首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holomuzki  Joseph R.  Van Loan  Adria S. 《Hydrobiologia》2002,477(1-3):139-147
We conducted two experiments in flow-through, artificial streams to examine how habitat structure affected drift and benthic resettlement of larval hydropsychid caddisflies (Ceratopsyche sparna). In the first experiment, we quantified drift distance and the number of times larvae re-entered the drift in 9.0 × 0.51-m channels with contiguous patches (ea. 2.5-m long) of biofilm-covered gravel, biofilm-covered cobbles (– Cladophora), and Cladophora-covered cobbles (+ Cladophora). In the second experiment, we tracked nocturnal movements of larvae after benthic settlement in 2.8 × 0.1-m channels, each containing one of the three habitat types. In experiment 1, drift distance was (1) greatest in gravel and lowest in cobbles + Cladophora, (2) inversely related to hydraulic roughness of habitats, (3) independent of body size, and (4) similar for live and dead larvae. Average drift distance was relatively short (<2.5 m), regardless of habitat type. Number of drift re-entries also varied among habitats, being greatest in gravel and lowest in cobbles + Cladophora. No larvae re-entered the drift after settling in Cladophora patches. Results from experiment 2 revealed that drift propensities were higher for larvae in biofilm-covered gravel and cobbles than in cobbles + Cladophora. Larvae remaining in substrate patches (i.e. not drifting) laid fewer draglines in biofilm-covered stones than in Cladophora patches. Extent of benthic movement (i.e., crawling) by non-drifting larvae did not differ significantly among habitats. However, distance moved did differ with flow direction, being 4× greater downstream than upstream. These results highlight how local substrate and hydraulic conditions interact to affect small-scale movements of caddisfly larvae.  相似文献   

2.
  1. In some regions, climate change is increasing the variability of rainfall and the frequency of extreme events such as drought. Consequently, non-flow periods have grown in length and frequency, both in temporary and in formerly permanent streams. Water abstraction for human use may further prolong these dry periods.
  2. We analysed the resistance and resilience of biofilms from permanent and temporary streams to non-flow conditions. This was achieved by exposing cobbles (collected from permanent and temporary streams) with intact biofilm to 31 days of non-flow, followed by 20 days of stream flow in artificial stream channels. Biofilm resistance and resilience were assessed at a structural (algal biomass, pigment composition, and algae and cyanobacteria composition) and functional level (photosynthetic efficiency and community metabolism).
  3. Algal taxa in biofilms from permanent and temporary streams differed throughout the experiment. Biofilms from permanent streams were less resistant to non-flow than those from temporary streams at structural level. Permanent stream biofilms also presented lower resilience at a structural level, but responded similarly to temporary stream biofilms at a functional level.
  4. Our investigation shows how the non-flow period disturbed permanent stream biofilms, and suggests that temporary stream biofilms will have greater adaptive capacity as hydroperiod becomes shorter due to climate change.
  相似文献   

3.
4.
  1. Dams and their associated impoundments may restrict dispersal and gene flow among populations of numerous freshwater species within stream networks, leading to genetic isolation. This can reduce effective population sizes and genetic diversity, increasing the risk of local extinction.
  2. We studied crayfishes from multiple up- and downstream sites in three impounded and two unimpounded streams in the Bear Creek and Cahaba River drainages, Alabama, U.S.A. Using mitochondrial DNA (cytochrome oxidase subunit I gene) sequence data generated from population-level sampling of two abundant native crayfishes, Faxonius validus and Faxonius erichsonianus (Decapoda: Cambaridae), we assessed species’ spatial genetic structure and genetic diversity, estimated the magnitude and directionality of gene flow, and compared results between the species.
  3. For both species, levels of genetic diversity (number of haplotypes, and haplotypic and nucleotide diversity) were the same or higher in impounded compared to unimpounded streams. Conversely, crayfish populations in up- and downstream sections of unimpounded streams displayed high genetic similarity and bidirectional gene flow, whereas in impounded streams, crayfish populations typically had greater up- and downstream genetic differentiation and predominantly unidirectional, downstream gene flow.
  4. Although impoundments were associated with lower connectivity between up- and downstream sections for F. validus and F. erichsonianus, the magnitude of genetic effects was species-specific, with greater differentiation between F. validus populations up- and downstream of impoundments.
  5. In an ecologically short timeframe, impoundments appear to have fragmented stream crayfish populations, and even species with relatively high abundances and large ranges had lower gene flow among populations in impounded streams compared to unimpounded streams. In addition, feedbacks between genetic and demographic effects on fragmented populations may decrease the probability of long-term persistence.
  相似文献   

