首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plausibility of sympatric speciation has long been debated among evolutionary ecologists. The process necessarily involves two key elements: the stable coexistence of at least two ecologically distinct types and the emergence of reproductive isolation. Recent theoretical studies within the theoretical framework of adaptive dynamics have shown how both these processes can be driven by natural selection. In the standard scenario, a population first evolves to an evolutionary branching point, next, disruptive selection promotes ecological diversification within the population, and, finally, the fitness disadvantage of intermediate types induces a selection pressure for assortative mating behaviour, which leads to reproductive isolation and full speciation. However, the full speciation process has been mostly studied through computer simulations and only analysed in part. Here I present a complete analysis of the whole speciation process by allowing for the simultaneous evolution of the branching ecological trait as well as a continuous trait controlling mating behaviour. I show how the joint evolution can be understood in terms of a gradient landscape, where the plausibility of different evolutionary paths can be evaluated graphically. I find sympatric speciation unlikely for scenarios with a continuous, unimodal, distribution of resources. Rather, ecological settings where the fitness inferiority of intermediate types is preserved during the ecological branching are more likely to provide opportunity for adaptive, sympatric speciation. Such scenarios include speciation due to predator avoidance or specialization on discrete resources. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Despite its role in homogenizing populations, hybridization has also been proposed as a means to generate new species. The conceptual basis for this idea is that hybridization can result in novel phenotypes through recombination between the parental genomes, allowing a hybrid population to occupy ecological niches unavailable to parental species. Here we present an alternative model of the evolution of reproductive isolation in hybrid populations that occurs as a simple consequence of selection against genetic incompatibilities. Unlike previous models of hybrid speciation, our model does not incorporate inbreeding, or assume that hybrids have an ecological or reproductive fitness advantage relative to parental populations. We show that reproductive isolation between hybrids and parental species can evolve frequently and rapidly under this model, even in the presence of substantial ongoing immigration from parental species and strong selection against hybrids. An interesting prediction of our model is that replicate hybrid populations formed from the same pair of parental species can evolve reproductive isolation from each other. This non-adaptive process can therefore generate patterns of species diversity and relatedness that resemble an adaptive radiation. Intriguingly, several known hybrid species exhibit patterns of reproductive isolation consistent with the predictions of our model.  相似文献   

3.
The genetic structure and dynamics of hybrid zones provide crucial information for understanding the processes and mechanisms of evolutionary divergence and speciation. In general, higher levels of evolutionary divergence between taxa are more likely to be associated with reproductive isolation and may result in suppressed or strongly restricted hybridization. In this study, we examined two secondary contact zones between three deep evolutionary lineages in the common vole (Microtus arvalis). Differences in divergence times between the lineages can shed light on different stages of reproductive isolation and thus provide information on the ongoing speciation process in M. arvalis. We examined more than 800 individuals for mitochondrial (mtDNA), Y‐chromosome and autosomal markers and used assignment and cline analysis methods to characterize the extent and direction of gene flow in the contact zones. Introgression of both autosomal and mtDNA markers in a relatively broad area of admixture indicates selectively neutral hybridization between the least‐divergent lineages (Central and Eastern) without evidence for partial reproductive isolation. In contrast, a very narrow area of hybridization, shifts in marker clines and the quasi‐absence of Y‐chromosome introgression support a moving hybrid zone and unidirectional selection against male hybrids between the lineages with older divergence (Central and Western). Data from a replicate transect further support non‐neutral processes in this hybrid zone and also suggest a role for landscape history in the movement and shaping of geneflow profiles.  相似文献   

