首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Caribbean region is one of the five leading biodiversity hotspots in the world. Analysis of the spatial structure of critical habitats and how it affects endemic species in this region is essential baseline information for biodiversity monitoring and management. We quantified and evaluated the spatial structure and connectivity of depression forests on Mona Island and their potential impact on Mona Island rock iguana habitat, as a framework to assess spatial distribution, connectivity, and the issue of scale in small and widely dispersed habitats. Using IKONOS imagery, we mapped and delineated depression forests at four different scales (minimum mapping units: <100, 100, 500, and 1,000 m), and calculated landscape metrics describing their spatial structure, and connectivity, for each map resolution. Our approach resulted in a more detailed map than previously described maps, providing better information on habitat connectivity for iguanas. The comparison of the island landscape mapped at different scales provided evidence on how changing scales affect the output of spatial metrics and may have a significant impact when planning decisions and assigning conservation priorities. It also highlighted the importance of adequate ecological scales when addressing landscape management and conservation priorities. The analysis of landscapes at multiple scales provided a mechanism to evaluate the role of patch detection and its effect on the interpretation of connectivity and spatial structure of suitable areas for species with small and widely dispersed habitats. These methodologies can be applied other species, in different environments, with similar limitations related to connectivity and habitat availability.  相似文献   

2.
The monitoring of biodiversity at the level of habitats is becoming widespread in Europe and elsewhere as countries establish national habitat monitoring systems and various organisations initiate regional and local schemes. Parallel to this growth, it is increasingly important to address biodiversity changes on large spatial (e.g. continental) and temporal (e.g. decade-long) scales, which requires the integration of currently ongoing monitoring efforts. Here we review habitat monitoring and develop a framework for integrating data or activities across habitat monitoring schemes. We first identify three basic properties of monitoring activities: spatial aspect (explicitly spatial vs. non-spatial), documentation of spatial variation (field mapping vs. remote sensing) and coverage of habitats (all habitats or specific habitats in an area), and six classes of monitoring schemes based on these properties. Then we explore tasks essential for integrating schemes both within and across the major classes. Finally, we evaluate the need and potential for integration of currently existing schemes by drawing on data collected on European habitat monitoring in the EuMon project. Our results suggest a dire need for integration if we are to measure biodiversity changes across large spatial and temporal scales regarding the 2010 target and beyond. We also make recommendations for an integrated pan-European habitat monitoring scheme. Such a scheme should be based on remote sensing to record changes in land cover and habitat types over large scales, with complementary field mapping using unified methodology to provide ground truthing and to monitor small-scale changes, at least in habitat types of conservation importance.  相似文献   

3.
The following paper describes patterns of diversity across major habitat types in a relatively well preserved coastal dune system in central Italy. The research addresses the following questions: (a) whether different habitats defined on the base of a land cover map support similar levels of biodiversity in terms of vascular flora richness and number of rare and endangered species, and (b) how each habitat contributes to the total species diversity of the coastal environment. A random stratified sampling approach based on a detailed land cover map was applied to construct rarefaction curves for each habitat type and to estimate total species richness. In addition, the number of exclusive, rare and endangered species was calculated for each habitat type. Results highlight the importance of the coastal dune zonation (embryo-dune, main dune, transition and stabilized dune) in species conservation because they harbour progressively higher species richness. However, differences among these habitats were not significant, so no particular species rich “hotspots” could be evidenced. On the contrary, rarefaction curves show that the upper beach (strand) habitat sustains significantly smaller number of species, but surprisingly, it shows the highest rarity values and highest proportion of endangered species. Therefore, for the establishment of successful biodiversity conservation programs in these coastal environments, it is imperative not only to conserve biologically rich hotspots but also to include species poor habitats containing endangered or unique elements. Thus, the complete coastal vegetation mosaic including all coastal habitats is important to adequately characterize the plant species diversity of coastal dune ecosystems.  相似文献   

