首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given the major ongoing influence of environmental change on the oceans, there is a need to understand and predict the future distributions of marine species in order to plan appropriate mitigation to conserve vulnerable species and ecosystems. In this study we use tracking data from seven large seabird species of the Southern Ocean (black‐browed albatross Thalassarche melanophris, grey‐headed albatross T. chrysostoma, northern giant petrel Macronectes halli, southern giant petrel M. giganteus, Tristan albatross Diomedea dabbenena, wandering albatross D. exulans and white‐chinned petrel Procellaria aequinoctialis, and on fishing effort in two types of fisheries (characterised by low or high‐bycatch rates), to model the associations with environmental variables (bathymetry, chlorophyll‐a concentration, sea surface temperature and wind speed) through ensemble species distribution models. We then projected these distributions according to four climate change scenarios built by the Intergovernmental Panel for Climate Change for 2050 and 2100. The resulting projections were consistent across scenarios, indicating that there is a strong likelihood of poleward shifts in distribution of seabirds, and several range contractions (resulting from a shift in the northern, but no change in the southern limit of the range in four species). Current trends for southerly shifts in fisheries distributions are also set to continue under these climate change scenarios at least until 2100; some of these may reflect habitat loss for target species that are already over‐fished. It is of particular concern that a shift in the distribution of several highly threatened seabird species would increase their overlap with fisheries where there is a high‐bycatch risk. Under such scenarios, the associated shifts in distribution of seabirds and increases in bycatch risk will require much‐improved fisheries management in these sensitive areas to minimise impacts on populations in decline.  相似文献   

2.
Climate change has strongly influenced the distribution and abundance of marine fish species, leading to concern about effects of future climate on commercially harvested stocks. Understanding the key drivers of large-scale spatial variation across present-day marine assemblages enables predictions of future change. Here we present a unique analysis of standardised abundance data for 198 marine fish species from across the Northeast Atlantic collected by 23 surveys and 31,502 sampling events between 2005 and 2018. Our analyses of the spatially comprehensive standardised data identified temperature as the key driver of fish community structure across the region, followed by salinity and depth. We employed these key environmental variables to model how climate change will affect both the distributions of individual species and local community structure for the years 2050 and 2100 under multiple emissions scenarios. Our results consistently indicate that projected climate change will lead to shifts in species communities across the entire region. Overall, the greatest community-level changes are predicted at locations with greater warming, with the most pronounced effects at higher latitudes. Based on these results, we suggest that future climate-driven warming will lead to widespread changes in opportunities for commercial fisheries across the region.  相似文献   

3.

Aims

Climate change is expected to have profound effects on species' distributions into the future. Freshwater fishes, an important component of freshwater ecosystems, are no exception. Here, we project shifts in suitable conditions for Australian freshwater fishes under different climate change scenarios to identify species that may experience significant declines in habitat suitability.

Location

Australia.

Methods

We use MAXENT bioclimatic models to estimate the effect of climate change on the suitable conditions for 154 species of Australian freshwater fishes, of which 109 are endemic and 29 are threatened with extinction. Suitable conditions for freshwater fish species are modelled using three different Earth System climate models (ESMs) under two different emission scenarios to the year 2100. For each species, we examine potential geographic shifts in the distribution of suitable conditions from the present day to 2100 and quantify how habitat suitability may change at currently occupied sites by the end of this century.

Results

Broadscale poleward shifts in suitable conditions are projected for Australian freshwater fishes by an average of up to 0.38° (~180 km) across all species, depending on the emission scenario. Considerable loss of suitable conditions is forecast to occur within currently recognized distributional extents by 2100, with a mean projected loss of up to 17.5% across species. Predicted geographic range shifts and declines are larger under a high-emission scenario. Threatened species are projected to be more adversely affected than nonthreatened species.

