首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
  1. Dispersal, defined as the movement of individuals among local communities in a landscape, is a central regional determinant of metacommunity dynamics in ecosystems. Whereas both natural and anthropogenic ecosystem fragmentations can limit dispersal, previous attempts to measure such limitations have faced considerable context dependency, due to a combination of spatial extent and associated environmental variability, the wide range of dispersal modes, and abilities of organisms or variation in network topologies. Therefore, the role dispersal plays compared to local environmental filtering in explaining metacommunity dynamics remains unclear in fragmented dendritic ecosystems.
  2. We quantified α- and β-diversity components of invertebrate metacommunities across 10 fragmented headwater stream networks and tested the hypothesis that dispersal is the primary determinant of biodiversity organisation in these dynamic and spatially constrained ecosystems.
  3. Alpha-diversity was much lower in intermittent than perennial reaches, even long after rewetting, indicating an overwhelming effect of drying including a legacy effect on local communities.
  4. Beta-diversity was never correlated with environmental distances but predominantly explained by spatial distances accounting for river network fragmentation. The nestedness proportion of β-diversity was considerable and reflected compositional differences where communities from intermittent reaches were subsets of perennial reaches.
  5. Altogether, these results indicate dispersal as the primary process shaping metacommunity dynamics in these 10 headwater stream networks, where local communities recurrently undergo extinction and recolonisation events. This challenges previous conceptual views that local environment filtering is the main driver of headwater stream metacommunities.
  6. As river networks become increasingly fragmented due to global change, our results suggest that some freshwater ecosystems currently driven by local environment filtering could gradually become dispersal-limited. In this perspective, shifts from perennial to intermittent flow regimes represent ecological thresholds that should not be crossed to avoid jeopardising river biodiversity, functional integrity, and the ecosystem services they provide to society.
  相似文献   

2.
  1. When species can access all parts of the landscape, species-sorting metacommunity theory predicts that community composition depends on habitat choice and interactions with other species and the environment. These filtering processes can also depend on species' traits.
  2. The authors investigated how traits mediate a species-sorting process in determining butterfly community composition in a naturally patchy landscape in the tropical Western Ghats, India. The authors asked, do traits mediate access to certain habitats and does seasonality affect these patterns? The authors surveyed 56 habitat patches in three habitat types: laterite plateau grasslands, ridge grassland, and moist-deciduous forest, in a 65-km2 landscape.
  3. Non-palatable butterflies showed similar occurrences across seasons and habitats, but palatable butterflies were less commonly encountered in open habitats in the dry season. Polyphagous butterflies occurred infrequently in the dry season in laterite habitats, potentially indicating emigration or diapause patterns are linked to diet breadth.
  4. All species were present in all habitats, implying dispersal does not limit access to different habitat patches, consistent with the species-sorting metacommunity concept. Nevertheless, butterfly occurrence was strongly influenced by the interaction of mobility and habitat type with sedentary species occurring less often in low-resource open laterite patches than mobile species.
  5. Species sorting is typically regarded as occurring directly through environmental filters, but here the authors suggest that the environmental filter acts through movement limitations. Studies integrating landscape heterogeneity and species characteristics will help us better understand metacommunities and species distributions in nature.
  相似文献   

3.
  1. Metacommunities are structured by a combination of different ecological factors that vary in their importance depending on environmental heterogeneity and species functional equivalence. However, empirical tests of such context-dependence at regional scales are still missing.
  2. We investigated associations between deterministic (e.g. environmental filtering and biotic interactions) and stochastic factors (e.g. dispersal related) and metacommunity structure of macroinvertebrates and diatoms across streams in four regions with contrasting levels of environmental and organismal trait heterogeneity.
  3. Environmental filtering was most strongly associated with the region that showed moderate environmental heterogeneity and comprised communities with the highest trait heterogeneity. Associations with stochastic factors in the regions were more variable and difficult to predict. Environmental factors and the degree of genus-level association were generally more strongly associated with macroinvertebrates than with diatoms, whereas stochastic factors had consistently lower influence on macroinvertebrates.
  4. These results suggest that the degree to which deterministic versus stochastic factors influence aquatic metacommunities depends on environmental and trait heterogeneity. Furthermore, organismal characteristics such as dispersal potential, habitat specialisation and sensitivity to environmental variation can also generate considerable context dependency in metacommunity structure.
  相似文献   