4.
Conservation biology has much more attention for biodiversity hot spots than before. In order to recognize the hotspots for Iranian terrestrial mammal species that are listed in any red list, nationally or globally, ten Species Distribution Models (SDMs) have been applied. The SDMs evaluation results based on the TSS and AUC values showed that all ten models of habitat suitability perform significantly better than the random selection for all studied species. According to the results, biodiversity hotspots for threatened mammal species are located in north, west and central of Iran, along the Zagros and Alborz mountain range. Therefore, habitats for threatened mammal species have been limited to small parts of Iran (approximately 27% of the country). These areas are severely fragmented and only 57% of them have been announced protected by the current conservation system. The suggestion is that, as the sustainability of these habitats would strongly depend on maintaining dispersal corridors to facilitate the movement of animals among the habitat fragments, conservation efforts should focus on those hotspots which are not formally protected under conservation laws.  相似文献   

5.
汶川地震灾区生物多样性热点地区分析   总被引:5,自引:4,他引:5  
徐佩  王玉宽  杨金凤  彭怡 《生态学报》2013,33(3):718-725
汶川地震灾区位于长江上游,是我国大熊猫(Ailuropoda melanoleuca)的主要分布区,被保护国际认定的25个全球生物多样性热点地区之一.2008年5月12日发生的汶川大地震导致该区域生态环境遭受严重破坏,需要识别生物多样性热点地区,指导灾后生物多样性保护.选取物种生境质量、植被景观多样性指数和物种多样性指数作为评价指标,其中生境质量采用InVEST生物多样性模型计算,然后利用空间相关分析中G系数进行热点地区分析,探测出灾区生物多样性的热点区,并在此基础上与现有保护区分布、物种生境分布以及Marxan模型计算出的优先区进行对比验证.结果显示:热点区范围涉及到现有76%的保护区,且保护区内的热点区面积达到灾区所有保护区面积的55%;在选取的69个指示物种中有60个物种位于热点区的生境面积占这些物种在灾区的总生境面积的50%以上,有32个物种在80%左右,热点区内的所有指示物种生境总面积占整个灾区指示物种生境总面积的70%以上.基于空间相关分析方法得出的热点地区基本上与Marxan模型输出的优先保护区范围结果基本一致.但空间相关分析的热点区划分克服了Marxan模型优先保护区分布过于离散,孤岛效应明显的不足.  相似文献   

6.
There are high numbers of endangered birds in Iran. Birds also are indicators of biodiversity in different landscapes and using birds as indicator give us a complete overview about the ecological status of the landscape. In the present study migratory waterfowls were used to identify biodiversity hotspots in Iran. Iran is an interesting place for ornithologists because it is in fact a crossroads of flyways for migratory waterfowls coming from Europe, southern Asia, and Siberia. We predicted the habitat distributions for 27 bird species of Anseriformes in Iran using an ensemble forecasting framework to identify biodiversity hotspots. Moreover, we measured the percentage of overlap between hotspots and protected areas including Ramsar sites. The results showed that suitable habitats for different bird species greatly varied among different ecosystems and they showed dissimilar responses to environmental variables. However, for most species digital elevation model (DEM) was the most important variable in predicting suitable habitats. Our study also revealed that 36.02% of Iran can be considered as suitable habitats for the species and the highest suitability belongs to areas along Zagros and Alborz mountain ranges. Furthermore, the suitable habitats had 7.10% overlap with protected areas and 75% with Ramsar sites. The low overlap between hotspots and protected areas demonstrated the shortage of biodiversity protection in Iran. Therefore, it is essential to select new protected areas based on biodiversity hotspots, and to develop a network of protected areas within those hotspots in Iran.  相似文献   

7.
Dry grasslands are of great interest for nature conservation in Europe, because they have a central role in the conservation of numerous rare and endangered species. In this study carried out in the Brenta mountain group (Italian alps), we investigated the effect of environmental factors mainly controlled by topography, on the biodiversity trends across different dry grassland habitats where the threatened alpine stenoendemic Erysimum aurantiacum grows. Plant community data and ecological factors were analysed by means of a multi‐habitat CCA approach and by analysis of biodiversity gradients in 7 natural and semi‐natural habitats. We found that species turnover and biodiversity patterns vary as a function of multi‐factorial ecological gradients. For the single habitats, elevation gradient was the main factor explaining compositional variation, followed by inclination and proportion of exposed rock surface. Despite its endangered status, E. aurantiacum showed a relatively high degree of ecological plasticity across these semiarid grassland habitats that probably allows it to survive in different environments, including in some cases those impacted by human activities. This prompts for habitat‐ more than species‐level conservation actions. According to their characteristics and threats, habitat‐specific management practices are recommended for long term conservation of plant species communities in the different ecological niches.  相似文献   

