首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Habitat selection has been quantified for age‐0 and adult pallid sturgeon Scaphirhynchus albus Bull. Illinois State Lab. Nat. Hist., 7, 1905, 37, but little is known regarding habitat use of the juvenile fish. The objective of this study was to quantify habitat use and selection of juvenile pallid sturgeon in the Missouri River, Nebraska, USA. Thirty‐seven age‐4 pallid sturgeon with transmitters were released in July of 2014, plus an additional 21 in September, with habitat monitored using biotelemetry. Age‐1 and age‐4 hatchery reared pallid sturgeon were found to avoid areas associated with the outside bend and thalweg habitats that were characterized by rapid water velocity (>1 ms?1), which accounted for 50% of the area in the channelized Missouri River. Age‐1 pallid sturgeon selected an off‐channel habitat and inside bend habitat while age‐4 pallid sturgeon selected an off‐channel and inside bend channel border habitat. Juvenile pallid sturgeon in unaltered rivers have been shown to associate with island tips and sand bars, habitat that is largely absent in the channelized Missouri River. This study indicates that juvenile pallid sturgeon in the Missouri River, Nebraska are selecting habitats with shallow water and slow water velocity, similar to those associated with island tips and sand bars in unaltered reaches.  相似文献   

2.
Pallid sturgeon Scaphirhynchus albus relative condition has been observed to be declining along the Nebraska reach (rkm 1212.6–801.3) of the Missouri River over the past several years; therefore, pallid sturgeon capture data was synthesized from the entire Missouri and Middle Mississippi rivers to document and compare how pallid sturgeon condition varies spatially and temporally throughout much of their current range. The study area was subdivided into four river reaches based on a priori statistical differences for pallid sturgeon catches from 2003 to 2015. Pallid sturgeon in the Middle Mississippi River (Alton Dam [rkm 321.9]) to the confluence of the Ohio River (rkm 0.0) were in the best condition while pallid sturgeon in the Middle Missouri River (Fort Randall Dam [rkm 1416.2]) to the Grand River confluence (rkm 402.3) were in the poorest condition. Furthermore, pallid sturgeon condition in the Upper Missouri River (Fort Peck Dam [rkm 2850.9] to the headwaters of Lake Sakakawea [rkm 2523.5] and lower Yellowstone River) and the Lower Missouri River (Grand River confluence to the Mississippi River confluence [rkm 0.0]) were significantly less than in the Middle Mississippi River but significantly higher than the Middle Missouri River. Temporally, pallid sturgeon condition was highly variable. Relative condition in the Middle Mississippi River was consistently above average (Kn = 1.1). Comparatively, Kn throughout the Missouri River rarely exceeded “normal” (Kn = 1.0), with Kn in the middle and lower reaches of the Missouri River having declined to the lowest observed. As pallid sturgeon recovery efforts continue, understanding the range‐wide differences and effects on condition could be critical, as poor condition may cause maturation delays, reproductive senescence or even mortality, which affects the likelihood of natural reproduction and recruitment.  相似文献   

3.
Fragmentation of the Yellowstone River is hypothesized to preclude recruitment of endangered Scaphirhynchus albus (pallid sturgeon) by impeding upstream spawning migrations and access to upstream spawning areas, thereby limiting the length of free‐flowing river required for survival of early life stages. Building on this hypothesis, the reach of the Yellowstone River affected by Intake Diversion Dam (IDD) is targeted for modification. Structures including a rock ramp and by‐pass channel have been proposed as restoration alternatives to facilitate passage. Limited information on migrations and swimming capabilities of pallid sturgeon is available to guide engineering design specifications for the proposed structures. Migration behavior, pathways (channel routes used during migrations), and swimming capabilities of free‐ranging wild adult pallid sturgeon were examined using radiotelemetry, and complemented with hydraulic data obtained along the migration pathways. Migrations of 12–26% of the telemetered pallid sturgeon population persisted to IDD, but upstream passage over the dam was not detected. Observed migration pathways occurred primarily through main channel habitats; however, migrations through side channels up to 3.9 km in length were documented. The majority of pallid sturgeon used depths of 2.2–3.4 m and mean water velocities of 0.89–1.83 m/s while migrating. Results provide inferences on depths, velocities, and habitat heterogeneity of reaches successfully negotiated by pallid sturgeon that may be used to guide designs for structures facilitating passage at IDD. Passage will provide connectivity to potential upstream spawning areas on the Yellowstone River, thereby increasing the likelihood of recruitment for this endangered species.  相似文献   

