首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent work on birds suggests that certain morphological differences between the sexes may have evolved as an indirect consequence of sexual selection because they offset the cost of bearing extravagant ornaments used for fighting or mate attraction. For example, long-tailed male sunbirds and widowbirds also have longer wings than females, perhaps to compensate for the aerodynamic costs of tail elaboration. We used comparative data from 57 species to investigate whether this link between sexual dimorphism in wing and tail length is widespread among long-tailed birds. We found that within long-tailed families, variation in the extent of tail dimorphism was associated with corresponding variation in wing dimorphism. One nonfunctional explanation of this result is simply that the growth of wings and tails is controlled by a common developmental mechanism, such that long-tailed individuals inevitably grow long wings as well. However, this hypothesis cannot account for a second pattern in our data set: as predicted by aerodynamic theory, we found that, comparing across long-tailed families, sexual dimorphism in wing length varied with tail shape as well as with sex differences in tail length. Thus, wing dimorphism was generally greater in species with aerodynamically costly graduated tails than in birds with cheaper, streamer-shaped tails. This result was not caused by confounding phylogenetic effects, because it persisted when phylogeny was controlled for, using an independent comparisons method. Our findings therefore confirm that certain aspects of sexual dimorphism may sometimes have evolved through selection for traits that reduce the costs of elaborate sexually selected characters. We suggest that future work aimed at understanding sexual selection by investigating patterns of sexual dimorphism should attempt to differentiate between the direct and indirect consequences of sexual selection.  相似文献   

2.
Extravagant secondary sexual characters show sexual size dimorphismin some species but are completely sex limited in others. Sexualornamentation has been hypothesized to benefit mainly malesthrough sexual selection, but the costs of secondary sexualcharacters initially would be experienced by both sexes. Theevolution of sexual size dimorphism of ornaments and, eventually, the complete sex-limited expression of these characters, willdepend on the effects of sexual and natural selection on thetwo sexes. A phylogenetic analysis controlling for similaritiesdue to common ancestry of 60 independent evolutionary originsof feather ornamentation in birds was used to investigate ecologicalfactors correlated with sexual size dimorphism and sex-limited expression of secondary sexual characters. When the size ofan ornament is large relative to body size, the trait willbe particularly costly for females, resulting in selectionfor increased sexual size dimorphism of the ornament. Indeed,sexual size dimorphism of ornaments was positively related to the relative size of male ornaments but was unrelated torelative size of female ornaments. Species with polygynousand lekking mating systems with little or no male parentalcare (in particular nest building and incubation) demonstratedsex-limited expression of ornaments as compared to monogamous species. Species with no food provisioning of offspring by themale showed a trend for increased sexual size dimorphism ofornaments. Therefore, large natural selection costs duringreproduction imposed by the expression of secondary sexualcharacters are related to the evolution of sexual size dimorphismof ornaments and eventually their complete loss from females.  相似文献   

3.
Unambiguous examples of ecological causation of sexual dimorphism are rare, and the best evidence involves sexual differences in trophic morphology. We show that moderate female-biased sexual dimorphism in bill curvature is the ancestral condition in hermit hummingbirds (Phaethornithinae), and that it is greatly amplified in species such as Glaucis hirsutus and Phaethornis guy, where bills of females are 60 per cent more curved than bills of males. In contrast, bill curvature dimorphism is lost or reduced in a lineage of short-billed hermit species and in specialist Eutoxeres sicklebill hermits. In the hermits, males tend to be larger than females in the majority of species, although size dimorphism is typically small. Consistent with earlier studies of hummingbird feeding performance, both raw regressions of traits and phylogenetic independent contrasts supported the prediction that dimorphism in bill curvature of hermits is associated with longer bills. Some evidence indicates that differences between sexes of hermit hummingbirds are associated with differences in the use of food plants. We suggest that some hermit hummingbirds provide model organisms for studies of ecological causation of sexual dimorphism because their sexual dimorphism in bill curvature provides a diagnostic clue for the food plants that need to be monitored for studies of sexual differences in resource use.  相似文献   