4.
Recent years have seen a resurgence of interest in the process of speciation but few studies have elucidated the mechanisms either driving or constraining the evolution of reproductive isolation. In theory, the direct effects of reinforcing selection for increased mating discrimination where interbreeding produces hybrid offspring with low fitness and the indirect effects of adaptation to different environments can both promote speciation. Conversely, high levels of homogenizing gene flow can counteract the forces of selection. We demonstrate the opposing effects of reinforcing selection and gene flow in Timema cristinae walking-stick insects. The magnitude of female mating discrimination against males from other populations is greatest when migration rates between populations adapted to alternate host plants are high enough to allow the evolution of reinforcement, but low enough to prevent gene flow from eroding adaptive divergence in mate choice. Moreover, reproductive isolation is strongest under the combined effects of reinforcement and adaptation to alternate host plants. Our findings demonstrate the joint effects of reinforcement, ecological adaptation and gene flow on progress towards speciation in the wild.  相似文献   

5.

Background  

An open, focal issue in evolutionary biology is how reproductive isolation and speciation are initiated; elucidation of mechanisms with empirical evidence has lagged behind theory. Under ecological speciation, reproductive isolation between populations is predicted to evolve incidentally as a by-product of adaptation to divergent environments. The increased genetic diversity associated with interspecific hybridization has also been theorized to promote the development of reproductive isolation among independent populations. Using the fungal model Neurospora, we founded experimental lineages from both intra- and interspecific crosses, and evolved them in one of two sub-optimal, selective environments. We then measured the influence that initial genetic diversity and the direction of selection (parallel versus divergent) had on the evolution of reproductive isolation.  相似文献   

6.
Adaptive speciation occurs when frequency-dependent ecological interactions generate conditions of disruptive selection to which lineage splitting is an adaptive response. Under such selective conditions, evolution of assortative mating mechanisms enables the break-up of the ancestral lineage into diverging and reproductively isolated descendent species. Extending previous studies, I investigate models of adaptive speciation due to the evolution of indirect assortative mating that is based on three different mating traits: the degree of assortativity, a female preference trait and a male marker trait. For speciation to occur, linkage disequilibria between different mating traits, e.g. between female preference and male marker traits, as well as between mating traits and the ecological trait, must evolve. This can lead to novel speciation scenarios, e.g. when reproductive isolation is generated by a splitting in the degree of assortativeness, with one of the emerging lineages mating assortatively, and the other one disassortatively. I investigate the effects of variation in various model parameters on the likelihood of speciation, as well as robustness of speciation to introducing costs of assortative mating. Even though in the models presented speciation requires the genetic potential for strong assortment as well as rather restrictive ecological conditions, the results show that adaptive speciation due to the evolution of assortative mating when mate choice is based on separate female preference and male marker traits is a theoretically plausible evolutionary scenario.  相似文献   

7.
One of the primary challenges of evolutionary research is to identify ecological factors that favour reproductive isolation. Therefore, studying partially isolated taxa has the potential to provide novel insight into the mechanisms of evolutionary divergence. Our study utilizes an adaptive colour polymorphism in the arc‐eye hawkfish (Paracirrhites arcatus) to explore the evolution of reproductive barriers in the absence of geographic isolation. Dark and light morphs are ecologically partitioned into basaltic and coral microhabitats a few metres apart. To test whether ecological barriers have reduced gene flow among dark and light phenotypes, we evaluated genetic variation at 30 microsatellite loci and a nuclear exon (Mc1r) associated with melanistic coloration. We report low, but significant microsatellite differentiation among colour morphs and stronger divergence in the coding region of Mc1r indicating signatures of selection. Critically, we observed greater genetic divergence between colour morphs on the same reefs than that between the same morphs in different geographic locations. We hypothesize that adaptation to the contrasting microhabitats is overriding gene flow and is responsible for the partial reproductive isolation observed between sympatric colour morphs. Combined with complementary studies of hawkfish ecology and behaviour, these genetic results indicate an ecological barrier to gene flow initiated by habitat selection and enhanced by assortative mating. Hence, the arc‐eye hawkfish fulfil theoretical expectations for the earliest phase of speciation with gene flow.  相似文献   