4.
Long‐term population trends of pallid sturgeon Scaphirhynchus albus in the lower Missouri River were evaluated via a discrete and stochastic age‐structure population viability model. The intent of this model was to (i) estimate the local pallid sturgeon population size, (ii) quantify the contribution of hatchery‐reared fish to the overall population, (iii) predict the level of natural production needed to create a self‐sustaining population, and (iv) determine the parameters that produce the largest model sensitivity. The model estimated that the wild, adult population size was approximately 6000 fish that remained in the lower Missouri River in 2012 compared to approximately 42 000 hatchery‐reared pallid sturgeon. Under the assumption of no natural recruitment, the population size will continue to decline at approximately 8% annually, with an annual egg to age‐1 survival rate of 0.00011 predicted to maintain a stable population. The model was most sensitive to survival rates of fish ≥ age‐1 and less sensitive to age‐0 survival rates and fecundity. Decreasing or increasing the female spawning interval by 1 year had minimal effect on the overall population trajectory. Recovery management planning for a species such as pallid sturgeon, which is slow‐growing, late‐maturing, and has intermittent spawning would require several years to access recovery potential and management decisions. Barring any unforeseen natural catastrophe, the pallid sturgeon population in the lower Missouri River is not in immediate danger of local extirpation; however, the population appears to be far from viable and self‐sustaining.  相似文献   

5.
The recovery criterion for pallid sturgeon Scaphirhynchus albus consists of attaining a self‐sustaining genetically diverse population for two generations. The suppressed pallid sturgeon population is theorized as a potential factor limiting recovery; therefore, the Pallid Sturgeon Conservation and Augmentation Program (PSCAP) was implemented to proliferate the overall population. The pallid sturgeon population has been quantified in the lower basin of the Missouri River (Gavins Point Dam [rkm 1,305.2] to the confluence of the Missouri and Mississippi rivers [rkm 0.0]), but previous population estimates have only covered less than ten percent of the lower basin. Therefore, the objectives of this study were to quantify the annual pallid sturgeon population (2015–2017) in a novel, unquantified 30.1 rkm reach of the lower Missouri River basin and compare these results to previously published population estimates in the lower Missouri River basin. The study area included a six‐bend reach in the upper channelized Missouri River, approximately 226.3 rkm below the last main‐stem dam. Population estimates (Nsp) for the “super‐population” of pallid sturgeon within the 30.1 rkm study area varied from 593 (95% CI 471–716) in 2015 to 471 (373–569) in 2016 and 608 (482–734) in 2017. The population estimates (fish/rkm ± SE) ranged from 15.6 ± 1.0 to 20.2 ± 1.3 fish/rkm. This study aligned with a previously published estimate in the same proximal reach but was two or three times higher compared to an estimate reported from approximately 500 rkm downstream. Understanding the temporal and spatial variations of the pallid sturgeon population is critical as recovery efforts continue, especially to seed input parameters into population prediction models that provide management guidance.  相似文献   

6.
Pallid sturgeon Scaphirhynchus albus (Forbes & Richardson, 1905, Bulletin of the Illinois State Laboratory of Natural History, 1905, 7, 37) are an endangered riverine sturgeon native to the Mississippi and Missouri rivers, and declining numbers have been attributed to multiple stressors, including habitat loss and alteration. The lower Mississippi River provides a useful context to assess pallid sturgeon habitat selection because, although altered for flood control and navigation, it provides a free-flowing system with a diversity of habitats and a minimally altered hydrograph. A discrete choice model of data collected year-round from two reaches for 3–5 years revealed changes in habitat selection across water temperatures and river stages representative of seasonal variation in habitat for 116 telemetry-tagged pallid sturgeon. Natural bank, island tip, and secondary channel were positively selected and main channel, although frequently used, was avoided. The degree of selection varied among river stages, water temperatures, and reaches. Habitat selection appears to be strongly influenced by preference for locations with moderate depth (median 11.7 m; lower and upper quartiles 8.1 m and 16.3 m) and moderate current velocity (median 0.9 m/s; lower and upper quartiles 0.7 m/s and 1.2 m/s).  相似文献   