8.
The importance of plant communities for conservation purposes is recognized in their inclusion in the “Habitat Directive” (92/43 EEC), that relates habitat types to plant community syntaxonomic units. However, habitat definitions in the Habitat Directive lead to several inaccuracies in local habitat characterization. Several wetland plant communities (and their corresponding habitats), rare in the Mediterranean basin, are not included in the Habitat Directive. This study proposes criteria for assessing the conservation importance of habitats. It deals with plant community types at the alliance level, as promising units for setting conservation priorities. The principle criteria considered as drivers for setting alliance conservation values are the distribution and abundance of plant species of conservation interest and their fidelity to a plant community. Multivariate methods were used, and a quantitative floristic index of alliance conservation priority was created. This procedure was applied to an important wetland in central Italy. Results emphasize: (i) high conservation values of some alliances not listed in the Habitat Directive, confirming various gaps in the current conservation law affecting Mediterranean wetlands; (ii) that habitats widely distributed in other biogeographical areas, may greatly underestimate their conservation importance in Mediterranean region; (iii) need to consider regional peculiarities when setting conservation priorities.  相似文献   

9.
1. Using species distribution data from 111 aquifers distributed in nine European regions, we examined the pairwise relationships between local species richness (LSR), dissimilarity in species composition among localities, and regional species richness (RSR). In addition, we quantified the relative contribution of three nested spatial units – aquifers, catchments and regions – to the overall richness of groundwater crustaceans.
2. The average number of species in karst and porous aquifers (LSR) varied significantly among regions and was dependent upon the richness of the regional species pool (RSR). LSR–RSR relationships differed between habitats: species richness in karstic local communities increased linearly with richness of the surrounding region, whereas that of porous local communities levelled off beyond a certain value of RSR.
3. Dissimilarity in species composition among aquifers of a region increased significantly with increasing regional richness because of stronger habitat specialisation and a decrease in the geographic range of species among karst aquifers. Species turnover among karst aquifers was positively related to RSR, whereas this relationship was not significant for porous aquifers.
4. The contribution of a given spatial unit to total richness increased as size of the spatial unit increased, although 72% of the overall richness was attributed to among-region diversity. Differences in community composition between similar habitats in different regions were typically more pronounced than between nearby communities from different habitats.
5. We conclude by calling for biodiversity assessment methods and conservation strategies that explicitly integrate the importance of turnover in community composition and habitat dissimilarity at multiple spatial scales.  相似文献   

10.
长江中游生态区湿地保护空缺分析及其保护网络构建   总被引:3,自引:1,他引:2  
李晓文  郑钰  赵振坤  黎聪 《生态学报》2007,27(12):4979-4989
构建了综合反映长江中游生态区地形、植被与地表覆盖特征的GIS综合空间数据库,在对长江中游生态区核心湿地保护物种,即白鹤(Grusleucogeranus)、东方白鹳(Ciconiaboyciana)、小白额雁(Anser erythropus)、中华秋沙鸭(Mergus squamatus)分布范围和生境需求分析基础上,建立了反映物种分布与GIS数据库中生态地理因子关联的生境适宜性单元,从而确定了核心物种分布的潜在生境,对照现有保护区分布格局,找到了区域湿地生境保护的薄弱和空缺区域(Gaps),评价了现有保护区系统对潜在生境保护的有效性。基于Gap分析结果和现有保护区分布格局,进一步考虑保护网络的整体性和连通性以及保护成本,构建了长江中游湿地保护区生物保护网络的合理格局。研究结果表明:长江中游生态区核心物种潜在生境涉及134个县(市)级单元,而目前长江中游湿地保护网络仅覆盖了23.49%的潜在生境,仍有大量潜在生境游离于现有保护区系统外。为完善长江中游生态区湿地保护网络,应在湖北(13县)、安徽(8县)和江西(1县)所属22个县域内建立新的湿地保护区或保护小区,并与现有湿地保护系统有机整合,最终才能形成较为完善的由45个县级单元构成的的长江中游生态区湿地生物保护网络合理格局,并保护80%以上核心物种的潜在生境。本研究同时也表明基于GIS生态地理空间数据库和生境适宜性单元概念进行大尺度生境分析具有一定可行性和应用价值。  相似文献   

