首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 751 毫秒
1.
Fifteen Brassica species and subspecies, as well as accessions of Arabidopsis thaliana and Eruca sativa, were evaluated for their resistance to the cabbage aphid, Brevicoryne brassicae, in the field and laboratory at Horticulture Research International (HRI) Wellesbourne in 1992. In the laboratory, aphid performance was measured in terms of pre-reproductive period, reproductive period, population increase and insect survival. Using these parameters it was possible to identify brassicas possessing antibiosis resistance. In the field B. brassicae attack was assessed in terms of numbers of insects and it was possible to determine aphid preferences for alighting on different species. High levels of antixenosis and antibiosis resistance were discovered in accessions of Brassica fruticulosa and B. spinescens, in a Brassica juncea breeding line and in Eruca sativa. Partial resistance was found in several other Brassica species. The potential of these various sources as donors of resistance genes to be bred into cultivated brassicas is discussed.  相似文献   

2.
Bemisia tabaci (Genn.) biotype B (Hemiptera: Aleyrodidae) is an important pest of vegetable crops, including collard greens Brassica oleracea var. acephala (Brassicaceae). The use of resistant genotypes is an interesting option to reduce insect populations and can be used as an important tool for integrated pest management (IPM). This study evaluated 32 genotypes of collard greens against the attack of silver leaf whitefly, with the aim to characterize antixenosis. Initially, a multiple-choice trial was conducted using all genotypes, in which the adult attractiveness was assessed on two leaves per genotype at 24 and 48 h after infestation. After 48 h, one leaf of each genotype was randomly selected for the determination of the number of eggs per square centimeter. From the results of the multiple-choice trial, 13 genotypes were selected for a no-choice oviposition test, following the same method of the previous test. Colorimetric analyses were also performed to establish possible correlations between leaf color and insect colonization. Genotypes HS-20, OE, and VA were less attractive, demonstrating antixenosis. Genotypes LG, VE, J, MG, MOP, HS-20, VA, and MT had less oviposition in the multiple-choice test, which indicated expression of antixenosis. In the no-choice test, genotypes VE, P1C, CCB, RI-919, H, and J had less oviposition, which also characterized antixenosis. Therefore, genotypes VE and J showed the highest resistance stability because both had less oviposition in both test modalities. Thus, the resistance to B. tabaci biotype B indicates the genotypes HS-20, OE, VA, VE, and J are promising for use in breeding programs to develop resistance to whitefly.  相似文献   

3.
Six cabbage (Brassica oleracea var. capitata) varieties with different levels of resistance to Mamestra brassicae (Lepidoptera: Noctuidae) were investigated in order to assess whether antibiosis and antixenosis mechanisms are involved in the resistance to this pest or not. Four experiments were conducted to determine the effect of variety and plant ontogeny on larval behaviour, adult oviposition and leaf damages in non‐choice and choice tests. Larval survival, time to development and larval weights differed depending on the varieties and plant stages that we tested. At the pre‐head stage, larval mortality was higher, larvae died faster, time to pupation was shorter, pupae were lighter and the percentage of viable pupae and growth index (GI) values were lower than larvae reared from plants at the head stage. The commercial hybrid ‘Corazón de buey’ and the local variety named ‘BRS0535’ exhibited antibiosis to M. brassicae as they reduced its survival and growth and delayed its development time. In addition, these varieties were the most resistant after artificial infestation in terms of head foliage consumption and number of larvae per plant. Oviposition tests demonstrated that resistance found in ‘Corazón de buey’ and BRS0535 could be also based on antixenosis mechanisms as they resulted in fewer egg batches on plants, whereas BRS0402 could be classified as resistant because M. brassicae larvae showed less preference for it. Thus, resistance to M. brassicae found in cabbage crops may be due to the joint action of several factors involving antibiosis and antixenosis. We found significant differences in the resistance of BRS0535 depending on the plant ontogeny as it loses its resistance while developing. Further studies are required to identify the mechanism of antibiotic resistance which is present in this variety at the pre‐head stage and the changes that occur in plant defence as it grows.  相似文献   