5.
Temporary rivers within the Nyaodza-Gachegache subcatchment in northwestern Zimbabwe were investigated to examine the role of flow permanence and habitat structure on macroinvertebrate community composition. Macroinvertebrate communities of intermittent and ephemeral rivers displayed significant differences in the number of taxa, macroinvertebrate abundance, Shannon and Simpson diversity indices and in size class structure. Intermittent sites were characterised by higher numbers of taxa, diversity and Ephemeroptera and Trichoptera richness compared to ephemeral sites. The fauna of ephemeral sites was dominated by a single taxon (Afrobaetodes) (Ephemeroptera, Baetidae) whilst larger sized taxa (e.g. Elassoneuria (Ephemeroptera, Oligoneuriidae), Dicentroptilum (Ephemeroptera, Baetidae), Aethaloptera (Trichoptera, Hydropsychidae), Pseudagrion (Odonata, Coenagrionidae) and Tholymis (Odonata, Libellulidae) were exclusively restricted to intermittent sites. Clear differences were observed between sand, gravel, cobble and vegetation habitats. Vegetation and cobbles supported distinct communities, with some taxa exclusively restricted either to vegetation (e.g. Pseudagrion, Leptocerina (Trichoptera, Leptoceridae), Cloeon (Ephemeroptera, Baetidae), Afronurus (Ephemeroptera, Heptageniidae) and Povilla (Ephemeroptera, Polymitarcidae) or cobble (e.g. Aethaloptera and Dicentroptilum) habitats. In terms of ensuring optimum diversity within the subcatchment, we consider conservation of critical habitats (cobbles and vegetation) and maintenance of natural flows as the appropriate management actions. Handling editor: D. Dudgeon  相似文献   

6.
7.
8.
9.
Piano  Elena  Doretto  Alberto  Falasco  Elisa  Gruppuso  Laura  Bona  Francesca  Fenoglio  Stefano 《Hydrobiologia》2020,847(19):4049-4061

Several Alpine streams are currently facing recurrent summer drying events with detrimental consequences on stream detritivores, i.e., shredders, due to negative effects via changes the organic matter (CPOM) availability. We examined the ecological requirements of three phylogenetically related shredder genera belonging to the family of Nemouridae (Plecoptera), namely Nemoura, Protonemura and Amphinemura, in 14 Alpine streams recently facing recurrent summer flow intermittency events. We evaluated the overlap among their ecological niches measured in terms of hydraulic stress, substrate composition, changes in CPOM availability and competition with other shredder taxa (i.e., presence of individuals of other shredders) and we examined potential changes in their ecological niches between permanent and intermittent sites. The ecological niches of Protonemura and Amphinemura overlap broadly, but not with Nemoura, suggesting only partial potential competition. The reduced CPOM availability decreased the individual abundance of the three genera in intermittent sites, where they consistently preferred microhabitats with high CPOM availability and low competition with other shredder taxa, possibly due to food limitation. Overall, our results emphasize how the negative effect of flow intermittency on shredders in Alpine streams is mainly due to the decrease in CPOM availability, with consequent potential bottom up effects on stream ecosystem functionality.