Main Conclusions

Our models identify species and geographic regions that may be vulnerable to climate change, enabling freshwater fish conservation into the future.  相似文献   

4.
Identifying the species most vulnerable to extinction as a result of climate change is a necessary first step in mitigating biodiversity decline. Species distribution modeling (SDM) is a commonly used tool to assess potential climate change impacts on distributions of species. We use SDMs to predict geographic ranges for 243 birds of Australian tropical savannas, and to project changes in species richness and ranges under a future climate scenario between 1990 and 2080. Realistic predictions require recognition of the variability in species capacity to track climatically suitable environments. Here we assess the effect of dispersal on model results by using three approaches: full dispersal, no dispersal and a partial-dispersal scenario permitting species to track climate change at a rate of 30 km per decade. As expected, the projected distributions and richness patterns are highly sensitive to the dispersal scenario. Projected future range sizes decreased for 66% of species if full dispersal was assumed, but for 89% of species when no dispersal was assumed. However, realistic future predictions should not assume a single dispersal scenario for all species and as such, we assigned each species to the most appropriate dispersal category based on individual mobility and habitat specificity; this permitted the best estimates of where species will be in the future. Under this "realistic" dispersal scenario, projected ranges sizes decreased for 67% of species but showed that migratory and tropical-endemic birds are predicted to benefit from climate change with increasing distributional area. Richness hotspots of tropical savanna birds are expected to move, increasing in southern savannas and southward along the east coast of Australia, but decreasing in the arid zone. Understanding the complexity of effects of climate change on species' range sizes by incorporating dispersal capacities is a crucial step toward developing adaptation policies for the conservation of vulnerable species.  相似文献   

5.
Intraspecific genetic variability is critical for species adaptation and evolution and yet it is generally overlooked in projections of the biological consequences of climate change. We ask whether ongoing climate changes can cause the loss of important gene pools from North Atlantic relict kelp forests that persisted over glacial–interglacial cycles. We use ecological niche modelling to predict genetic diversity hotspots for eight species of large brown algae with different thermal tolerances (Arctic to warm temperate), estimated as regions of persistence throughout the Last Glacial Maximum (20,000 YBP), the warmer Mid‐Holocene (6,000 YBP), and the present. Changes in the genetic diversity within ancient refugia were projected for the future (year 2100) under two contrasting climate change scenarios (RCP2.6 and RCP8.5). Models predicted distributions that matched empirical distributions in cross‐validation, and identified distinct refugia at the low latitude ranges, which largely coincide among species with similar ecological niches. Transferred models into the future projected polewards expansions and substantial range losses in lower latitudes, where richer gene pools are expected (in Nova Scotia and Iberia for cold affinity species and Gibraltar, Alboran, and Morocco for warm‐temperate species). These effects were projected for both scenarios but were intensified under the extreme RCP8.5 scenario, with the complete borealization (circum‐Arctic colonization) of kelp forests, the redistribution of the biogeographical transitional zones of the North Atlantic, and the erosion of global gene pools across all species. As the geographic distribution of genetic variability is unknown for most marine species, our results represent a baseline for identification of locations potentially rich in unique phylogeographic lineages that are also climatic relics in threat of disappearing.  相似文献   

6.
Many studies have investigated the possible impact of climate change on the distributions of plant species. In the present study, we test whether the concept of potential distribution is able to effectively predict the impact of climate warming on plant species.Using spatial simulation models, we related the actual (current species distribution), potential (modelled distribution assuming unlimited dispersal) and predicted (modelled distribution accounting for wind-limited seed dispersal) distributions of two plant species under several warming scenarios in the Sagarmatha National Park (Nepal). We found that the two predicted distributions were, respectively, seven and nine times smaller than the potential ones. Under a +3 °C scenario, both species would likely lose their actual and predicted distributions, while their potential distributions would remain partially safe. Our results emphasize that the predicted distributions of plant species may diverge to a great extent from their potential distributions, particularly in mountain areas, and predictions of species preservation in the face of climate warming based on the potential distributions of plant species are at risk of producing overoptimistic projections.We conclude that the concept of potential distribution is likely to lead to limited or inefficacious conservation of plant species due to its excessively optimistic projections of species preservation. More robust strategies should utilize concepts such as “optimal reintroduction”, which maximizes the benefit–cost ratio of conservation activities by limiting reintroduction efforts to suitable areas that could not otherwise be reached by a species; moreover, such strategies maximize the probability of species establishment by excluding areas that will be endangered under future climate scenarios.  相似文献   