4.
Male snakes typically have longer tails relative to body length than females, but the extent of this dimorphism varies among species. Three hypotheses have been suggested to explain tail dimorphism. The Morphological Constraint Hypothesis proposes that males have relatively longer tails to accommodate hemipenes and retractor muscles. The Female Reproductive Output Hypothesis proposes that females have relatively shorter tails as a secondary result of natural selection for increased reproductive capacity. The Male Mating Ability Hypothesis proposes that sexual selection favours relatively longer tails in males during courtship. These hypotheses make different predictions about the relationships among tail length, body size, male reproductive morphology, female reproductive output, mode of reproduction, and male mating behaviour among and within taxa. Predictions were tested using published data for 56 genera in the family Colubridae and original data for the water snake, Nerodia sipedon. Tail length dimorphism was more male-biased in tam having relatively short tails (r=–0.52, P < 0.001), hemipenes and retractor muscles occupied a greater proportion of the tail in taxa having relatively short tails (r=– 0.71, P < 0.00l and r=– 0.66, P = 0.001, respectively), and tail length dimorphism was more male-biased in taxa in which body size dimorphism was more female-biased (r=– 0.60, P < 0.001). These results support both the Morphological Constraint Hypotheses and the Female Reproductive Output Hypothesis. However, tests of other predictions, including those regarding patterns within N. sipedon , failed to support any of the three hypotheses. Comparisons among taxa suggest several species in which further tests of these hypotheses would be especially appropriate.  相似文献   

5.
The expression in females of ornaments thought to be the target of sexual selection in males is a long-standing puzzle. Two main hypotheses are proposed to account for the existence of conspicuous ornaments in both sexes (mutual ornamentation): genetic correlation between the sexes and sexual selection on females as well as males. We examined the pattern of ornament gains and losses in 240 species of dragon lizards (Agamidae) in order to elucidate the relative contribution of these two factors in the evolution of mutual ornamentation. In addition, we tested whether the type of shelter used by lizards to avoid predators predicts the evolutionary loss or constraint of ornament expression. We found evidence that the origin of female ornaments is broadly consistent with the predictions of the genetic correlation hypothesis. Ornaments appear congruently in both sexes with some lineages subsequently evolving male biased sexual dimorphism, apparently through the process of natural selection for reduced ornamentation in females. Nevertheless, ornaments have also frequently evolved in both sexes independently. This suggests that genetic correlations are potentially weak for several lineages and sexual selection on females is responsible for at least some evolutionary change in this group. Unexpectedly, we found that the evolutionary loss of some ornaments is concentrated more in males than females and this trend cannot be fully explained by our measures of natural selection.  相似文献   

6.
This study examined sexual dimorphism of head morphology in the ecologically diverse three‐spined stickleback Gasterosteus aculeatus. Male G. aculeatus had longer heads than female G. aculeatus in all 10 anadromous, stream and lake populations examined, and head length growth rates were significantly higher in males in half of the populations sampled, indicating that differences in head size increased with body size in many populations. Despite consistently larger heads in males, there was significant variation in size‐adjusted head length among populations, suggesting that the relationship between head length and body length was flexible. Inter‐population differences in head length were correlated between sexes, thus population‐level factors influenced head length in both sexes despite the sexual dimorphism present. Head shape variation between lake and anadromous populations was greater than that between sexes. The common divergence in head shape between sexes across populations was about twice as important as the sexual dimorphism unique to each population. Finally, much of the sexual dimorphism in head length was due to divergence in the anterior region of the head, where the primary trophic structures were found. It is unclear whether the sexual dimorphism was due to natural selection for niche divergence between sexes or sexual selection. This study improves knowledge of the magnitude, growth rate divergence, inter‐population variation and location of sexual dimorphism in G. aculeatus head morphology.  相似文献   