  相似文献   

10.
  1. Bitterling fishes (Subfamily: Acheilognathinae) spawn in the gills of living freshwater mussels and obligately depend on the mussels for reproduction. On the Matsuyama Plain, Japan, populations of unionid mussels—Pronodularia japanensis, Nodularia douglasiae, and Sinanodonta lauta—have decreased rapidly over the past 30 years. Simultaneously, the population of a native bitterling fish, Tanakia lanceolata, which depends on the three unionids as a breeding substrate, has decreased. Furthermore, a congeneric bitterling, Tanakia limbata, has been artificially introduced, and hybridisation and genetic introgression occur between them. Here, we hypothesised that decline of the unionids has enhanced this invasive hybridisation through competition for the breeding substrate.
  2. Three study sites were set in three streams on the Matsuyama Plain. We collected adult bitterling fishes (native T. lanceolata, introduced T. limbata, and foreign Rhodeus ocellatus ocellatus) once a week from April to October 2013 to measure their densities in streams and to examine seasonal differences in female ovipositor length, which elongates in the breeding season. Simultaneously, we set quadrats and captured unionids and measured environmental conditions. Each unionid individual was kept separately in its own aquarium to collect ejected bitterling eggs/larvae. Tanakia eggs and larvae were genotyped using six microsatellite markers and the mitochondrial cytochrome b gene.
  3. Introduced T. limbata was more abundant, had a longer breeding period, and produced more juveniles than native T. lanceolata. Hybrids between the two species occurred at all sites, and in total 101 of the 837 juveniles genotyped were hybrids. The density of P. japanensis was low, at most 0.42 individuals/m2. Nodularia douglasiae and S. lauta have nearly or totally disappeared from these sites. Hybrid clutches of Tanakia species occurred more frequently where the local density of P. japanensis was low. Mussels were apparently overused and used simultaneously by three species of bitterlings.
  4. Decline of freshwater unionid populations has enhanced hybridisation of native and invasive bitterling fishes through increasing competition for breeding substrate. We showed that rapid decline of host mussel species and introduction of an invasive congener have interacted to cause a rapid decline of native bitterling fish.
  5. Degradation of habitat and the introduction of invasive species interact to cause a cascade of extinctions in native species. In our study, obligate parasite species are threatened because the host species are disappearing, which means there is a serious threat of coextinction.
  相似文献   

11.
Molinero  Jon 《Hydrobiologia》2019,838(1):29-43

This work studies benthic CPOM in two streams of Ecuador: the Atacames stream, located in a developed watershed, and the Súa stream, located in a rural watershed and used as a reference. It is tested whether the amount, composition and timing of benthic CPOM will differ between them as a function of watershed and riparian land uses. Benthic CPOM was collected at five study sites on each stream with a Surber net and classified into four categories: leaves, twigs and bark, flowers and fruits and debris. Leaves were further identified to genus or species. There were no significant differences in the amount, composition and timing of benthic CPOM between the streams. CPOM storage showed strong seasonality linked to seasonal rainfall and a weak relation with land uses, channel width and stream order. Diversity of the benthic CPOM was high and 30 species contributed to the benthic leaf pool. Presence or absence of Ficus species with heavy leaves that are easily retained in the streambed explained the spatial distribution of benthic CPOM, so spatial differences in the composition of the riparian vegetation in these tropical streams seem to be more important to explain CPOM distribution than in their temperate counterparts.

  相似文献   

12.
Summary The effect of invertebrate shredders on organic matter dynamics and phosphorus spiralling was studied over a 30-week period in laboratory streams. The streams were fed by groundwater, layered with cobble and gravel from a natural stream, covered with opaque material to eliminate algal growth, and initially contained 195 g/m2 of autumn-shed leaves. Four weeks after leaf addition, leaf-shredding snails (Goniobasis clavaeformis) were added to each of three streams in densities of 75, 220, and 800/m2. A fourth stream contained no snails and served as a control.Presence of snails increased the loss rates of coarse particulate organic matter (CPOM) and total organic matter (TOM), primarily by increasing leaf fragmentation and seston export. Although snail feeding increased specific metabolism of microbes associated with CPOM and cobble surfaces, it was not enough to compensate for reduction in bacterial cell numbers per unit surface area and in stream TOM. Consequently mineralization of detritus and whole stream phosphorus utilization rate were maximum in the stream with no snails and decreased with increasing snail density. From previous simulations of a stream model based on the nutrient spiralling concept, we predicted that there should be an intermediate shredder density which would minimize phosphorus spiralling length (maximize phosphorus utilization) in a natural stream nearby. Our current results conflict with the model-based predictions primarily because the increase in microbial metabolism was less important than reduction in bacterial cell numbers and total benthic organic matter resulting from snail feeding. Although our results indicate macroinvertebrate shredders reduce phosphorus utilization in headwater streams, shreders may increase nutrient utilization downstream where riparian inputs are lower, thus linking low- and high-order streams.Research supported by the National Science Foundation's Ecosystem Studies Program under Interagency Agreement No. BSR-8103181, A02 with the U.S. Department of Energy, under Contract No. DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.Publication No. 2394, Environmental Sciences Division, ORNL  相似文献   