11.
三江平原湿地鸟类丰富度的空间格局及热点地区保护   总被引:1,自引:0,他引:1  
刘吉平  吕宪国 《生态学报》2011,31(20):5894-5902
全球气候变化和人类的开垦开发活动使湿地生物多样性遭到严重的干扰和破坏,导致生物多样性空间分布格局及热点地区的保护成为研究的热点。在对三江平原湿地鸟类预测的基础上,利用空间自相关方法分析三江平原湿地鸟类丰富度的空间分布格局,并找出湿地鸟类多样性的热点地区及优先保护顺序。研究结果表明,三江平原湿地鸟类丰富度高高集聚区主要分布在保护区及周边地区、河流和湖泊沿岸,是新建和扩建自然保护区的最佳区域。湿地鸟类丰富度高低集聚区主要分布在农田景观中,将它们设立成微型保护地块对于区域景观生态安全具有重要意义;利用湿地鸟类物种丰富度、国家级保护湿地鸟类、生境类型和结构、距最近保护区距离、破碎度、干扰度等指标,在研究区内共找到13个热点地区,总面积为1018.7km2,占研究区总面积的8%;利用系统聚类分析,将13个热点地区划分成3种优先保护顺序。构建的小区域范围内寻找生物多样性热点地区的方法,为相关政府部门更有效地进行湿地生物多样性的保护和管理提供科学依据。  相似文献   

12.
Large monitoring programs exist in many countries and are necessary to assess present and past biodiversity status and to evaluate the consequences of habitat degradation or destruction. Using such an extensive data set of the floristic richness in the Paris Ile-de-France region (France), we compared different sampling efforts and protocols in different habitat units to highlight the best methods for assessing the actual plant biodiversity. Our results indicate that existing data can be used for a general understanding of site differences, but analysts should be aware of the limitations of the data due to non-random selection of sites, inconsistent observer knowledge, and inconsistent sampling period. The average species diversity recorded in a specific habitat does not necessarily reflect its actual diversity, unless the monitoring effort was very strong. Overall, increasing the sampling effort in a given region allows improvement of the (1) number of habitats visited, (2) the total sampled area for a given habitat type, (3) the number of seasons investigated. Our results indicate that the sampling effort should be planned with respect to these functional, spatial and temporal heterogeneities, and to the question examined. While the effort should be applied to as many habitats as possible for the purpose of capturing a large proportion of regional diversity, or comparing different regions, inventories should be conducted in different seasons for the purpose of comparing species richness in different habitats.  相似文献   

13.
Aim   We analysed the variation of species richness in the European freshwater fauna across latitude. In particular, we compared latitudinal patterns in species richness and β-diversity among species adapted to different habitat types.
Location   Europe.
Methods   We compiled data on occurrence for 14,020 animal species across 25 pre-defined biogeographical regions of European freshwaters from the Limnofauna Europaea . Furthermore, we extracted information on the habitat preferences of species. We assigned species to three habitat types: species adapted to groundwater, lotic (running water) and lentic (standing water) habitats. We analysed latitudinal patterns of species richness, the proportion of lentic species and β-diversity.
Results   Only lentic species showed a significant species–area relationship. We found a monotonic decline of species richness with latitude for groundwater and lotic habitats, but a hump-shaped relationship for lentic habitats. The proportion of lentic species increased from southern to northern latitudes. β-Diversity declined from groundwater to lentic habitats and from southern to northern latitudes.
Main conclusions   The differences in the latitudinal variation of species richness among species adapted to different habitat types are in part due to differences in the propensity for dispersal. Since lentic habitats are less persistent than lotic or groundwater habitats, lentic species evolved more efficient strategies for dispersal. The dispersal propensity of lentic species facilitated the recolonization of central Europe after the last glaciation. Overall, we stress the importance of considering the history of regions and lineages as well as the ecological traits of species for understanding patterns of biodiversity.  相似文献   