4.
5.
6.
7.
8.
9.
10.
Ecosystems are often arranged in naturally patchy landscapes with habitat patches linked by dispersal of species in a metacommunity. The size of a metacommunity, or number of patches, is predicted to influence community dynamics and therefore the structure and function of local communities. However, such predictions have yet to be experimentally tested using full food webs in natural metacommunities. We used the natural mesocosm system of aquatic macroinvertebrates in bromeliad phytotelmata to test the effect of the number of patches in a metacommunity on species richness, abundance, and community composition. We created metacommunities of varying size using fine mesh cages to enclose a gradient from a single bromeliad up to the full forest. We found that species richness, abundance, and biomass increased from enclosed metacommunities to the full forest size and that diversity and evenness also increased in larger enclosures. Community composition was affected by metacommunity size across the full gradient, with a more even detritivore community in larger metacommunities, and taxonomic groups such as mosquitoes going locally extinct in smaller metacommunities. We were able to divide the effects of metacommunity size into aquatic and terrestrial habitat components and found that the importance of each varied by species; those with simple life cycles were only affected by local aquatic habitat whereas insects with complex life cycles were also affected by the amount of terrestrial matrix. This differential survival of obligate and non‐obligate dispersers allowed us to partition the beta‐diversity between metacommunities among functional groups. Our study is one of the first tests of metacommunity size in a natural metacommunity landscape and shows that both diversity and community composition are significantly affected by metacommunity size. Synthesis Natural food webs are sensitive to meta‐community size, i.e. the number of patches connected through dispersal. We provide an empirical test using the aquatic foodweb associated within bromeliads as a model system. When we reduced the number of bromeliad patches connect through dispersal, we found a clear change of the foodweb in terms of population sizes, beta diversity, community composition and predator‐prey ratios. The response of individual taxa was predictable based on species traits including dispersal modes, life cycle, and adult resource requirements. Our study demonstrates that community structure is strongly influenced by the interplay of species traits and landscape properties.  相似文献   

11.
Lakes and their topological distribution across Earth's surface impose ecological and evolutionary constraints on aquatic metacommunities. In this study, we group similar lake ecosystems as metacommunity units influencing diatom community structure. We assembled a database of 195 lakes from the tropical Andes and adjacent lowlands (8°N–30°S and 58–79°W) with associated environmental predictors to examine diatom metacommunity patterns at two different levels: taxon and functional (deconstructed species matrix by ecological guilds). We also derived spatial variables that inherently assessed the relative role of dispersal. Using complementary multivariate statistical techniques (principal component analysis, cluster analysis, nonmetric multidimensional scaling, Procrustes, variance partitioning), we examined diatom–environment relationships among different lake habitats (sediment surface, periphyton, and plankton) and partitioned community variation to evaluate the influence of niche‐ and dispersal‐based assembly processes in diatom metacommunity structure across lake clusters. The results showed a significant association between geographic clusters of lakes based on gradients of climate and landscape configuration and diatom assemblages. Six lake clusters distributed along a latitudinal gradient were identified as functional metacommunity units for diatom communities. Variance partitioning revealed that dispersal mechanisms were a major contributor to diatom metacommunity structure, but in a highly context‐dependent fashion across lake clusters. In the Andean Altiplano and adjacent lowlands of Bolivia, diatom metacommunities are niche assembled but constrained by either dispersal limitation or mass effects, resulting from area, environmental heterogeneity, and ecological guild relationships. Topographic heterogeneity played an important role in structuring planktic diatom metacommunities. We emphasize the value of a guild‐based metacommunity model linked to dispersal for elucidating mechanisms underlying latitudinal gradients in distribution. Our findings reveal the importance of shifts in ecological drivers across climatic and physiographically distinct lake clusters, providing a basis for comparison of broad‐scale community gradients in lake‐rich regions elsewhere. This may help guide future research to explore evolutionary constraints on the rich Neotropical benthic diatom species pool.  相似文献   