7.
The pallid sturgeon Scaphirhynchus albus conservation propagation program has augmented declining wild populations since the 1990s and the older age classes of hatchery‐origin fish are beginning to reach sexual maturity in the wild. Currently, the majority of the information available on the age and size at first maturity and spawning periodicity for pallid sturgeon in the upper basin is from captive hatchery‐origin pallid sturgeon (i.e. age and size at first maturity and spawning periodicity) or from wild pallid sturgeon artificially spawned in the propagation program (i.e. spawning periodicity). The purpose of this study was to document age and size at first maturity and spawning periodicity of known age hatchery‐origin pallid sturgeon that have reached maturity in the wild. Radio‐tagged pallid sturgeon in the upper Missouri River upstream of Fort Peck Reservoir were serially sampled in the early‐spring over multiple years and assigned to reproductive classifications each year based on sex‐steroid concentrations. The youngest reproductively‐active male hatchery‐origin pallid sturgeon sampled was 14.5 years old and the youngest female was 18. Hatchery‐origin males were observed having annual (N = 3) and biennial (N = 2) reproductive cycles. The observed spawning periodicity was similar to what has been reported elsewhere for the species. The youngest mature fish in this study are older and larger than what has been reported for those retained in captivity, indicating that body size alone is not a reliable predictor of maturity for pallid sturgeon.  相似文献   

8.
Successful recruitment of endangered pallid sturgeon has not been documented in the upper Missouri River basin for decades, and research on the reproductive ecology of pallid sturgeon has been hindered by low sample size. A conservation propagation program was initiated in the 1990s, and the oldest age class of hatchery‐origin pallid sturgeon are becoming sexually mature increasing the number of reproductively‐active fish in the system. However, it is currently unknown how the reproductive ecology of hatchery‐origin pallid sturgeon relates to the few remaining wild fish. Following spring reproductive assessments, weekly relocations were recorded for each individual from late‐May to mid‐July to facilitate comparisons of spawning season movements among reproductive classifications and between spring hydrographs (2015 and 2016) for male pallid sturgeon. Mean total movement distances (±SE) were 104.5 km (18.9) for reproductively‐active wild males, 116.0 km (18.1) for reproductively‐active 1997‐year class males, and 20.6 km (3.0) for non‐reproductively‐active fish of unconfirmed sex. Movement characteristics of reproductively‐active males did not differ between 2015 and 2016 despite a difference of eight days in the timing of peak discharge and a difference of 79 m3/s (16.7%) in magnitude. Male aggregations were observed on the descending limb of the hydrograph in 2016 during temperatures suitable for spawning, but female pallid sturgeon underwent follicular atresia, similar to the other years of the study. Hatchery‐origin pallid sturgeon from the conservation propagation program appear to have retained reproductive characteristics from the wild broodstock, a key finding for a population where local extirpation of the wild stock is imminent.  相似文献   

9.
Hatchery augmentation has been used to mitigate declines in fish populations worldwide, especially for sturgeon species. Information regarding stocking success including survival, dispersal, and growth of sturgeon post‐stocking may refine sturgeon augmentation programs and facilitate recovery. Pallid sturgeon Scaphirhynchus albus populations have been supplemented by hatchery‐reared stocks for 25 years in the Missouri River, USA. We assessed survival, dispersal patterns, and growth characteristics of post‐stocked pallid sturgeon in the lower Missouri River. Hatchery‐reared pallid sturgeon stocked at age‐1 (4.1%) and > age‐1 (2.9%) were recaptured at a higher frequency than fish stocked at age‐0 (0.3%). Post‐stocking dispersal patterns suggested dispersal range increase as age increased, but individuals tended to remain in the same river segment as their stocking location. Growth rates varied by year class with younger year classes having truncated growth trajectories compared to older year classes. Post‐stock survival of pallid sturgeon varied by age‐at‐stocking and suggest age‐1 survival has declined through time. Augmentation of pallid sturgeon may benefit from considering dispersal from stocking location and by stocking older individuals which appear to have increased survival post‐stocking. A better understanding regarding environmental drivers of growth and specific habitat features used is needed to better predict optimal timing and location of future stockings.  相似文献   

