence cause dramatic changes in species composition and ecosystem processes. We found that the risk of additional species extinction, following the loss of one species in model food webs, decreases with the number of species per functional group. For a given number of species per functional group, the risk of further extinctions is highest when an autotroph is removed and lowest when a top predator is removed. In addition, stability decreases when the distribution of interaction strengths in the webs is changed from equal to skew (few strong and many weak links). We also found that omnivory appears to stabilize model food webs. Our results indicate that high biodiversity may serve as an insurance against radical ecosystem changes.  相似文献   

16.
SUMMARY 1. Research has shown that fish influence the structure and processes of aquatic ecosystems, but replicated studies at the ecosystem level are rare as are those involving wetlands. Some wetlands of the Prairie Pothole Region (PPR) of North America support fish communities dominated by fathead minnows ( Pimephales promelas ) while others are fishless, providing an opportunity to assess the influence of these fish on wetland ecosystems. Additionally, many wetlands have previously been drained and subsequently restored, but the success of these efforts is poorly known and restoration may be impeded by the presence of fish.
2. We assessed the effects of fathead minnows and drainage by studying 20 semipermanent, prairie wetlands in Minnesota from 1996 to 1999. We used a 2 × 2 factorial design to examine the effects of presence and absence of minnows and drainage history (restored/never drained) on the abundance of aquatic invertebrates and amphibians, as well as on the concentrations of chlorophyll a , total phosphorus, total nitrogen and turbidity in the water column.
3. Results showed that fathead minnows are an important determinant of many biotic and abiotic characteristics of wetlands in the eastern PPR. Wetlands with fathead minnows had fewer aquatic insects, large- and small-bodied cladocerans, calanoid copepods, ostracods and larval tiger salamanders, as well as a higher abundance of corixids and greater turbidity and chlorophyll a . A higher concentration of phosphorus in restored basins was the only consistent effect of past management.
4. Fathead minnows usually dominate fish communities in eastern PPR wetlands where fish are present, and can have several strong ecosystem effects. While abiotic variables are important determinants of ecosystem structure in prairie wetlands, they can be strongly influenced by biotic factors.  相似文献   

17.
    
Understanding the formation of feeding links provides insights into processes underlying food webs. Generally, predators feed on prey within a certain body-size range, but a systematic quantification of such feeding niches is lacking. We developed a size-constrained feeding-niche (SCFN) model and parameterized it with information on both realized and non-realized feeding links in 72 aquatic and 65 terrestrial food webs. Our analyses revealed profound differences in feeding niches between aquatic and terrestrial predators and variation along a temperature gradient. Specifically, the predator–prey body-size ratio and the range in prey sizes increase with the size of aquatic predators, whereas they are nearly constant across gradients in terrestrial predator size. Overall, our SCFN model well reproduces the feeding relationships and predation architecture across 137 natural food webs (including 3878 species and 136,839 realized links). Our results illuminate the organisation of natural food webs and enables novel trait-based and environment-explicit modelling approaches.  相似文献   

18.
  • 1 This paper summarises the most important contributions on trophic relationships of lotic meiofauna. In contrast to marine research, the few quantitative studies of the freshwater meiobenthos have shown that these invertebrates not only take up particulate/fine organic matter, but also dissolved organic substances attached to organic particles. In lotic ecosystems, further estimates of grazing rate and bacterial/algal ingestion rate are needed, particularly in situ measurements.
  • 2 The effects of macroinvertebrate predators upon meiofauna are still under debate. Depending on the type of experiments (laboratory vs. field) it seems that macrofauna may or may not affect meiofauna. Field samples and analyses of gut contents of larval tanypod chironomids have shown that the impact upon meiofauna was low and larvae were nonselective predators. Predation amounted to 2.2% of the combined prey density and prey consumption averaged 1.3 individuals per predator individual per year.
  • 3 Adding taxonomic resolution by including the meiofaunal component within lotic food webs distinctly increases the number of total species and, as a consequence, changes food web statistics. Webs that included meiofauna revealed that these metazoans contributed substantially to the percentage of intermediate species (species with predators and prey). The resolution of dietary analyses of major consumers of macro‐ and meiobenthos showed that many stream invertebrates feed on meiofauna.
  相似文献   

19.
1.  Stable carbon and nitrogen isotope and fish stomach content analyses were used to investigate food webs in five relatively undisturbed lakes on the Boreal Plain of Canada. Stable isotope analysis was also used to determine the importance of external and internal carbon sources.
2.  Overlap in the carbon and nitrogen signatures of primary producers made it difficult to determine unambiguously the feeding habits of many invertebrates. However, isotope analysis suggested that external carbon inputs were detectable in the aquatic food chains of the one lake with a short water residence time («1 year). In the other four lakes, with water residence times ≥1 year, autochthonous carbon was the only detectable carbon source in the food webs.
3.  Food webs in these lakes spanned a range of four to five trophic levels. Both invertebrates and fish appeared to eat a variety of food, often feeding at more than one trophic level.
4.  With the exception of one lake (SPH20), top predators in these lakes, northern pike ( Esox lucius ) and fathead minnows ( Pimephales promelas ), occupied similar trophic positions despite large differences in body size and trophic morphology. In SPH20, where there were two additional fish species, pike occupied a higher trophic position. However, all the top predators in each lake appeared to be omnivores and generalists.
5.  The prevalence of omnivory and the apparent generalist feeding habits of fish in these lakes suggest that organisms are flexible in their feeding habits and that these food webs will be resilient to disturbance.  相似文献   

20.
Serological methods utilizing taxon-specific antibodies were used to identify trophic connections in a salt marsh of South Carolina (U. S. A.). The incorporation of meiofauna within the benthic invertebrate food web was detected with these methods when microscopial examinations of predator stomachs revealed nothing but amorphous material and detritus. Measurements of soluble prey proteins in both predator guts and surficial sediments provided data to quantify the trophic connections. Difficulties with data interpretation limit the utility of serological methods for quantifying predation in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号