4.
Aphids are the most important vectors of viruses infecting potato (Solanum tuberosum). We focused on the response of the aphid vector Myzus persicae (Sulzer) to five commercial potatocultivars: ágata, Jaette Bintje, Mondial, Monalisa and Santè, by traditional antibiosis and antixenosis tests and by the EPG (Electrical Penetration Graph) technique, as a step forward to the design of effective management practices. Our aim was to identify plant factors involved in resistance of these cultivars against M. persicae, both at the surface and in deeper plant tissues. Results from the antixenosis test confirmed a strong preference of M. persicae for the Mondial cultivar. The antibiosis study indicated a lower population development of the aphid in 'Monalisa' when compared to 'ágata' and 'Jaette Bintje'. EPG assays indicated that 'Santè' inhibited the initial feeding process of M. persicae, whereas 'Monalisa' showed a physical-type of resistance as demonstrated by a very high number of short probes. The cultivar Mondial showed average values for all EPG variables analyzed. The behavior in 'Jaette Bintje' indicated this cultivar was an ideal host for aphid feeding and reproduction. Together, the EPG data revealed the existence of pre and post-phloematics factors in the cultivars under study, which have important implications on the efficiency of transmission and spread of virus in potato by M. persicae.  相似文献   

5.
Sustainable management of cabbage aphids, Brevicoryne brassicae (L.) (Hemiptera: Aphididae), is a major goal for collard, Brassica oleracea (L.) var. acephala (Brassicaceae), growers globally. Host finding ability of insect pests is significantly affected by diversified cropping systems, and this approach is being utilized currently as a pest management tool. Soil nutrition and its interaction with the cropping systems could have a significant effect on the general performance of collards and the infestation by cabbage aphids. In a search for a sustainable cabbage aphid control, a two‐season field experiment was carried out with two intercrops, collards and chilli, Capsicum frutescens (L.) (Solanaceae), and collards and spring onions, Allium cepa (L.) (Alliaceae), and a collard monoculture. For each of the cropping systems, nitrogen (N) was applied to the soil as a top‐dress at 20, 25, 30, and 35 g per collard plant. The response factors monitored were collard yield (fresh weight) and aphid infestation on collards. Spring onion‐collard intercrop had the lowest aphid density and the highest yield. Collard monoculture had the highest aphid infestation and the lowest yield. High levels of N led to increased infestation of collards by aphids, but also led to a significant increase in the yield of collards. Significant interactions between the N rates and the cropping systems were observed on some sampling dates, with the highest yield being realized under a combination of spring onion‐collard intercrop at a N rate of 30 g per plant. High aphid density led to a decrease in the yield of collards. It was concluded that with a spring onion‐collard intercrop, the soil N level could be raised from the blanket rate of 20–30 g per plant and this would lead to an increase in yield.  相似文献   

6.
The influence of cultivars of common cabbage, Brassica oleracea var. capitata with varying levels of resistance to Brevicoryne brassicae (L.) and Myzus persicae (Sulzer) on key biological characteristics of Aphidius colemani (Viereck) was investigated under laboratory conditions. The total development time for female parasitoids reared on M. persicae did not differ significantly between Minicole (green-leaved, partially resistant with antibiosis factors for B. brassicae) and Derby Day (green-leaved, susceptible to both aphid species); but development was significantly faster (ca 10%) on Ruby Ball (red-leaved, partially resistant with antixenosis factors for B. brassicae). Total development time for females reared on B. brassicae was slightly shorter on Ruby Ball than on Minicole. Males reared on M. persicae developed into adults significantly faster (ca 10%) on Ruby Ball than on Minicole. However, when B. brassicae was the host, no significant variations in development time were observed. Sex ratios, size and longevity of both male and female parasitoids on either host were not significantly influenced by cultivar. The results are discussed in relation to the compatible utilisation of host-plant resistance and biological control in the integrated management of aphids.  相似文献   