10.
As pallid sturgeon, Scaphirhynchus albus (Forbes & Richardson, 1905), natural reproduction and recruitment remains very minimal in the lower Missouri River from Gavins Point Dam (river kilometer [rkm] 1305.2) to the confluence with the Mississippi River (rkm 0.0), hatchery supplementation and river‐wide monitoring efforts have continued. Annual survival estimates of hatchery‐reared pallid sturgeon stocked in the lower Missouri River were previously estimated during 1994–2008. Low recapture rates prior to 2006 limited the data available to estimate survival, which resulted in considerable uncertainty for the estimate of annual survival of age‐1 fish. Therefore, the objective was to provide more precise estimates of annual survival of pallid sturgeon using five additional years of stocking and sampling. The Cormack‐Jolly‐Seber model structure provided in program MARK was used to estimate the age‐specific survival estimates. Over 135 000 hatchery‐reared pallid sturgeon were released during 1994–2011 and recaptured at a rate of 1.9%, whereby estimates for the annual survival of age‐0 (Ø = 0.048) and >age‐1 (Ø = 0.931) were similar to those previously reported, but the age‐1 (Ø = 0.403) survival estimate was 52% lower. Post hoc analysis using time‐specific survival estimates indicated lower survival for age‐1 fish post‐2003 year classes, relative to the pre‐2002 year classes. An analysis confirms that hatchery‐reared pallid sturgeon continue to survive in the wild. However, low survival during the first 2 years of life is a management concern as efforts are aimed at maximizing genetic diversity and population growth. A follow‐up analysis also demonstrated the variability of capture rates and survival over time, which reinforces the need to continue to monitor and evaluate mark‐recapture data. The mark‐recapture efforts have provided demographic parameter estimates that remain a critical component for species recovery as these data are incorporated into population models.  相似文献   

11.
Continued study of the relationship between lake sturgeon (Acipenser fulvescens) recruitment and hydroelectric dams and operations, in a variety of river systems and habitat types is needed to improve the ability to predict and monitor impacts of the hydroelectric industry on this species. Herein, we present results of a juvenile lake sturgeon study aimed at addressing concerns over an inferred lack of recruitment resulting from spawning downstream of a hydroelectric generating station (HGS). Two years of sampling (2015 and 2016) were conducted in five sections of a 41 km long reach of the Seine River, Ontario, a lake sturgeon spawning tributary of Rainy Lake. Using an established gillnetting method, deepwater habitat was targeted to capture juvenile lake sturgeon to assess relative abundance, recruitment (cohort strength), and growth. Deepwater habitat, defined as water depths >6 m in this system, comprised only 2.1% of the wetted area in this study area. Within these habitats, a total of 331 lake sturgeon capture events were observed over the 2-years study period. The majority of the lake sturgeon catch (85%) was comprised of age-0 to age-5 individuals (both sampling years combined). Although inter-annual variation in cohort strength was apparent, each cohort between 2006 and 2016 was represented. The spatial distribution of cohorts varied among river reaches with younger individuals (age-0 and age-1) occupying reaches proximal to the Sturgeon Falls HGS, and larger, older individuals (age-2 to age-5) occupying reaches further downstream. The rarity of age-6+ individuals can likely be explained by ongoing downstream redistribution of juveniles over time, out of the Seine River and into Rainy Lake. Growth of juvenile lake sturgeon captured in the Seine River was above average relative to conspecifics from other rivers in the Hudson Bay drainage. Unfortunately, baseline data sets required to facilitate comparisons of contemporary (post-construction Sturgeon Falls HGS) versus historical (i.e. pre- Sturgeon Falls HGS) lake sturgeon recruitment, or to evaluate the influence of the Seine River Water Management Plan (2004) on lake sturgeon recruitment, are lacking. However, juvenile Lake Sturgeon are more abundant in this system than what had been surmised based on recent studies which implemented random sampling. Results indicate that juvenile lake sturgeon may reside in spawning tributaries for several years (age-0 to age-5) prior to seeking alternate habitats and highlights the value of targeted sampling (i.e. by depth) along the flow axis of rivers downstream of spawning areas when assessing lake sturgeon recruitment patterns.  相似文献   