13.
  1. The dispersal of aquatic plant propagules is highly facilitated in streams due to flow. As many aquatic plants predominantly spread through vegetative propagules, the specific retention and thus drift distance of dispersed plant fragments largely contribute to the rapid spread along the course of a stream.
  2. We determined fragment retention for four aquatic plant species (Elodea canadensis, Myriophyllum spicatum, Ceratophyllum demersum, Salvinia natans; representing four different common morpho-structural groups) in sections of small to medium-sized German streams with different levels of stream sinuosity.
  3. The number of fragments showed a logistic decline over drift distance. In two small streams, 90% of drifting fragments were retained at distances (D90) of only 5–9 m and 19–70 m, while higher D90 values of 116–903 m and 153–2,367 m were determined for sections of a medium-sized stream. The likelihood of retention thereby decreased significantly with increasing stream size and was reduced in straightened stream sections.
  4. Differences in retention were more strongly related to fragment buoyancy rather than fragment size and morphology. Increasing buoyancy significantly lowered the likelihood of fragment retention over drift distance by a factor of 3–8, whereas contrasting effects were documented for size and morphology of fragments.
  5. The relevance of different obstacles was highly stream section-specific and depended on obstacle abundance, distribution, and the degree of submergence/emergence.
  6. Our findings elucidate the dynamic retention patterns of plant fragments and highlight the strong interplay between extrinsic (stream) and intrinsic (fragment) properties. We conclude that straightened lowland streams of intermediate size promote the rapid dispersal of invasive aquatic plants and are particularly prone to invaders producing large amounts of small and highly buoyant plant fragments. Information on the species-specific fragment colonisation dynamics in the field is further required to improve our understanding of the vegetative dispersal capacity of invasive aquatic plants in stream ecosystems.
  相似文献   

14.
Substrate, flow type, nutrients, aquatic vegetation, organic matter, and caddisfly community structure were studied at two low order streams (Glyn and Nant y Fall) subjected to pastoral use in the Patagonian mountains. At both sites, we examined the effect of habitat type (boulder‐pebble with and without filamentous algae, cobble‐pebble, gravel‐sand, leaf‐pack, the submerged macrophytes Myriophyllum quitense and Isoetes savatieri) and season (high and low water period) on caddisfly assemblages. Benthic particulate organic matter (BPOM) ranged between 4.6 and 472 g m–2, all allochtonous detrital fractions were significantly higher at leaf‐packs at Glyn, whereas M. quitense habitats supported more BPOM and macrophytes biomass at Nant y Fall. As expected, boulder‐pebble sustained higher Trichoptera richness than M. quitense and gravel‐sand, moreover all habitats showed higher density than M. quitense at Nant y Fall. According to our results at least nine caddisfly species exhibited some habitat preference with boulder‐pebble and cobble‐pebble the most selected habitat. These particular habitats sustained more than 68% of the total caddisfly species. Multidimensional scaling ordination highlighted differences in composition per habitat for both sites showing a clear distinction among depositional and erosional habitats. Substrate, flow type, detritus biomass were important predictors defining assemblages. Based upon our findings, those anthropogenic actions or stressors that change hydraulic as well substrate attributes in mountain streams such as stock trampling, dredging, clearing of riparian areas, will reduce caddisfly richness. These results are relevant for outline management and conservation biomonitoring and schemes in headwater Patagonian streams as well as other similar environments worldwide (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
1. Numerous interacting abiotic and biotic factors influence niche use and assemblage structure of freshwater fishes, but the strength of each factor changes with spatial scale. Few studies have examined the role of interspecific competition in structuring stream fish assemblages across spatial scales. We used field and laboratory approaches to examine microhabitat partitioning and the effect of interspecific competition on microhabitat use in two sympatric stream fishes (Galaxias‘southern’ and Galaxias gollumoides) at large (among streams and among sites within streams) and small (within artificial stream channels) spatial scales. 2. Diurnal microhabitat partitioning and interspecific competition at large spatial scales were analysed among three sympatry streams (streams with allotopic and syntopic sites; three separate catchments) and four allopatry streams (streams with only allotopic sites; two separate catchments). Electro‐fishing was used to sample habitat use of fishes at 30 random points within each site by quantifying four variables for each individual: water velocity, depth, distance to nearest cover and substratum size. Habitat availability was then quantified for each site by measuring those variables at each of 50 random points. Diet and stable isotope partitioning was analysed from syntopic sites only. Diel cycles of microhabitat use and interspecific competition at small spatial scales were examined by monitoring water velocity use over 48 h in artificial stream channels for three treatments: (i) allopatric G. ‘southern’ (10 G. ‘southern’); (ii) allopatric G. gollumoides (10 G. gollumoides) and (iii) sympatry (five individuals of each species). 3. One hundred and ninety‐four G. ‘southern’ and 239 G. gollumoides were sampled across all seven streams, and habitat availability between the two species was similar among all sites. Galaxias‘southern’ utilised faster water velocities than G. gollumoides in both the field and in channel experiments. Both species utilised faster water velocities in channels at night than during the day. Diet differences were observed and were supported by isotopic differences (two of three sites). No interspecific differences were observed for the other three microhabitat variables in the field, and multivariate habitat selection did not differ between species. Interspecific competition had no effect on microhabitat use of either species against any variable either in the field (large scale) or in channels (small scale). 4. The results suggest that niche partitioning occurs along a subset of microhabitat variables (water velocity use and diet). Interspecific competition does not appear to be a major biotic factor controlling microhabitat use by these sympatric taxa at any spatial scale. The results further suggest that stream fish assemblages are not primarily structured by biotic factors, reinforcing other studies de‐emphasising interspecific competition.  相似文献   