7.
The impacts of climate change on marine species are often compounded by other stressors that make direct attribution and prediction difficult. Shy albatrosses (Thalassarche cauta) breeding on Albatross Island, Tasmania, show an unusually restricted foraging range, allowing easier discrimination between the influence of non-climate stressors (fisheries bycatch) and environmental variation. Local environmental conditions (rainfall, air temperature, and sea-surface height, an indicator of upwelling) during the vulnerable chick-rearing stage, have been correlated with breeding success of shy albatrosses. We use an age-, stage- and sex-structured population model to explore potential relationships between local environmental factors and albatross breeding success while accounting for fisheries bycatch by trawl and longline fisheries. The model uses time-series of observed breeding population counts, breeding success, adult and juvenile survival rates and a bycatch mortality observation for trawl fishing to estimate fisheries catchability, environmental influence, natural mortality rate, density dependence, and productivity. Observed at-sea distributions for adult and juvenile birds were coupled with reported fishing effort to estimate vulnerability to incidental bycatch. The inclusion of rainfall, temperature and sea-surface height as explanatory variables for annual chick mortality rate was statistically significant. Global climate models predict little change in future local average rainfall, however, increases are forecast in both temperatures and upwelling, which are predicted to have detrimental and beneficial effects, respectively, on breeding success. The model shows that mitigation of at least 50% of present bycatch is required to offset losses due to future temperature changes, even if upwelling increases substantially. Our results highlight the benefits of using an integrated modeling approach, which uses available demographic as well as environmental data within a single estimation framework, to provide future predictions. Such predictions inform the development of management options in the face of climate change.  相似文献   

8.
Recent efforts to incorporate migration processes into species distribution models (SDMs) are allowing assessments of whether species are likely to be able to track their future climate optimum and the possible causes of failing to do so. Here, we projected the range shift of European beech over the 21st century using a process‐based SDM coupled to a phenomenological migration model accounting for population dynamics, according to two climate change scenarios and one land use change scenario. Our model predicts that the climatically suitable habitat for European beech will shift north‐eastward and upward mainly because (i) higher temperature and precipitation, at the northern range margins, will increase survival and fruit maturation success, while (ii) lower precipitations and higher winter temperature, at the southern range margins, will increase drought mortality and prevent bud dormancy breaking. Beech colonization rate of newly climatically suitable habitats in 2100 is projected to be very low (1–2% of the newly suitable habitats colonised). Unexpectedly, the projected realized contraction rate was higher than the projected potential contraction rate. As a result, the realized distribution of beech is projected to strongly contract by 2100 (by 36–61%) mainly due to a substantial increase in climate variability after 2050, which generates local extinctions, even at the core of the distribution, the frequency of which prevents beech recolonization during more favourable years. Although European beech will be able to persist in some parts of the trailing edge of its distribution, the combined effects of climate and land use changes, limited migration ability, and a slow life‐history are likely to increase its threat status in the near future.  相似文献   

9.
Aim To evaluate whether observed geographical shifts in the distribution of the blue‐winged macaw (Primolius maracana) are related to ongoing processes of global climate change. This species is vulnerable to extinction and has shown striking range retractions in recent decades, withdrawing broadly from southern portions of its historical distribution. Its range reduction has generally been attributed to the effects of habitat loss; however, as this species has also disappeared from large forested areas, consideration of other factors that may act in concert is merited. Location Historical distribution of the blue‐winged macaw in Brazil, eastern Paraguay and northern Argentina. Methods We used a correlative approach to test a hypothesis of causation of observed shifts by reduction of habitable areas mediated by climate change. We developed models of the ecological niche requirements of the blue‐winged macaw, based on point‐occurrence data and climate scenarios for pre‐1950 and post‐1950 periods, and tested model predictivity for anticipating geographical distributions within time periods. Then we projected each model to the other time period and compared distributions predicted under both climate scenarios to assess shifts of habitable areas across decades and to evaluate an explanation for observed range retractions. Results Differences between predicted distributions of the blue‐winged macaw over the twentieth century were, in general, minor and no change in suitability of landscapes was predicted across large areas of the species’ original range in different time periods. No tendency towards range retraction in the south was predicted, rather conditions in the southern part of the species’ range tended to show improvement for the species. Main conclusions Our test permitted elimination of climate change as a likely explanation for the observed shifts in the distribution of the blue‐winged macaw, and points rather to other causal explanations (e.g. changing regional land use, emerging diseases).  相似文献   