12.
Pallid sturgeon (Scaphirhynchus albus) captured in the Middle and Lower Mississippi River (i.e. below St. Louis, MO, USA) are morphologically very similar to shovelnose sturgeon (Scaphirhynchus platorynchus). Available empirical data are limited to a few studies based on low sample sizes from disjointed populations. Geneticists are currently searching for markers that will differentiate the two species, but the need for unequivocal species‐specific field characters remains. Continuation of commercial fishing for shovelnose sturgeon in some states necessitates an immediate means for accurate field identifications. Previous studies of lower basin river sturgeon classified individuals with simple morphometric character indices and interpreted intermediacy as interspecific hybridization. In this study, morphometric variation among Scaphirhynchus specimens from the Middle and Lower Mississippi River is examined for evidence of hybridization. Data are compared for large (>250‐mm standard length) hatchery‐reared and wild pallid specimens and wild shovelnose specimens. Specimens are compared using two morphometric character indices, two morphometric/meristic character indices and principal components analysis. Results indicate substantial morphological variation among pallid sturgeon below the mouth of the Missouri River. The amount of variation appears to decrease downstream in the Mississippi River. Sheared principal components analysis of morphometric data shows complete separation of shovelnose and pallid sturgeon specimens, whereas character indices indicate overlap. Both character indices and sheared principal components analysis demonstrate that pallid sturgeon in the Lower Mississippi River are morphologically more similar to shovelnose sturgeon than are pallids from the Upper Missouri River. This similarity, explained in previous studies as hybridization, may be the result of latitudinal morphometric variation and length‐at‐age differences between populations of the upper and lower extremes of the range.  相似文献   

13.
Prior to anthropogenic modifications, the historic Missouri River provided ecological conditions suitable for reproduction, growth, and survival of pallid sturgeon Scaphirhynchus albus. However, little information is available to discern whether altered conditions in the contemporary Missouri River are suitable for feeding, growth and survival of endangered pallid sturgeon during the early life stages. In 2004 and 2007, nearly 600 000 pallid sturgeon free embryos and larvae were released in the upper Missouri River and survivors from these releases were collected during 2004–2010 to quantify natural growth rates and diet composition. Based on genetic analysis and known‐age at release (1–17 days post‐hatch, dph), age at capture (dph, years) could be determined for each survivor. Totals of 23 and 28 survivors from the 2004 and 2007 releases, respectively, were sampled. Growth of pallid sturgeon was rapid (1.91 mm day?1) during the initial 13–48 dph, then slowed as fish approached maximum length (120–140 mm) towards the end of the first growing season. The diet of young‐of‐year pallid sturgeon was comprised of Diptera larvae, Diptera pupae, and Ephemeroptera nymphs. Growth of pallid sturgeon from ages 1–6 years was about 48.0 mm year?1. This study provides the first assessment of natural growth and diet of young pallid sturgeon in the wild. Results depict pallid sturgeon growth trajectories that may be expected for naturally produced wild stocks under contemporary habitat conditions in the Missouri River and Yellowstone River.  相似文献   

14.
Lake sturgeon Acipenser fulvescens are considered rare and were nearly extirpated in the Mississippi River in Missouri by 1931 as a result of overfishing and habitat fragmentation. Propagation efforts have been implemented by the Missouri Department of Conservation since 1984 as means to restore the lake sturgeon population. Although recent population increases have been observed, a formalized evaluation to determine if lake sturgeon are self‐sustaining in the Missouri portion of the Mississippi River has not been completed. Therefore, the objectives of this study were to: (i) determine the proportion of reproductive individuals, (ii) evaluate seasonal movement patterns of adults, and (iii) validate purported spawning locations within the Mississippi River in Missouri. Lake sturgeon catch data indicated that approximately 11 percent of the population are reproductively mature. Additionally, telemetry data confirms that the greatest movement by adult lake sturgeon occurs during spring, which suggests spawning behavior. Finally, it was possible to document lake sturgeon embryos and emergent fry larvae below Melvin Price Locks and Dam 26 in the Upper Mississippi River near St. Louis, Missouri. Water velocity, depth, and substrate size were measured at this location and embryos were collected and hatched in the laboratory. River gage data suggest that spawning behavior may have been elicited by a large influx of water during a drawdown period of water above the dam. This study represents the first documented spawning of A. fulvescens in the Mississippi River and highlights the success of recovery efforts in Missouri.  相似文献   

15.
Free embryos of wild pallid sturgeon Scaphirhynchus albus were released in the Missouri River and captured at downstream sites through a 180-km reach of the river to examine ontogenetic drift and dispersal processes. Free embryos drifted primarily in the fastest portion of the river channel, and initial drift velocities for all age groups (mean = 0.66–0.70 m s−1) were only slightly slower than mean water column velocity (0.72 m s−1). During the multi-day long-distance drift period, drift velocities of all age groups declined an average of 9.7% day−1. Younger free embryos remained in the drift upon termination of the study; whereas, older age groups transitioned from drifting to settling during the study. Models based on growth of free embryos, drift behavior, size-related variations in drift rates, and channel hydraulic characteristics were developed to estimate cumulative distance drifted during ontogenetic development through a range of simulated water temperatures and velocity conditions. Those models indicated that the average free embryo would be expected to drift several hundred km during ontogenetic development. Empirical data and model results highlight the long-duration, long-distance drift and dispersal processes for pallid sturgeon early life stages. In addition, results provide a likely mechanism for lack of pallid sturgeon recruitment in fragmented river reaches where dams and reservoirs reduce the length of free-flowing river available for pallid sturgeon free embryos during ontogenetic development.  相似文献   