8.
Otto SP  Servedio MR  Nuismer SL 《Genetics》2008,179(4):2091-2112
A long-standing goal in evolutionary biology is to identify the conditions that promote the evolution of reproductive isolation and speciation. The factors promoting sympatric speciation have been of particular interest, both because it is notoriously difficult to prove empirically and because theoretical models have generated conflicting results, depending on the assumptions made. Here, we analyze the conditions under which selection favors the evolution of assortative mating, thereby reducing gene flow between sympatric groups, using a general model of selection, which allows fitness to be frequency dependent. Our analytical results are based on a two-locus diploid model, with one locus altering the trait under selection and the other locus controlling the strength of assortment (a "one-allele" model). Examining both equilibrium and nonequilibrium scenarios, we demonstrate that whenever heterozygotes are less fit, on average, than homozygotes at the trait locus, indirect selection for assortative mating is generated. While costs of assortative mating hinder the evolution of reproductive isolation, they do not prevent it unless they are sufficiently great. Assortative mating that arises because individuals mate within groups (formed in time or space) is most conducive to the evolution of complete assortative mating from random mating. Assortative mating based on female preferences is more restrictive, because the resulting sexual selection can lead to loss of the trait polymorphism and cause the relative fitness of heterozygotes to rise above homozygotes, eliminating the force favoring assortment. When assortative mating is already prevalent, however, sexual selection can itself cause low heterozygous fitness, promoting the evolution of complete reproductive isolation (akin to "reinforcement") regardless of the form of natural selection.  相似文献   

9.
Natural selection can act against maladaptive hybridization between co‐occurring divergent populations leading to evolution of reproductive isolation among them. A critical unanswered question about this process that provides a basis for the theory of speciation by reinforcement, is whether natural selection can cause hybridization rates to evolve to zero. Here, we investigated this issue in two sibling mosquitoes species, Aedes mariae and Aedes zammitii, that show postmating reproductive isolation (F1 males sterile) and partial premating isolation (different height of mating swarms) that could be reinforced by natural selection against hybridization. In 1986, we created an artificial sympatric area between the two species and sampled about 20,000 individuals over the following 25 years. Between 1986 and 2011, the composition of mating swarms and the hybridization rate between the two species were investigated across time in the sympatric area. Our results showed that A. mariae and A. zammitii have not completed reproductive isolation since their first contact in the artificial sympatric area. We have discussed the relative role of factors such as time of contact, gene flow, strength of natural selection, and biological mechanisms causing prezygotic isolation to explain the observed results.  相似文献   

10.
Sexual selection is considered one of the key processes that contribute to the emergence of new species. While the connection between sexual selection and speciation has been supported by comparative studies, the mechanisms that mediate this connection remain unresolved, especially in plants. Similarly, it is not clear how speciation processes within plant populations translate into large-scale speciation dynamics. Here, we review the mechanisms through which sexual selection, pollination, and mate choice unfold and interact, and how they may ultimately produce reproductive isolation in plants. We also overview reproductive strategies that might influence sexual selection in plants and illustrate how functional traits might connect speciation at the population level (population differentiation, evolution of reproductive barriers; i.e. microevolution) with evolution above the species level (macroevolution). We also identify outstanding questions in the field, and suitable data and tools for their resolution. Altogether, this effort motivates further research focused on plants, which might potentially broaden our general understanding of speciation by sexual selection, a major concept in evolutionary biology.  相似文献   