7.
In response to herbivore damage or stress, plants may express physiological or morphological changes known as induced responses. We tested whether previous herbivory by the aphid Myzus persicae differentially altered the expression of resistance and susceptibility among five genotypes of peach that differ in their resistance phenotype (avoidance resistance, antibiosis resistance or susceptibility). We measured behavioural and performance parameters of aphid success on plants previously infested by conspecifics as compared to uninfested controls. Significant variation was found both among genotypes and among resistance phenotype, including between genotypes showing a same resistance phenotype. Genotypes with avoidance resistance showed either induced resistance to aphid settling or no response. Genotypes with antibiosis resistance showed induced susceptibility to aphid settling, but the effects of previous herbivory on aphid development were either positive or negative depending on the genotype. In the susceptible genotype, most parameters of aphid settlement and performance, including reproduction, were positively influenced by previous herbivory. Using electronic recording, the aphid probing behaviour was examined to tentatively identify host plant tissues most likely to play a role in induced defenses. Probing behaviour was significantly affected by plant genotype, previous herbivory, and their interaction, indicating complex relations between the two factors. In the genotypes with avoidance resistance, aphids were deterred before they reach the phloem. In the genotypes expressing susceptibility or antibiosis resistance, previous herbivory triggered instead the induction of a phloem‐mediated response, that however diverged depending on the resistance status (facilitation or reduction of phloem sap uptake respectively). Genotypic variation in induction found in the peach‐M. persicae system establishes a useful framework to improve our knowledge of the ecological role of induced plant responses to aphids.  相似文献   

8.
Inheritance of the two main types of the plant resistance to insects was investigated in the sorghum-greenbug (Schizaphis graminum Rond.) and wheat-bird cherry-oat aphid (Rhopalosiphon padi L.) interaction systems. The data obtained support the hypothesis that antixenosis (avoiding of the plant by the insect, given a choice) and antibiosis (adverse effect of the plant on the insect feeding on it) are pleiotropic manifestations of the same genes. This is confirmed by the following facts. (1) Identical patterns of segregation for antixenosis and antibiosis in different cases of sorghum resistance to the greenbug: monogenic control (gene Sgr4), digenic control (Sgr1, Sgr2 and Sgr7, Sgr8), and complementary action of the genes (Sgr9 and Sgr10). (2) Correlated changes in the levels of antibiosis and antixenosis during long-term reproduction of a greenbug clone on the resistant sorghum variety k-1206 (resistance controlled by one gene). (3) Simultaneous expression of antixenosis and antibiosis in F3 wheat hybrid families to the bird cherry-oat aphid.  相似文献   

9.
Canola genotypes resistant to the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae), have recently been developed through introgression of Sinapis alba L. to Brassica napus L. Several lines express antixenosis and antibiosis resistance and have been shown to be less attractive to weevils in visual and olfactory behavioral bioassays. This paper details a small-plot study that assessed the effects on distribution dynamics of weevil adults and larvae of interspersing susceptible among resistant genotypes relative to monocultures over two growing seasons. Results indicate that mixes reduced weevil numbers and oviposition in pods of susceptible genotypes. These results are consistent with associational resistance.  相似文献   

10.
The bird cherry-oat aphid (Rhopalosiphum padi L.) is a major pest of wheat (Triticum aestivum L.) and can cause up to 30% yield losses. Heritable plant resistance to aphids is both an economically and ecologically sound method for managing aphids. Here we report how the behaviour and performance of R. padi differs on two resistant, one susceptible wheat landrace and a susceptible elite wheat variety. Feeding behaviour differed among the genotypes, with aphids on resistant lines spending longer in the pathway phase and less time phloem feeding. These behaviours suggest that both inter- and intracellular factors encountered during pathway and phloem feeding phases could be linked to the observed aphid resistance. Locomotion and antennal positioning choice tests also revealed a clear preference for susceptible lines. Although feeding studies revealed differences in the first probe indicating that the resistance factors might also be located in the peripheral layers of the plant tissue, scanning electron microscopy revealed no difference in trichrome length and density on the surface of leaves. Aphids are phloem feeders and limiting the nutrient uptake by the aphids may negatively affect their growth and development as shown here in lower weight and survival of nymphs on resistant genotypes and decreased reproductive potential, with lowest mean numbers of nymphs produced by aphids on W064 (54.8) compared to Solstice (71.9). The results indicate that resistant lines markedly alter the behaviour, reproduction and development potential of R. padi and possess both antixenosis and antibiosis type of resistance.  相似文献   

11.
Because they remained almost uncolonized by the cabbage aphid (Brevicoryne brassicae (L.)) throughout the growing season, plants of Brussels sprouts were singled out in each of 4 years, from plots heavily infested with the aphid, as possibly being resistant to attack. Clones of these plants were established from cuttings and tested in a controlled environment by inoculation with B. brassicae and later, in the field, by natural infestation. The tests confirmed that some of the plants were resistant to the aphid, and the most resistant of those from the first year of the work proved at least as resistant as any subsequently found. The resistance was expressed as antibiosis, but in the field host non-preference was also shown by incoming winged aphids. The possibility that biotypes of B. brassicae might exist, to which the resistant sprout clones were not necessarily resistant, was investigated using B. brassicae collected from sprouts from each of several areas in England. Eight sprout clones, seven of which were known to be resistant, and the other susceptible, to B. brassicae from Wellesbourne were tested with these other B. brassicae. The results showed that biotypes of the aphid, with differing abilities to colonize respective sprout clones, existed in each area, and of the seven sprout clones resistant to the Wellesbourne aphid, only one appeared never to be fully susceptible to one or more of the other biotypes of B. brassicae.  相似文献   