16.
Recent advancements in telemetry have allowed managers and researchers to conduct comprehensive studies on the movement ecology of lake sturgeon (Acipenser fulvescens), a species of conservation concern in most of the Laurentian Great Lakes basin. In Michigan waters of Lake Michigan, drowned river mouth systems (a protected lake-like habitat that connects a river to lake) support 4 of 11 remaining lake sturgeon populations. One of those remnant populations is supported by the Muskegon River, a drowned river mouth system consisting of both Muskegon Lake and the Muskegon River. The objectives of this 6-year telemetry study were to determine whether adult lake sturgeon occupied the Muskegon River system outside of the spawning season (defined as March to July), to quantify their use of the system annually, and to identify and characterize patterns in occurrence. A total of 21 adult lake sturgeon implanted with acoustic transmitters were passively monitored throughout the year during 2012–2017. Eighty-two percent of tagged fish at large were detected ≥1 day in the Muskegon River system annually, and tagged lake sturgeon were frequently detected during both spawning and non-spawning time periods. Residency index (i.e., no. detection days/365 days) values indicated that adult lake sturgeon were not only detected throughout the year but that they occupied the Muskegon River system for an average of 130 days each year (residency index = 0.36 ± 0.05 SE) during our most spatially intensive acoustic monitoring in 2016–2017. Additionally, 24% of tagged lake sturgeon were primary residents (i.e., residency index >0.5) of the Muskegon River system in both years. Adult lake sturgeon followed 1 of 3 patterns of occurrence based on individual detection histories, and those patterns varied temporally and by the relative amount of use (i.e., high, medium, and low). Our findings build on previous research that found drowned river mouth systems in Lake Michigan can be important nursery habitats for juvenile lake sturgeon by showing that these habitats also can be used extensively by adult lake sturgeon throughout the year.  相似文献   

17.
Lake sturgeon (Acipenser fulvescens) are of conservation concern throughout their range. Many populations are dependent on fluvial habitats which have been increasingly impacted and fragmented by dams and human development. Although lake sturgeon were once abundant in the Ottawa River and its tributaries, historical commercial harvests and other anthropogenic factors caused severe declines and low contemporary numbers in lake sturgeon populations. Contemporary habitat fragmentation by dams may be increasing isolation among habitat patches and local rates of decline, raising concerns for persistence of local populations. We used microsatellite DNA markers to assess population structure and diversity of lake sturgeon in the Ottawa River, and analyzed samples from 10 sites that represent more than 500 km of riverine habitat. To test for evidence of anthropogenic fragmentation, patterns of genetic diversity and connectivity within and among river segments were tested for concordance with geographic location, separation by distance and obstacles to migration, considering both natural and artificial barriers as well as barrier age. Despite extensive habitat fragmentation throughout the Ottawa River, statistical analyses failed to refute panmixia of lake sturgeon in this system. Although the long generation time of lake sturgeon appears to have effectively guarded against the negative genetic impacts of habitat fragmentation and loss so far, evidence from demographic studies indicates that restoring connectivity among habitats is needed for the long-term conservation and management of this species throughout this river system.  相似文献   