11.
物种形成是基本的进化过程, 也是生物多样性形成的基础。自然选择可以导致新物种的产生。生态物种形成是指以生态为基础的歧化选择使不同群体分化产生生殖隔离的物种形成过程。本文首先回顾了生态物种形成的研究历史, 并详细介绍了生态物种形成的3个要素, 即歧化选择的来源、生殖隔离的形式以及关联歧化选择与生殖隔离的遗传机制。歧化选择的来源主要包括不同的环境或生态位、不同形式的性选择, 以及群体间的相互作用。生殖隔离的形式多种多样, 我们总结了合子前和合子后隔离的遗传学机制以及在生态物种形成中起到的作用。控制适应性性状的基因与导致生殖隔离的基因可以通过基因多效性或连锁不平衡相互关联起来。借助于第二代测序技术, 研究者可以对生态物种形成的遗传学与基因组学基础进行研究。此外, 本文还总结了生态物种形成领域最新的研究进展, 包括平行进化的全基因组基础, 以及基因流影响群体分化的理论基础。通过归纳比较由下至上和由上至下这两种不同的研究思路, 作者认为这两种思路的结合可以为生态物种形成基因的筛选提供更有力也更精确的方法。同时, 作者还提出生态物种形成的研究应该基于更好的表型描述以及更完整的基因组信息, 研究的物种也应该具有更广泛的代表性。  相似文献   

12.
Matute DR 《Current biology : CB》2010,20(24):2229-2233
Reinforcement, the strengthening of prezygotic reproductive isolation by natural selection in response to maladaptive hybridization [1-3], is one of the few processes in which natural selection directly favors the evolution of species as discrete groups (e.g., [4-7]). The evolution of reproductive barriers via reinforcement is expected to evolve in regions where the ranges of two species overlap and hybridize as an evolutionary solution to avoiding the costs of maladaptive hybridization [2,3,8]. The role of reinforcement in speciation has, however, been highly controversial because population-genetic theory suggests that the process is severely impeded by both hybridization [8-11] and migration of individuals from outside the contact zone [12,13]. To determine whether reinforcement could strengthen the reproductive barriers between two sister species of Drosophila in the face of these impediments, I initiated experimental populations of these two species that allowed different degrees of hybridization, as well as migration from outside populations. Surprisingly, even in the face of gene flow, reinforcement could promote the evolution of reproductive isolation within only five generations. As theory predicts, high levels of hybridization (and/or strong selection against hybrids) and migration impeded this evolution. These results suggest that reinforcement can help complete the process of speciation.  相似文献   

13.
Since Darwin published the “Origin,” great progress has been made in our understanding of speciation mechanisms. The early investigations by Mayr and Dobzhansky linked Darwin's view of speciation by adaptive divergence to the evolution of reproductive isolation, and thus provided a framework for studying the origin of species. However, major controversies and questions remain, including: When is speciation nonecological? Under what conditions does geographic isolation constitute a reproductive isolating barrier? and How do we estimate the “importance” of different isolating barriers? Here, we address these questions, providing historical background and offering some new perspectives. A topic of great recent interest is the role of ecology in speciation. “Ecological speciation” is defined as the case in which divergent selection leads to reproductive isolation, with speciation under uniform selection, polyploid speciation, and speciation by genetic drift defined as “nonecological.” We review these proposed cases of nonecological speciation and conclude that speciation by uniform selection and polyploidy normally involve ecological processes. Furthermore, because selection can impart reproductive isolation both directly through traits under selection and indirectly through pleiotropy and linkage, it is much more effective in producing isolation than genetic drift. We thus argue that natural selection is a ubiquitous part of speciation, and given the many ways in which stochastic and deterministic factors may interact during divergence, we question whether the ecological speciation concept is useful. We also suggest that geographic isolation caused by adaptation to different habitats plays a major, and largely neglected, role in speciation. We thus provide a framework for incorporating geographic isolation into the biological species concept (BSC) by separating ecological from historical processes that govern species distributions, allowing for an estimate of geographic isolation based upon genetic differences between taxa. Finally, we suggest that the individual and relative contributions of all potential barriers be estimated for species pairs that have recently achieved species status under the criteria of the BSC. Only in this way will it be possible to distinguish those barriers that have actually contributed to speciation from those that have accumulated after speciation is complete. We conclude that ecological adaptation is the major driver of reproductive isolation, and that the term “biology of speciation,” as proposed by Mayr, remains an accurate and useful characterization of the diversity of speciation mechanisms.  相似文献   