14.
生物多样性空间格局和热点区域的分析与探测是进行生物多样性保护规划和科学管理的有效途径。以重庆澎溪河湿地自然保护区为例,基于实地综合调查、历史资料、文献信息,利用生境质量指数、物种多样性和景观多样性评价指标,构建生物多样性综合指数。结合空间自相关分析,揭示保护区生物多样性空间分布格局及其空间自相关程度,并识别生物多样性热点区,探讨现有保护区对热点区域的保护有效性。结果表明: 保护区生物多样性空间格局呈现出随距河流及两岸消落带距离的增加而减少的趋势,生物多样性指数高值区主要集中在澎溪河、普里河、白夹溪及其沿岸地区。生物多样性在空间分布上具有显著的正相关性,局部空间自相关以高-高聚集和低-低聚集类型为主。生物多样性热点区域面积为457 hm2,占保护区总面积的11.1%。现有保护区核心区涵盖了51%的热点区域和50%的次热点区域,保护区结构和功能区布局有待进一步优化调整,建议将普里河段龙王堂区域,白夹溪小垭口、邓家湾、洞子岩、龙王塘、旧屋咀、铧头咀、新铺子与龙家院子等热点区域纳入核心区,将冷点区域划到核心区之外,完善保护区功能区划。研究结果可为保护区范围及功能区优化和管控、合理推进“三区变两区”调整提供定量的基础资料,对于提高物种保护效率、制定科学的保护策略具有指导意义。  相似文献   

15.
《Global Change Biology》2018,24(1):308-321
Conserving native biodiversity in the face of human‐ and climate‐related impacts is a challenging and globally important ecological problem that requires an understanding of spatially connected, organismal‐habitat relationships. Globally, a suite of disturbances (e.g., agriculture, urbanization, climate change) degrades habitats and threatens biodiversity. A mosaic approach (in which connected, interacting collections of juxtaposed habitat patches are examined) provides a scientific foundation for addressing many disturbance‐related, ecologically based conservation problems. For example, if specific habitat types disproportionately increase biodiversity, these keystones should be incorporated into research and management plans. Our sampling of fish biodiversity and aquatic habitat along ten 3‐km sites within the Upper Neosho River subdrainage, KS, from June‐August 2013 yielded three generalizable ecological insights. First, specific types of mesohabitat patches (i.e., pool, riffle, run, and glide) were physically distinct and created unique mosaics of mesohabitats that varied across sites. Second, species richness was higher in riffle mesohabitats when mesohabitat size reflected field availability. Furthermore, habitat mosaics that included more riffles had greater habitat diversity and more fish species. Thus, riffles (<5% of sampled area) acted as keystone habitats. Third, additional conceptual development, which we initiate here, can broaden the identification of keystone habitats across ecosystems and further operationalize this concept for research and conservation. Thus, adopting a mosaic approach can increase scientific understanding of organismal‐habitat relationships, maintain natural biodiversity, advance spatial ecology, and facilitate effective conservation of native biodiversity in human‐altered ecosystems.  相似文献   

16.
We examined taxonomic and geographic patterns of the obligate groundwater fauna (i.e. stygobiotic fauna) by assembling in a distributional data base all species occurrences reported from France since 1805. A simulated annealing algorithm was used to identify conservation targets. Until the 60s, biological surveys were restricted to caves but the proportion of sampling sites in unconsolidated sediments increased from 1 to 16% over the last 40 years. A total of 380 species and subspecies in 40 families were collected, 70% of which being restricted to France. As observed in other temperate regions, the stygobiotic fauna was dominated by crustaceans (65% of species) and molluscs (22%). The cumulative number of species did not level off over time, clearly showing that biodiversity was underestimated. Temporal trends in the cumulative number of obligate groundwater and surface water species suggested that groundwater comprised more crustaceans than surface freshwater. Endemism was high although the geographic range size of species increased as distributional data accumulated. Of 380 species, 156 were known from a single 400-km2 cell, among which 73% were located in the southern third of France. The distribution map of species richness changed dramatically over time, indicating that the location of richness hotspots was sensitive to sampling effort. Less than 2% of the French landscape was needed to capture 60% of known species. Thus, a large proportion of species could be protected by focusing habitat conservation efforts on a few complementary species-rich aquifers located in distinct regions.  相似文献   