10.
中国北方温带地区5种锦鸡儿植物的分布模拟   总被引:7,自引:1,他引:7       下载免费PDF全文
全面收集中国北方温带干旱–半干旱地区5种主要锦鸡儿植物的地理分布资料, 利用ArcGIS 9.0软件绘制现状分布图, 发现小叶锦鸡儿(Caragana microphylla)、中间锦鸡儿(C. intermedia)和柠条锦鸡儿(C. korshinskii)在空间上呈现出从东到西的地理替代分布格局, 继续向西南方向则分布有藏锦鸡儿(C. tibetica), 向西北方向分布有狭叶锦鸡儿(C. stenophylla), 但它们的分布范围又有一定的重叠。整理5种锦鸡儿分布区内的气象台站长期记录, 选择计算15个具有重要生物学意义的水热指标值; 进而用方差分析、多重比较和因子分析相结合的方法, 研究控制这5种锦鸡儿地理分布的主导驱动因子。结果表明: 控制小叶锦鸡儿和中间锦鸡儿间地理分布差异的主导因子是水分因子, 特别是湿度; 水分因子同样是控制中间锦鸡儿和柠条锦鸡儿间地理分布差异的主导因子, 特别是生长季及年降水量; 控制柠条锦鸡儿和藏锦鸡儿间地理分布差异的主导因子是夏季高温, 控制柠条锦鸡儿和狭叶锦鸡儿地理分布差异的是冬季低温。运用耦合BIOCLIM模型的软件包“DIVA-GIS”模拟预测这5种锦鸡儿的现状潜在分布区及未来气候变化的影响, 结果表明: 现状潜在分布区与实际分布区均有很好的一致性; 在CO2浓度加倍的未来气候情景下, 5种锦鸡儿植物都会向北大幅度迁移, 在我国的分布范围均缩小, 分布格局发生显著变化。用ROC曲线和Kappa统计值法验证模型表明, BIOCLIM的模拟精度较高。  相似文献   

11.
Previous studies have focused on changes in the geographical distribution of terrestrial biomes and species targeted by marine capture fisheries due to climate change impacts. Given mariculture's substantial contribution to global seafood production and its growing significance in recent decades, it is essential to evaluate the effects of climate change on mariculture and their socio‐economic consequences. Here, we projected climate change impacts on the marine aquaculture diversity for 85 of the currently most commonly farmed fish and invertebrate species in the world's coastal and/or open ocean areas. Results of ensemble projections from three Earth system models and three species distribution models show that climate change may lead to a substantial redistribution of mariculture species richness potential, with an average of 10%–40% decline in the number of species being potentially suitable to be farmed in tropical to subtropical regions. In contrast, mariculture species richness potential is projected to increase by about 40% at higher latitudes under the ‘no mitigation policy’ scenario (RCP 8.5) by the mid‐21st century. In Exclusive Economic Zones where mariculture is currently undertaken, we projected an average future decline of 1.3% and 5% in mariculture species richness potential under RCP 2.6 (‘strong mitigation’) and RCP 8.5 scenarios, respectively, by the 2050s relative to the 2000s. Our findings highlight the opportunities and challenges for climate adaptation in the mariculture sector through the redistribution of farmed species and expansion of mariculture locations. Our results can help inform adaptation planning and governance mechanisms to minimize local environmental impacts and potential conflicts with other marine and coastal sectors in the future.  相似文献   

12.
Bumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate‐only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species‐specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns.  相似文献   