12.
13.
14.
The olfactory response of the parasitoid Aphidius colemani (Viereck) (Hymenoptera: Braconidae) to odours in a tritrophic system involving three cultivars of common cabbage, Brassica oleracea var capitata, characterized by different levels of susceptibility to Myzus persicae (Sulzer) (Hemiptera: Aphididae) was studied in a four‐way olfactometer. Odours influenced A. colemani response in the olfactometer to varying degrees. The magnitude of parasitoid response to odours of uninfested cabbage depended on cultivar, with Derby Day [green‐leaved, susceptible to M. persicae and the crucifer specialist, Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae)] and Minicole (green‐leaved, partially resistant with known antibiosis factors for B. brassicae) preferred over Ruby Ball (red‐leaved with antixenosis factors for M. persicae and B. brassicae). The odour of the cabbage cultivar on which the parasitoid had been reared was preferred over the other cultivars. However, when provided with a choice between odours of infested plants, parasitoids did not show a significant preference for the cultivar on which they were reared. Results from the study show that parasitioids differentiated between odour of the three cultivars in dependence of their rearing history when the plant is uninfested.  相似文献   

15.
Resistance to Brevicoryne brassicae L. attacks in a New Zealand variety of forage rape resulted from a combination of host non–preference and antibiosis. Using clonal plant material obtained from cuttings, only half the numbers of immigrant alate cabbage aphids that settled to reproduce on the susceptible rape were to be found on the resistant rape. The reproduction rate of these alates was about 12 % slower on the resistant plants than on the susceptibles and the young took about 13% longer to mature. Antibiosis then shortened the reproductive life of the apterae by one-third, reduced their fecundity by nearly 50 % and caused 40% mortality in their progeny. The over-all effect of this was considerable and under conditions specified in the text could result in the population on the resistant plants being about one-eighth that on the susceptible plants in under 1 month. The resistant plants lost their resistance on flowering and became normally susceptible to cabbage aphid attack. With maturity, however, the B. brassicae-resistant plants became slightly resistant to Myzus persicae.  相似文献   

16.
Acyrthosiphon pisum is a polyphagous aphid of major importance on the pea crop to which few resistant cultivars are available. In this study, we screened a germplasm collection of Pisum spp. under field conditions over two seasons yielding the identification of a number of accessions with intermediate levels of resistance. Selected accessions were further studied under semi‐controlled and controlled conditions in no choice and choice assays to validate the responses, and to further characterise the mechanisms of resistance operative. Results elucidated the valuable resistance of accession P40 (Pisum sativum ssp. sativum) and P665 (P. sativum ssp. syriacum), with the combination of both antixenosis, by reducing aphid preference, and antibiosis, by diminishing aphid proliferation.  相似文献   

17.
  • 1 The performance of the second generation (G2) of alates and apterae of a generalist, Myzus persicae, and a specialist, Brevicoryne brassicae, aphid species reared on Chinese cabbage or cabbage was evaluated on five cultivars of Brussels sprout.
  • 2 Aphid performance was influenced both by the type of host on which the parent aphid had been reared and by the host on which it was feeding when reproducing.
  • 3 The fecundity of the G2 of alates of both aphid species reared on Chinese cabbage differed significantly between all the cultivars of Brussels sprout and, on average, was 25% higher than those reared on cabbage. These differences were also apparent for the intrinsic rate of increase of B. brassicae but not for M. persicae.
  • 4 There was a trend for the G2 of alates from Chinese cabbage to have greater fecundity compared with aphids from cabbage. These differences were significant for the fecundity of the G2 of alates of both aphid species on Brussels sprout cultivars Fillbasket (30% higher), Red Delicious (35% higher) and Winter Harvest (25% higher) than those reared on cabbage.
  • 5 The intrinsic rate of increase for the G2 of alates of B. brassicae from Chinese cabbage was significantly different on all Brussels sprout cultivars tested. The intrinsic rate of increase differed significantly between aphids reared on either Chinese cabbage or cabbage on cultivars Oliver and Darkmar‐21 (M. persicae) and Red Delicious and Winter Harvest (B. brassicae). The cv. Oliver appeared to be the most consistently good host; Red Delicious was the poorest host overall.
  相似文献   