7.
Many organisms show well‐defined latitudinal clines in morphology, which appear to be caused by spatially varying natural selection, resulting in different optimal phenotypes in each location. Such spatial variability raises an interesting question, with different prospects for the action of sexual selection on characters that have a dual purpose, such as locomotion and sexual attraction. The outermost tail feathers of barn swallows (Hirundo rustica) represent one such character, and their evolution has been a classic model subject to intense debate. In the present study, we examined individuals from four European populations to analyze geographical variation in the length and mass of tail feathers in relation to body size and wing size. Tail feather length differed between sexes and populations, and such variation was a result of the effects of natural selection, acting through differences in body size and wing size, as well as the effects of sexual selection that favours longer tails. The extra enlargement of the tail promoted by sexual selection (i.e. beyond the natural selection optimum) could be achieved by increasing investment in ornaments, and by modifying feather structure to produce longer feathers of lower density. These two separate processes accounting for the production of longer and more costly tail feathers and less dense feathers, respectively, are consistent with the hypothesis that both Zahavian and Fisherian mechanisms may be involved in the evolution of the long tails of male barn swallows. We hypothesize that the strength of sexual selection increases with latitude because of the need for rapid mating as a result of the short duration of the breeding season at high latitudes. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 925–936.  相似文献   

8.
We examined whether sexual differences in trophic morphology are associated with sexual differences in foraging behavior through two laboratory experiments on rufous hummingbirds (Selasphorus rufus) designed to compare probing abilities (maximum extraction depths) and handling times of sexes at flowers. Bills of female S. rufus are about 10.5% longer than bills of males, and this difference was associated with sexual differences in foraging abilities. Maximum extraction depths of female S. rufus were significantly greater than those of males, and no overlap between the sexes was observed. Moreover, handling times of females were shorter than handling times of males at flowers having longer corollas (15 mm). Thus, because of their longer bills, female S. rufus have the potential to feed from longer flowers than males, and can do so more quickly. We suggest that no single mechanism is responsible for the evolution of sexual dimorphism in bill lengths of hummingbirds, but rather that the dimorphism probably reflects the combined effects of reproductive role division and intersexual food competition, and possibly, sexual selection.  相似文献   

9.
Bird tails are extraordinarily variable in length and functionality. In some species, males have evolved exaggeratedly long tails as a result of sexual selection. Changes in tail length should be associated with changes in feather structure. The study of the evolution of feather structure in bird tails could give insight to understand the causes and means of evolution in relation to processes of sexual selection. In theory, three possible means of tail length evolution in relation to structural components might be expected: (1) a positive relationship between the increase in length and size of structural components maintaining the mechanical properties of the feather; (2) no relationship; that is, enlarging feather length without changes in the structural components; and (3) a negative relationship; that is, enlarging feather length by reducing structural components. These hypotheses were tested using phylogenetic analyses to examine changes in both degree of exaggeration in tail length and structural characteristics of tail feathers (rachis width and density of barbs) in 36 species, including those dimorphic and nondimorphic in tail length. The degree of sexual dimorphism in tail length was negatively correlated with both rachis width and density of barbs in males but not in females. Reinforcing this result, we found that dimorphism in tail length was negatively associated with dimorphism in tail feather structure (rachis width and density of barbs). These results support the third hypothesis, in which the evolution of long feathers occurs at the expense of making them simpler and therefore less costly to produce. However, we do not know the effects of enfeeblement on the costs of bearing. If the total costs increased, the enfeeblement of feathers could be explained as a reinforcement of the honesty of the signal. Alternatively, if total costs were reduced, the strategy could be explained by cheating processes. The study of female preferences for fragile tail feathers is essential to test these two hypotheses. Preferences for fragile tails would support the evolution of reinforcement of honesty, whereas female indifference would indicate the existence of cheating in certain stages of the evolutionary process.  相似文献   

10.
Males and females share much of their genome, and as a result, intralocus sexual conflict is generated when selection on a shared trait differs between the sexes. This conflict can be partially or entirely resolved via the evolution of sex‐specific genetic variation that allows each sex to approach, or possibly achieve, its optimum phenotype, thereby generating sexual dimorphism. However, shared genetic variation between the sexes can impose constraints on the independent expression of a shared trait in males and females, hindering the evolution of sexual dimorphism. Here, we examine genetic constraints on the evolution of sexual dimorphism in Drosophila melanogaster cuticular hydrocarbon (CHC) expression. We use the extended G matrix, which includes the between‐sex genetic covariances that constitute the B matrix, to compare genetic constraints on two sets of CHC traits that differ in the extent of their sexual dimorphism. We find significant genetic constraints on the evolution of further dimorphism in the least dimorphic traits, but no such constraints for the most dimorphic traits. We also show that the genetic constraints on the least dimorphic CHCs are asymmetrical between the sexes. Our results suggest that there is evidence both for resolved and ongoing sexual conflict in D. melanogaster CHC profiles.  相似文献   