18.
We compared the effectiveness of passive gill nets, hoop nets, set lines, and drifted trammel nets, towed beam trawls and otter trawls to develop criteria to best determine the mean catch per unit effort (CPUE) for juvenile pallid sturgeon (Scaphirhynchus albus) based on selectivity and seasonal efficiency in various habitats of the Missouri River downstream of Fort Randall Dam, South Dakota. Sampling occurred from April to November in 2003 and 2004 and from March to November in 2005. We captured 29 juvenile pallid sturgeon in a total of 498 overnight gill net sets, 55 in 870 drifted trammel nets, 19 on 1683 set lines, and six in 166 otter trawl tows. No pallid sturgeon were captured in 515 beam trawl tows or 520 overnight hoop net sets. Seasonal trends in mean CPUE were found and the relative precision was the greatest in October and November for gill nets, in August for trammel nets, in April for set lines, and in October for otter trawls. A higher proportion of pallid sturgeon captures for gill nets were in the inside bend macrohabitat generally associated with lower water velocities, trammel nets over sand substrate and in the outside bend macrohabitat typically associated with higher water velocities and greater depths, set lines in lower water velocities, and otter trawls in depths >2.5 m and over sand substrate. Although we found trends among seasons and habitats for gill nets, trammel nets, set lines, and otter trawls, the catch rates were low and annual point estimates of relative abundance are not adequate to detect changes in relative abundance of juvenile pallid sturgeon in this reach of the Missouri River. Independently, gill nets, trammel nets, and otter trawls likely captured the size structure of the population of pallid sturgeon in the Missouri River downstream of Fort Randall Dam. Based on our results, a standardized protocol can now be established to systematically monitor juvenile pallid sturgeon, an essential element for determining responses to recovery efforts in the Missouri River.  相似文献   

19.
A multiyear study of pallid sturgeon distribution and relative abundance was conducted in the lower and middle Mississippi river (LMR and MMR, respectively). The LMR and MMR comprise the free‐flowing Mississippi River extending 1857 river kilometers (rkm) from its mouth at the Gulf of Mexico upstream to the mouth of the Missouri River. A total of 219 pallid sturgeon and 6018 shovelnose sturgeon was collected during the periods 1996–1997 and 2000–2006. Trotlines baited with worms were the primary collecting gear. The smallest pallid sturgeon captured on trotlines was 405 mm FL and the largest was 995 mm FL. Mean size of pallid sturgeon was statistically smaller in the Mississippi River below the Atchafalaya River near Baton Rouge, LA (621 mm FL). Mean abundance (catch per trotline night) of pallid sturgeon was highest at water temperatures around 10°C. There was a latitudinal trend in mean abundance of pallid and shovelnose sturgeon, but the pattern differed between species. Pallid sturgeon abundance was statistically (P < 0.05) higher (0.3 fish per trotline night) in the lower reach between the Atchafalaya River and New Orleans (rkm 154–507), and at the Chain of Rocks (COR), a low water dam near the mouth of the Missouri River. Pallid sturgeon abundance between these two locations was statistically the same (0.12–0.23). Shovelnose sturgeon abundance increased going upstream, but was disproportionally higher at the COR (22 fish per line compared with <6 fish per line in other reaches). Overall, the ratio between pallid and shovelnose sturgeon varied from a high of 1 : 6 at the lower reach, and gradually decreased upstream to a low of 1 : 77 at the COR. Based on differences in sturgeon abundance, size and habitat characteristics, the free‐flowing Mississippi River can be divided into two reaches in the MMR (i.e. COR is a separate location), and four reaches (i.e., including the Atchafalaya River) in the LMR where management goals may differ.  相似文献   

20.
The availability of lotic spawning, staging, and nursery habitats is considered a major factor limiting the recovery of Lake sturgeon ( Acipenser fulvescens ) in Lake Michigan. Despite efforts to better understand the population biology and habitat use of remnant Lake sturgeon stocks, little information exists on the quantity, quality, and spatial distribution of habitats for riverine life stages. We applied georeferenced habitat information on substrate, water depth, and stream gradient to a Lake sturgeon habitat suitability index in a geographic information system to produce spatially explicit models of life stage–specific habitat characteristics in the Menominee River, Michigan–Wisconsin; the Peshtigo, Oconto, and lower Fox rivers, Wisconsin; and the Manistique River, Michigan. High-quality Lake sturgeon spawning habitat associated with coarse substrates (≥2.1 mm) and moderate- to high-stream gradients (≥0.6 m/km) comprised 1–6% of the available habitat in each system. Staging habitat characterized by water depths greater that 2 m located near potential spawning habitat comprised an additional 17–41%. However, access to a majority of these habitat types (range 30–100%) by Lake sturgeon from Lake Michigan is currently impeded by dams. High-quality juvenile Lake sturgeon habitat associated with finer substrates, lower stream gradients, and a broad range of water depths (i.e., 0.5–8 m) was relatively ubiquitous throughout each system and comprised 69–100% of the available habitat. Our study suggests that efforts to rehabilitate Lake sturgeon populations should consider providing fish passage and creating supplemental spawning habitat to increase reproductive and recruitment potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号