14.
Understanding the processes underlying the origin of new species is a fundamental problem in evolutionary research. Whilst it has long been recognised that closely related taxa often differ markedly in reproductive characteristics, only relatively recently has sexual selection been evoked as a key promoter of speciation through its ability to generate reproductive isolation (RI). Sexual selection potentially can influence the probability that individuals from the same or different populations will reproduce successfully since it shapes precisely those traits involved in mating and reproduction. If reproductive characters diverge along different trajectories, then sexual selection can impact on the evolution of reproductive barriers operating both before and after mating. In this perspective, we consider some new advances in our understanding of the coevolution of male and female sexual signals and receptors and suggest how these developments may provide heretofore neglected insights into the mechanisms by which isolating barriers may emerge. Specifically, we explore how selfish genetic elements (SGEs) can mediate pre- and post-copulatory mate choice, thereby influencing gene flow and ultimately population divergence; we examine evidence from studies of intracellular sperm–egg interactions and propose that intracellular gametic incompatibilities may arise after sperm entry into the egg, and thus contribute to RI; we review findings from genomic studies demonstrating rapid, adaptive evolution of reproductive genes in both sexes and discuss whether such changes are causal in determining RI or simply associated with it; and finally, we consider genetic, developmental and functional mechanisms that might constrain reproductive trait diversification, thereby limiting the scope for reproductive barriers to arise via sexual selection. We hope to stimulate work that will further the understanding of the role sexual selection plays in generating RI and ultimately speciation.  相似文献   

15.
Ecological interactions and the natural selection they cause play a prominent causal role in biological diversification and speciation. As a discipline, ecological genetics integrates the two components of adaptive evolution (natural selection and genetic variability) to study the mechanisms of evolution. Ecological genetics is a fruitful approach to the study of how reproductive isolation can evolve under natural selection. The essence of this way of thinking and the ways in which it can be used to address persistent open questions in speciation are discussed.  相似文献   

16.
Understanding the mechanisms of rapid adaptive radiation has been a central problem of evolutionary ecology. Recently, there is a growing recognition that hybridization between different evolutionary lineages can facilitate adaptive radiation by creating novel phenotypes. Yet, theoretical plausibility of this hypothesis remains unclear because, for example, hybridization can negate pre‐existing species richness. Here, we theoretically investigate whether and under what conditions hybridization promotes ecological speciation and adaptive radiation using an individual‐based model to simulate genome evolution following hybridization between two allopatrically evolved lineages. The model demonstrated that transgressive segregation through hybridization can facilitate adaptive radiation, most powerfully when novel vacant ecological niches are highly dissimilar, phenotypic effect size of mutations is small and there is moderate genetic differentiation between parental lineages. These results provide a theoretical basis for the effect of hybridization facilitating adaptive radiation.  相似文献   

17.
Local adaptation to different environments can promote mating isolation – either as an incidental by-product of trait divergence, or as a result of selection to avoid maladaptive mating. Numerous recent empirical examples point to the common influence of divergent natural selection on speciation based largely on evidence of strong pre-mating isolation between populations from different habitat types. Accumulating evidence for natural selection''s influence on speciation is therefore no longer a challenge. The difficulty, rather, is in determining the mechanisms involved in the progress of adaptive divergence to speciation once barriers to gene flow are already present. Here, we present results of both laboratory and field experiments with Trinidadian guppies (Poecilia reticulata) from different environments, who do not show complete reproductive isolation despite adaptive divergence. We investigate patterns of mating isolation between populations that do and do not exchange migrants and show evidence for both by-product and reinforcement mechanisms depending on female ecology. Specifically, low-predation females discriminate against all high-predation males thus implying a by-product mechanism, whereas high-predation females only discriminate against low-predation males from further upstream in the same river, implying selection to avoid maladaptive mating. Our study thus confirms that mechanisms of adaptive speciation are not necessarily mutually exclusive and uncovers the complex ecology-geography interactions that underlie the evolution of mating isolation in nature.  相似文献   