11.
Mechanisms of sexual selection in the monogamous, sexually dimorphic barn swallow (Hirundo rustica) were studied during a seven-year period. First, the sex ratio of reproducing adults was male-biased, and mated males had significantly longer tail ornaments than unmated males. Secondly, some of the unmated individuals later committed infanticide and became mated with the mother of the killed brood. Fathers of killed broods had significantly shorter tails than other males, and there was a tendency for infanticidal males to have longer tail ornaments than other unmated males. Thirdly, long-tailed male barn swallows were more successful in acquiring extra-pair copulations than other males, and females involved in extra-pair copulations, as compared to females not involved in such copulations, had mates with shorter tail ornaments. Fourthly, male barn swallows having long tails as compared to short-tailed males acquired mates in better body condition. Females mated to long-tailed males reproduced earlier, laid more eggs and were more likely to have two clutches than were females mated to short-tailed males. Finally, females mated to long-tailed males put more effort into reproduction than did other females, as evidenced by their relatively larger contribution to feeding of offspring. Thus, at least five different components of sexual selection affected male reproductive success. Selection arising from differential success during extra-pair copulations, differential reproductive success and differential male reproductive effort thus accounted for most of the selection on tail ornaments in male barn swallows.  相似文献   

12.
Intrasexual competition for reproduction is thought to be an important factor in the evolution of ornaments and weapons in males. However, the evolution of morphologically similar traits in females is often explained through other mechanisms, and the role of intrasexual competition in female trait elaboration has received little attention. Here, we explore the factors associated with female trait elaboration in the cooperatively breeding Pukeko (the New Zealand race of the Purple Swamphen Porphyrio porphyrio melanotus) by comparing sexual dimorphism in an ornament across two populations. Importantly, the two populations considered differ in several social factors that could affect the degree of female–female competition, and could thereby produce differential selection on elaborate female traits. Recent studies have suggested that high reproductive skew (i.e. monopolization of reproduction by dominant individuals) could influence the intensity of intrasexual competition and select for female elaboration. However, we found that sexual dimorphism was diminished and Pukeko females had more elaborate ornaments under conditions of low reproductive skew. We discuss alternative factors that could influence the degree of female–female competition, and show that reproductive skew may not always provide an accurate estimate of the scope for intrasexual competition.  相似文献   

13.
Secondary sexual traits increase male fitness, but may be maladaptive in females, generating intralocus sexual conflict that is ameliorated through sexual dimorphism. Sexual selection on males may also lead some males to avoid expenditure on secondary sexual traits and achieve copulations using alternative reproductive tactics (ARTs). Secondary sexual traits can increase or decrease fitness in males, depending on which ART they employ, generating intralocus tactical conflict that can be ameliorated through male dimorphism. Due to the evolutionary forces acting against intralocus sexual and tactical conflicts, male dimorphism could coevolve with sexual dimorphism, a hypothesis that we tested by investigating these dimorphisms across 48 harvestman species. Using three independently derived phylogenies, we consistently found that the evolution of sexual dimorphism was correlated with that of male dimorphism, and suggest that the major force behind this relationship is the similarity between selection against intralocus sexual conflict and selection against intralocus tactical conflict. We also found that transitions in male dimorphism were more likely in the presence of sexual dimorphism, indicating that if a sexually selected trait arises on an autosome and is expressed in both sexes, its suppression in females probably evolves earlier than its suppression in small males that adopt ARTs.  相似文献   

14.
Secondary sexual characters are assumed to be costly to produce and maintain, and this will select for morphological modifications that reduce the magnitude of such costs. Here we test whether a feather ornament, the sexually exaggerated outermost tail feathers of male barn swallows Hirundo rustica, a trait currently subject to a directional female mate preference, and other aspects of the morphology used for flight have been modified to increase aerodynamic performance. This was done by making comparisons among sexes within populations, among individuals varying in tail length within populations, and among populations from different parts of Europe. Male barn swallows experienced reduced drag from their elongated tail feathers by morphological modifications of the ornamental feathers as compared to females. Morphological features of the outermost tail feathers were unrelated to tail length in both males and females within populations. Wing and tail morphology (length of central tail feathers and wings, wing span, wing area, wing loading, and aspect ratio) was modified in males compared to females. Barn swallows with long tails had morphological tail and wing modifications that reduced the cost of a large ornament, and similar modifications were seen among populations. The costs of the exaggerated secondary sexual character were therefore reduced by the presence of cost-reducing morphological modifications. The assumptions of reliable signalling theory, that signals should be costly, but more so to low than to high quality individuals, were not violated because long-tailed male barn swallows had the largest cost-reducing morphological characters.  相似文献   