16.
17.
18.
Sabo JL 《Oecologia》2003,136(3):329-335
I used radio telemetry to determine the effects of substrate size and composition on overnight retreat site selection by western fence lizards ( Sceloporus occidentalis). In watersheds of northern California (USA), these lizards occupy two habitat types differing in substrate characteristics: rocky cobble bars found in the dry, active channels of rivers and grassy upland meadows. Rocky substrates, found almost exclusively on cobble bars, provided warmer potential retreat sites than all available retreat sites on meadows during the first 5 h of inactivity. Only cobble and sand substrates provided retreats with temperatures within the preferred daily active range (32–36°C) during the inactive period for these lizards (1900–0900 hours). Females on a cobble bar used rocks as retreats on >90% of nights during the breeding season whereas females on a meadow used wood (>70% of nights) and burrows (>25% of nights). In contrast to females, cobble bar males used rocks significantly less frequently (<70%) and slept in the open air significantly more frequently (25% vs. <1%). Cobble bar females further, showed a significant preference for cobbles 15 cm thick, whereas the rocks used by males did not differ significantly in thickness from those measured in randomly placed transects. Rocks 15 cm thick were the warmest retreats commonly available on this habitat type. Thus, thermal microenvironments available to and chosen by gravid female lizards differ considerably between river and non-river habitats.  相似文献   

19.
Habitat degradation affects native stream fish populations worldwide. We examined the impact of fluctuation in environmental variables on the population dynamics of the federally threatened Santa Ana sucker, Catostomus santaanae, in the Santa Ana River, California through: 1) annual quantitative surveys of C. santaanae abundance and habitat at three 100-m sites between 2001 and 2008 and 2) annual surveys of habitat composition within a 30-km stretch of the Santa Ana River between 2006 and 2008. We used Akaike’s Information Criterion (AIC) to evaluate competing models that used environmental variables to explain variation in C. santaanae abundance among sites and years. The most plausible model identified a positive relationship between C. santaanae abundance and both the amount of coarse substrate (i.e., gravel and cobble) and rate of discharge among site-years. Surveys at the 30-km scale indicated that the prevalence of coarse substrate declined in a downstream direction in each year and that the total amount of this habitat type varied annually. Specifically, cobble/gravel habitat was mostly confined to the upstream 4 km, 9.6 km, and 5.1 km of the survey area in 2006, 2007, and 2008, respectively. Fine sediment comprised the bulk of downstream habitat every year. This large-scale flux in the distribution of coarse sediment likely has a large effect on the population dynamics of C. santaanae in the Santa Ana River. Our results underscore the need to maintain and enhance suitable C. santaanae habitat to ensure its long-term persistence in the Santa Ana River.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号