18.
During the last decade, the ecological theory of adaptive radiation, and its corollary ??ecological speciation??, has been a major research theme in evolutionary biology. Briefly, this theory states that speciation is mainly or largely the result of divergent selection, arising from niche differences between populations or incipient species. Reproductive isolation evolves either as a result of direct selection on mate preferences (e.g. reinforcement), or as a correlated response to divergent selection (??by-product speciation??). Although there are now many tentative examples of ecological speciation, I argue that ecology??s role in speciation might have been overemphasised and that non-ecological and non-adaptive alternatives should be considered more seriously. Specifically, populations and species of many organisms often show strong evidence of niche conservatism, yet are often highly reproductively isolated from each other. This challenges niche-based ecological speciation and reveals partial decoupling between ecology and reproductive isolation. Furthermore, reproductive isolation might often evolve in allopatry before ecological differentiation between taxa or possibly through learning and antagonistic sexual interactions, either in allopatry or sympatry. Here I discuss recent theoretical and empirical work in this area, with some emphasis on odonates (dragonflies and damselflies) and suggest some future avenues of research. A main message from this paper is that the ecology of species differences is not the same as ecological speciation, just like the genetics of species differences does not equate to the genetics of speciation.  相似文献   

19.
Divergent selection between contrasting habitats can sometimes drive adaptive divergence and the evolution of reproductive isolation in the face of initially high gene flow. "Progress" along this ecological speciation pathway can range from minimal divergence to full speciation. We examine this variation for threespine stickleback fish that evolved independently across eight lake-stream habitat transitions. By quantifying stickleback diets, we show that lake-stream transitions usually coincide with limnetic-benthic ecotones. By measuring genetically based phenotypes, we show that these ecotones often generate adaptive divergence in foraging morphology. By analyzing neutral genetic markers (microsatellites), we show that adaptive divergence is often associated with the presence of two populations maintaining at least partial reproductive isolation in parapatry. Coalescent-based simulations further suggest that these populations have diverged with gene flow within a few thousand generations, although we cannot rule out the possibility of phases of allopatric divergence. Finally, we find striking variation among the eight lake-stream transitions in progress toward ecological speciation. This variation allows us to hypothesize that progress is generally promoted by strong divergent selection and limited dispersal across the habitat transitions. Our study thus makes a case for ecological speciation in a parapatric context, while also highlighting variation in the outcome.  相似文献   

20.
The evolution of the flower is commonly thought to have spurred angiosperm diversification. Similarly, particular floral traits might have promoted diversification within specific angiosperm clades. We hypothesize that traits promoting the precise positional transfer of pollen between flowers might promote diversification. In particular, precise pollen transfer might produce partial reproductive isolation that facilitates adaptive divergence between parapatric populations differing in their reproductive-organ positions. We investigate this hypothesis with an individual-based model of pollen transfer dynamics associated with heterostyly, a floral syndrome that depends on precise pollen transfer. Our model shows that precise pollen transfer can cause sexual selection leading to divergence in reproductive-organ positions between populations served by different pollinators, pleiotropically causing an increase in reproductive isolation through a “magic trait” mechanism. Furthermore, this increased reproductive isolation facilitates adaptive divergence between the populations in an unlinked, ecologically selected trait. In a different pollination scenario, however, precise pollen transfer causes a decrease in adaptive divergence by promoting asymmetric gene flow. Our results highlight the idea that magic traits are not “magic” in isolation; in particular, the effect size of magic traits in speciation depends on the external environment, and also on other traits that modify the strength of the magic trait''s influence on non-random mating. Overall, we show that the evolutionary consequences of pollen transfer dynamics can depend strongly on the available pollinator fauna and on the morphological fit between flowers and pollinators. Furthermore, our results illustrate the potential importance of even weak reproductive isolating barriers in facilitating adaptive divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号