18.
The Russian wheat aphid Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae) is a global pest of wheat and barley. This arthropod is difficult to manage with pesticides or biological control agents due to the aphid’s ability to seek shelter in rolled leaves and also to develop virulent biotypes. During the past 20 years, the use of aphid-resistant cereal cultivars has proven to be an economically and ecologically beneficial method of protecting crops from D. noxia damage. Our research reports the results of experiments to determine the categories of D. noxia biotype 2 resistance present in Cereal Introduction Triticeae (CItr) 2401, and a barley genotype (IBRWAGP4-7), compared to control resistant and susceptible wheat and barley genotypes. CItr2401 and IBRWAGP4-7 exhibit no antixenosis, but both genotypes demonstrated antibiosis to D. noxia in the form of reduced aphid populations. Reduced leaf dry weight change, a measure of plant tolerance of D. noxia feeding, was significantly less in CItr2401 and IBRWAGP4-7 plants than in plants of susceptible control varieties. However, tolerance was negated when a tolerance index was calculated to correct for differences in aphid populations. Barley IBRWAGP4-7 is a new source of D. noxia biotype 2 resistance. D. noxia foliar leaf damage and population growth were significantly less on IBRWAGP4-7 plants than on plants of the susceptible barley variety Morex. IBRWAGP4-7 plants were equal in resistance to plants of the resistant barley STARS 9301 and wheat genotype CItr2401. Handling editor: Heikki Hokkanen  相似文献   

19.
Plant penetration behaviour (probing) of the cabbage aphid, Brevicoryne brassicae, and the pea aphid, Acyrthosiphon pisum, was studied on excised leaves of broad beans, Vicia faba, kept in water or in a 1% aqueous solution of sinigrin. Using the DC EPG (Electrical Penetration Graph) technique it was shown that the cabbage aphid on sinigrin-untreated bean leaves showed numerous short probes into epidermis and mesophyll. None of these aphids showed either phloem salivation or ingestion waveforms on untreated leaves. In contrast, on sinigrin-treated bean leaves, 35% of the probing time was spent on phloem sap ingestion (E2) and almost all aphids reached phloem vessels and started feeding. The duration of phloem salivation before phloem ingestion and the mean duration of phloem ingestion periods were similar on a host and a sinigrin-treated non-host plant. However, the total probing time by B. brassicae was 10% longer, the total phloem sap ingestion time was twice as long, and the time to the first phloem phase within a probe was three times shorter on the host plant compared to sinigrin-treated broad beans. Acyrthosiphon pisum also responded to the addition of sinigrin to broad beans, but in this case sinigrin acted as a deterrent. On sinigrin-treated leaves, A. pisum terminated probes before ingestion from phloem vessels, and none of these aphids showed phloem salivation and ingestion on treated leaves. Glucosinolates were detected in the mesophyll cells of the brassicaceous plant, Sinapis alba. Based on this finding and in addition to the foregoing EPG analysis of aphid probing on these plants and broad beans, our hypothesis is that aphids may recognise their host plants as soon as they probe the mesophyll tissue and before they start ingestion from phloem vessels.  相似文献   

20.
During two consecutive years the effects of intercropping fresh market white cabbage with two species of clover on pest populations and yield were studied. White cabbage cv. Minicole was intercropped withTrifolium repens (white clover) andTrifolium subterraneum (subterranean clover) as compared to the monocrop. During the season observations were made on pest population developments, especially ofMamestra brassicae L. (cabbage moth),Brevicoryne brassicae L. (cabbage aphid),Delia brassicae L. (cabbage root fly), and evaluation of caterpillar feeding injury. At harvest the yield in quantity and quality was determined to be able to assess the gross financial result. Intercropping effects in terms of suppression of oviposition and larval populations of various pests were found. Although no pesticides were used and competition reduced the weight, the quality of the intercropped cabbages lead to a better financial result compared to the monocropped cabbage crop. The results are discussed in the perspective of the practical implications in the context of IPM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号