13.
One of the largest restoration programs in the world, the Comprehensive Everglades Restoration Plan (CERP) aims to restore freshwater inputs to Everglades wetlands and the Florida Bay estuary. This study predicted how the Florida Bay ecosystem may respond to hydrological restoration from CERP within the context of contemporary projected impacts of sea-level rise (SLR) and increased future temperatures. A spatial–temporal dynamic model (Ecospace) was used to develop a spatiotemporal food web model incorporating environmental drivers of salinity, salinity variation, temperature, depth, distance to mangrove, and seagrass abundance and was used to predict responses of biomass, fisheries catch, and ecosystem resilience between current and future conditions. Changes in biomass between the current and future scenario suggest a suite of winners and losers, with many estuarine species increasing in both total biomass and spatial distribution. Notable biomass increases were predicted for important forage species, including bay anchovy (+32%), hardhead halfbeak (+19%), and pinfish (+31%), while decreases were predicted in mullet (−88%), clupeids (−55%), hardhead silverside (−15%), mojarras (−117%), and Portunid crabs (−16%). Increases in sportfish biomass included the angler-preferred spotted seatrout (+9%), red drum (+10%), and gray snapper (+8%), while decreases included sheepshead (−40%), Atlantic tarpon (−73%), and common snook (−507%). Ecosystem resilience and fisheries catch of angler-preferred species were predicted to improve in the future scenario in total, although a localized decline in resilience predicted for the Central Region may warrant further attention. Our results suggest the Florida Bay ecosystem is likely to achieve restoration benefits in spite of, and in some cases facilitated by, the projected future impacts from climate change due to the system's shallow depth and detrital dominance. The incorporation of climate impacts into long-term restoration planning using ecosystem modeling in similar systems facing unknown futures of SLR, warming seas, and shifting species distributions is recommended.  相似文献   

14.
Wildfires are the main cause of forest disturbance in the boreal forest of Canada. Climate change studies forecast important changes in fire cycles, such as increases in fire intensity, severity, and occurrence. The geographical information system (GIS) based cellular automata model, BorealFireSim, serves as a tool to identify future fire patterns in the boreal forest of Quebec, Canada. The model was calibrated using 1950–2010 climate data for the present baseline and forecasts of burning probability up to 2100 were calculated using two RCP scenarios of climate change. Results show that, with every scenario, the mean area burned will likely increase on a provincial scale, while some areas might expect decreases with a low emission scenario. Comparison with other models shows that areas forecasted to have an increase in fire likelihood, overlap with predicted areas of higher vegetation productivity. The results presented in this research aid identifying key areas for fire-dependent species in the near future.  相似文献   

15.

Aim

Climate change is affecting the distribution of species and subsequent biotic interactions, including hybridization potential. The imperiled Golden-winged Warbler (GWWA) competes and hybridizes with the Blue-winged Warbler (BWWA), which may threaten the persistence of GWWA due to introgression. We examined how climate change is likely to alter the breeding distributions and potential for hybridization between GWWA and BWWA.

Location

North America.

Methods

We used GWWA and BWWA occurrence data to model climatically suitable conditions under historical and future climate scenarios. Models were parameterized with 13 bioclimatic variables and 3 topographic variables. Using ensemble modeling, we estimated historical and modern distributions, as well as a projected distribution under six future climate scenarios. We quantified breeding distribution area, the position of and amount of overlap between GWWA and BWWA distributions under each climate scenario. We summarized the top explanatory variables in our model to predict environmental parameters of the distributions under future climate scenarios relative to historical climate.

Results

GWWA and BWWA distributions are projected to substantially change under future climate scenarios. GWWA are projected to undergo the greatest change; the area of climatically suitable breeding season conditions is expected to shift north to northwest; and range contraction is predicted in five out of six future climate scenarios. Climatically suitable conditions for BWWA decreased in four of the six future climate scenarios, while the distribution is projected to shift east. A reduction in overlapping distributions for GWWA and BWWA is projected under all six future climate scenarios.

Main Conclusions

Climate change is expected to substantially alter the area of climatically suitable conditions for GWWA and BWWA, with the southern portion of the current breeding ranges likely to become climatically unsuitable. However, interactions between BWWA and GWWA are expected to decline with the decrease in overlapping habitat, which may reduce the risk of genetic introgression.  相似文献   