15.
Models of sexual selection in a cline predict the patterns of clinal variation in female mate preference and male secondary sexual characters. These predictions were tested for the nominate subspecies of the barn swallow Hirundo rustica which demonstrates clinal variation in morphology, with several characters in both sexes showing increasing size at higher latitudes. Sexual size dimorphism in the length of the tail ornament and the short, central tail feathers increase with increasing latitude while size dimorphism in other morphological characters is independent of latitude. The main reason for the two divergent patterns of sexual size dimorphism appears to be the higher foraging cost of having a long tail ornamental at low latitudes. The control of development decreases with increasing latitude as demonstrated by an increasing latitudinal cline in fluctuating asymmetry of tail length. Phenotypic variance in tail length increases with latitude in males, but not in females, as shown by the coefficients of variation. Clinal variation in morphology is not due to natural selection associated with a latitudinal increase in the distance between breeding and wintering areas. The geographic patterns of morphological variation suggest that the tail character has diverged geographically as a result of a sexual process of reliable signalling.  相似文献   

16.
Because homologous traits of males and females are likely to have a common genetic basis, sex-specific selection (often resulting from sexual selection on one sex) may generate an evolutionary tug-of-war known as intralocus sexual conflict, which will constrain the adaptive divergence of the sexes. Theory suggests that intralocus sexual conflict can be mitigated through reduction of the intersexual genetic correlation (rMF), predicting negative covariation between rMF and sexual dimorphism. In addition, recent work showed that selection should favor reduced expression of alleles inherited from the opposite-sex parent (intersexual inheritance) in traits subject to intralocus sexual conflict. For traits under sexual selection in males, this should be manifested either in reduced maternal heritability or, when conflict is severe, in reduced heritability through the opposite-sex parent in offspring of both sexes. However, because we do not know how far these hypothesized evolutionary responses can actually proceed, the importance of intralocus sexual conflict as a long-term constraint on adaptive evolution remains unclear. In this study, we investigated the genetic architecture of sexual and nonsexual morphological traits in Prochyliza xanthostoma. The lowest rMF and greatest dimorphism were exhibited by two sexual traits (head length and antenna length) and, among all traits, the degree of sexual dimorphism was correlated negatively with rMF. Moreover, sexual traits exhibited reduced maternal heritabilities, and the most strongly dimorphic sexual trait (antenna length) was heritable only through the same-sex parent in offspring of both sexes. Our results support theory and suggest that intralocus sexual conflict can be resolved substantially by genomic adaptation. Further work is required to identify the proximate mechanisms underlying these patterns.  相似文献   

17.
Intralocus sexual conflict occurs when opposing selection pressures operate on loci expressed in both sexes, constraining the evolution of sexual dimorphism and displacing one or both sexes from their optimum. We eliminated intralocus conflict in Drosophila melanogaster by limiting transmission of all major chromosomes to males, thereby allowing them to win the intersexual tug‐of‐war. Here, we show that this male‐limited (ML) evolution treatment led to the evolution (in both sexes) of masculinized wing morphology, body size, growth rate, wing loading, and allometry. In addition to more male‐like size and shape, ML evolution resulted in an increase in developmental stability for males. However, females expressing ML chromosomes were less developmentally stable, suggesting that being ontogenetically more male‐like was disruptive to development. We suggest that sexual selection over size and shape of the imago may therefore explain the persistence of substantial genetic variation in these characters and the ontogenetic processes underlying them.  相似文献   