17.
One response to biodiversity decline is the definition of ecological networks that extend beyond protected areas and promote connectivity in human-dominated landscapes. In farmland, landscape ecological research has focused more on wooded than open habitat networks. In our study, we assessed the influence of permanent grassland connectivity, described by grassland amount and spatial configuration, on grassland biodiversity. We selected permanent grasslands in livestock farming areas of north-western France, which were sampled for plants, carabids and birds. At two spatial scales we tested the effects of amount and configuration of grasslands, wooded habitats and crops on richness and abundance of total assemblages and species ecological groups. Grassland connectivity had no significant effects on total richness or abundance of any taxonomic group, regardless of habitat affinity or dispersal ability. The amount of wooded habitat and length of wooded edges at the 200 m scale positively influenced forest and generalist animal groups as well as grassland plant species, in particular animal-dispersed species. However, for animal groups such as open habitat carabids or farmland bird specialists, the same wooded habitats negatively influenced richness and abundance at the 500 m scale. The scale and direction of biodiversity responses to landscape context were therefore similar among taxonomic groups, but opposite for habitat affinity groups. We conclude that while grassland connectivity is unlikely to contribute positively to biodiversity, increasing or maintaining wooded elements near grasslands would be a worthwhile conservation goal. However, the requirements of open farmland animal species groups must be considered, for which such action may be deleterious.  相似文献   

18.
19.
Identifying spatial patterns in species diversity represents an essential task to be accounted for when establishing conservation strategies or monitoring programs. Predicting patterns of species richness by a model-based approach has recently been recognised as a significant component of conservation planning. Finding those environmental predictors which are related to these patterns is crucial since they may represent surrogates of biodiversity, indicating in a fast and cheap way the spatial location of biodiversity hotspots and, consequently, where conservation efforts should be addressed. Predictive models based on classical multiple linear regression or generalised linear models crowded the recent ecological literature. However, very often, problems related with spatial autocorrelation in observed data were not adequately considered. Here, a spatially-explicit data-set on birds presence and distribution across the whole Tuscany region was analysed. Species richness was calculated within 1 × 1 km grid cells and 10 environmental predictors (e.g. altitude, habitat diversity and satellite-derived landscape heterogeneity indices) were included in the analysis. Integrating spatial components of variation with predictive ecological factors, i.e. using geostatistical models, a general model of bird species richness was developed and used to obtain predictive regional maps of bird diversity hotspots. A meaningful subset of environmental predictors, namely habitat productivity, habitat heterogeneity, combined with topographic and geographic information, were included in the final geostatistical model. Conservation strategies based on the predicted hotspots as well as directions for increasing sampling effort efficiency could be extrapolated by the proposed model.  相似文献   

20.
Classifications are typically specific to particular issues or areas, leading to patchworks of subjectively defined spatial units. Stream conservation is hindered by the lack of a universal habitat classification system and would benefit from an independent hydrology‐guided spatial framework of units encompassing all aquatic habitats at multiple spatial scales within large regions. We present a system that explicitly separates the spatial framework from any particular classification developed from the framework. The framework was constructed from landscape variables that are hydrologically and biologically relevant, covered all space within the study area, and was nested hierarchically and spatially related at scales ranging from the stream reach to the entire region; classifications may be developed from any subset of the 9 basins, 107 watersheds, 459 subwatersheds, or 10,000s of valley segments or stream reaches. To illustrate the advantages of this approach, we developed a fish‐guided classification generated from a framework for the Great Lakes region that produced a mosaic of habitat units which, when aggregated, formed larger patches of more general conditions at progressively broader spatial scales. We identified greater than 1,200 distinct fish habitat types at the valley segment scale, most of which were rare. Comparisons of biodiversity and species assemblages are easily examined at any scale. This system can identify and quantify habitat types, evaluate habitat quality for conservation and/or restoration, and assist managers and policymakers with prioritization of protection and restoration efforts. Similar spatial frameworks and habitat classifications can be developed for any organism in any riverine ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号