16.
Understanding the spatial patterns of fire occurrence and its response to climate change is vital to fire risk mitigation and vegetation management. Focusing on boreal forests in Northeast China, we used spatial point pattern analysis to model fire occurrence reported from 1965 to 2009. Our objectives were to quantitate the relative importance of biotic, abiotic, and human influences on patterns of fire occurrence and to map the spatial distribution of fire occurrence density (number of fires occurring over a given area and time period) under current and future climate conditions. Our results showed human‐caused fires were strongly related to human activities (e.g. landscape accessibility), including proximity to settlements and roads. In contrast, fuel moisture and vegetation type were the most important controlling factors on the spatial pattern of lightning fires. Both current and future projected spatial distributions of the overall (human‐ + lightning‐caused) fire occurrence density were strongly clustered along linear components of human infrastructure. Our results demonstrated that the predicted change in overall fire occurrence density is positively related to the degree of temperature and precipitation change, although the spatial pattern of change is expected to vary spatially according to proximity to human ignition sources, and in a manner inconsistent with predicted climate change. Compared to the current overall fire occurrence density (median value: 0.36 fires per 1000 km2 per year), the overall fire occurrence density is projected to increase by 30% under the CGCM3 B1 scenario and by 230% under HadCM3 A2 scenario in 2081–2100, respectively. Our results suggest that climate change effects may not outweigh the effects of human influence on overall fire occurrence over the next century in this cultural landscape. Accurate forecasts of future fire‐climate relationships should account for anthropogenic influences on fire ignition density, such as roads and proximity to settlements.  相似文献   

17.
A key question in predicting responses to anthropogenic climate change is: how quickly can species adapt to different climatic conditions? Here, we take a phylogenetic approach to this question. We use 17 time‐calibrated phylogenies representing the major tetrapod clades (amphibians, birds, crocodilians, mammals, squamates, turtles) and climatic data from distributions of > 500 extant species. We estimate rates of change based on differences in climatic variables between sister species and estimated times of their splitting. We compare these rates to predicted rates of climate change from 2000 to 2100. Our results are striking: matching projected changes for 2100 would require rates of niche evolution that are > 10 000 times faster than rates typically observed among species, for most variables and clades. Despite many caveats, our results suggest that adaptation to projected changes in the next 100 years would require rates that are largely unprecedented based on observed rates among vertebrate species.  相似文献   

18.
Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.  相似文献   

19.
Mounting evidence shows that organisms have already begun to respond to global climate change. Advances in our knowledge of how climate shapes species distributional patterns has helped us better understand the response of birds to climate change. However, the distribution of birds across the landscape is also driven by biotic and abiotic components, including habitat characteristics. We therefore developed statistical models of 147 bird species distributions in the eastern United States, using climate, elevation, and the distributions of 39 tree species to predict contemporary bird distributions. We used randomForest, a robust regression‐based decision tree ensemble method to predict contemporary bird distributions. These models were then projected onto three models of climate change under high and low emission scenarios for both climate and the projected change in suitable habitat for the 39 tree species. The resulting bird species models indicated that breeding habitat will decrease by at least 10% for 61–79 species (depending on model and emissions scenario) and increase by at least 10% for 38–52 species in the eastern United States. Alternatively, running the species models using only climate/elevation (omitting tree species), we found that the predictive power of these models was significantly reduced (p<0.001). When these climate/elevation‐only models were projected onto the climate change scenarios, the change in suitable habitat was more extreme in 60% of the species. In the end, the strong associations with vegetation tempers a climate/elevation‐only response to climate change and indicates that refugia of suitable habitat may persist for these bird species in the eastern US, even after the redistribution of tree species. These results suggest the importance of interacting biotic processes and that further fine‐scale research exploring how climate change may disrupt species specific requirements is needed.  相似文献   

20.
As climate changes, tree decline in Mediterranean‐type ecosystems is increasing worldwide, often due to decreased effective precipitation and increased drought and heat stress, and has recently been observed in coastal species of the iconic Eucalyptus (Myrtaceae) genus in the biodiversity hotspot of south‐west Western Australia. To investigate how this drought‐related decline is likely to continue in the future, we used species distribution modelling techniques to generate broad‐scale predictions of future distribution patterns under three distinct projected climate change scenarios. In a moderate climate change scenario, suitable habitat for all species was predicted to decrease by, on average, 73% by the year 2100, with most receding into southern areas of their current distribution. Although the most severe Eucalyptus declines in south‐west Western Australia have been observed in near‐coastal regions, our predictions suggest that inland species are at greater risk from climate change, with six inland species predicted to lose 95% of their suitable habitat in a moderate change scenario. This is due to the shallow environmental gradients of inland regions causing larger spatial shifts of environmental envelopes, which is likely to be relevant in many regions of the world. The knowledge gained suggests that future research and conservation efforts in south‐west Western Australia and elsewhere should avoid focussing disproportionately on coastal regions for reasons of convenience and proximity to population centres, and properly address the inland region where the biggest future impacts may occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号