18.
The European swallowtail butterfly (Papilio machaon) is so named, because of the long and narrow prominences extending from the trailing edge of their hindwings and, although not a true tail, they are referred to as such. Despite being a defining feature, an unequivocal function for the tails is yet to be determined, with predator avoidance (diverting an attack from the rest of the body), and enhancement of aerodynamic performance suggested. The swallowtail, however, is sexually size dimorphic with females larger than males, but whether the tail is also sexually dimorphic is unknown. Here, museum specimens were used to determine whether sexual selection has played a role in the evolution of the swallowtail butterfly tails in a similar way to that seen in the tail streamers of the barn swallow (Hirundo rustica), where the males have longer streamers than those of the females. Previously identified sexual dimorphism in swallowtail butterfly size was replicated, but no evidence for dimorphism in tail length was found. If evolved to mimic antennae and a head to divert a predatory attack, and if an absolute tail size was the most effective for this, then the tail would probably be invariant with butterfly hindwing size. The slope of the relationship between tail length and size, however, although close to zero, was nonetheless statistically significantly above (tail length ∝ hindwing area 0.107 ± 0.011). The slope also did not equate to that expected for geometric similarity (tail length ∝ hindwing area1/2) suggesting that tail morphology is not solely driven by aerodynamics. It seems likely then, that tail morphology is primarily determined by, and perhaps a compromise of several, factors associated with predator avoidance (e.g. false head mimicry and a startling function). Of course, experimental data are required to confirm this.  相似文献   

19.
The processes governing the evolution of sexual dimorphism provided a foundation for sexual selection theory. Two alternative processes, originally proposed by Darwin and Wallace, differ primarily in the timing of events creating the dimorphism. In the process advocated by Darwin, a novel ornament arises in a single sex, with no temporal separation in the origin and sex-limitation of the novel trait. By contrast, Wallace proposed a process where novel ornaments appear simultaneously in both sexes, but are then converted into sex-limited expression by natural selection acting against showy coloration in one sex. Here, we investigate these alternative modes of sexual dimorphism evolution in a phylogenetic framework and demonstrate that both processes contribute to dimorphic wing patterns in the butterfly genera Bicyclus and Junonia. In some lineages, eyespots and bands arise in a single sex, whereas in other lineages they appear in both sexes but are then lost in one of the sexes. In addition, lineages displaying sexual dimorphism were more likely to become sexually monomorphic than they were to remain dimorphic. This derived monomorphism was either owing to a loss of the ornament ('drab monomorphism') or owing to a gain of the same ornament by the opposite sex ('mutual ornamentation'). Our results demonstrate the necessity of a plurality in theories explaining the evolution of sexual dimorphism within and across taxa. The origins and evolutionary fate of sexual dimorphism are probably influenced by underlying genetic architecture responsible for sex-limited expression and the degree of intralocus sexual conflict. Future comparative and developmental work on sexual dimorphism within and among taxa will provide a better understanding of the biases and constraints governing the evolution of animal sexual dimorphism.  相似文献   

20.
Males of dimorphic species often show ornaments that are thought to have evolved through female choice or/and male–male competition. The sexual differentiation of similar morphologies occurs during ontogeny, resulting in differential sex and age-specific selection. The Long-tailed Manakin is a dimorphic species with a highly skewed mating system, the males of which delay plumage maturation over 3 to 4 years. We describe ontogenetic changes in feather morphology in this species through sexual maturity. Males showed a significant increase in length of the central rectrices with age, hence their degree of sexual dimorphism increased from zero in 1-year-old males to 189.5% in adults. In contrast, male tail length decreased with age. Wing length did not vary significantly with age, but females had relatively longer wings than males. Wing loading was greater in females and decreased with age in males. In adults, rectrix length was positively correlated with testis volume, supporting the hypothesis that secondary sexual characters can signal the condition of primary sexual characters. Rectrix length showed positive allometry with body size in males less than 4 years old, whereas older males showed negative allometry and females showed isometry. Wing area and wing loading shifted from negative to positive allometry in males of 2 to 3 years of age. Changes in male morphology during ontogeny in the Long-tailed Manakin appeared to be associated with their specific display behaviours. Age-related changes in allometric growth of rectrices in the Long-tailed Manakin suggested that young males invest disproportionately more in the length of this trait relative to their body size. This investment could act as a signal of competitive ability to move status position in their orderly queue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号