12.
The spatial insurance hypothesis predicts that intermediate rates of dispersal between patches in a metacommunity allow species to track favourable conditions, preserving diversity and stabilizing biomass at local and regional scales. However, theory is unclear as to whether dispersal will provide spatial insurance when environmental conditions are changing directionally. In particular, increased temperatures as a result of climate change are expected to cause synchronous growth or decline across species and communities, and this has the potential to erode the stabilizing compensatory dynamics facilitated by dispersal. Here we report on an experimental test of how dispersal affects the diversity and stability of metacommunities under warming using replicate two‐patch pond zooplankton metacommunities. Initial differences in local community composition and abiotic conditions were established by seeding each patch in the metacommunities with plankton and sediment from one of two natural ponds that differed in water chemistry and species composition. We exposed metacommunities to a 2°C increase in average ambient temperature, crossed with three rates of dispersal (none, intermediate, high). In ambient conditions, intermediate dispersal rates preserved diversity and stabilized metacommunities by promoting spatially asynchronous fluctuations in biomass, especially between local populations of the dominant genus, Ceriodaphnia. However, warming synchronized their populations so that these effects of dispersal were lost. Furthermore, because the stabilizing effect of dispersal was primarily due to asynchronous fluctuations between populations of a single genus, metacommunity biomass was stabilized, but dispersal did not stabilize local community biomass. Our results show that dispersal can preserve diversity and provide stability to metacommunities, but also show that this benefit can be eroded when warming is directional and synchronous across patches of a metacommunity, as is expected with climate warming.  相似文献   

13.
In experimental metacommunities with marine benthic microalgae, we tested whether heat stress changes effects of connectivity and habitat heterogeneity on metacommunity structure and functioning, by manipulating a simulated heat wave, dispersal frequency and a light intensity gradient. We found that all measures of mean local and regional diversity and community biomass significantly declined after the heat wave and showed no sign of recovery. Additionally, dispersal decreased diversity and increased dominance in both the heat stressed and control communities. Together the heat wave and high dispersal frequency induced a dominance shift by spreading a temperature tolerant but low yielding species from its source patches with low light intensity across the metacommunity, an effect that increased with time. Although different species became dominant at high dispersal frequency with and without the heat wave, the shift towards a temperature tolerant species was not sufficient to maintain total community biomass. Thus, short‐term disturbance may cause longer‐term loss of ecosystem function due to dominance shifts in the composition of communities. This study illustrates the importance of employing multispecies approaches when attempting to predict responses of communities to environmental changes.  相似文献   

14.
15.
16.
17.
18.
Community ecology recognises today that local biological communities are not only affected by local biotic interactions and abiotic environmental conditions, but also by regional processes (e.g. dispersal). While much is known about how metacommunities are organised in space in terrestrial, marine and freshwater ecological systems, their temporal variations remain poorly studied. Here, we address the question of the dynamics of metacommunities in highly variable systems, using intermittent rivers (IRs), those rivers which temporarily stop flowing or dry up, as a model system. We first review how habitat heterogeneity in space and time influences metacommunity organisation. Second, we compare the metacommunities in IRs to those in perennial rivers (PRs) and develop the idea that IRs could undergo highly dynamic shifts due to the temporal variability in local and regional community processes. Third, we develop the idea that in IRs, metacommunities of the wet and dry phases of IRs are closely intertwined, thereby increasing even more their respective temporal dynamics. Last, we provide a roadmap to stimulate further conceptual and empirical developments of metacommunity research and identify possible applications for improving the management of IRs and other highly dynamic ecological systems. Synthesis Extensive research has examined the importance of local biotic interactions, environmental filtering, and regional processes on community assembly. Movement of organisms between sites, i.e. dispersal, is a major set of processes within this framework. However, subsequent metacommunity organisation also varies over time in ecosystems because habitat characteristics such as configuration and composition continuously shift. Intermittent rivers are an ideal set of systems to examine these ideas because these freshwater systems temporarily cease flowing thereby limiting dispersal events. We proposed the hypothesis that metacommunities in dynamic ecosystems will undergo frequent shifts in structure and composition in response to the temporal variability in environmental filtering and dispersal. In addition to providing a roadmap for developing a more dynamic perspective for community ecology, these framework provides direct insights for the management of intermittent rivers.  相似文献   

19.
阿拉善荒漠啮齿动物集合群落实证研究   总被引:3,自引:2,他引:1  
当生态学家探求在破碎化的栖息地中,群落物种的共存机制、多样性、局域尺度的性质和过程被放到更广阔的时空框架内时,就出现了"集合群落"这一概念。Leibold提出了集合群落概念,他们将一个集合群落定义为局域群落集,这些群落由各个潜在的相互作用的物种的扩散连接在一起。集合群落理论描述了那些发生在集合群落尺度上的过程,并且提出思考关于物种相互作用的新方法。集合群落概念为群落生态学提供了一个新的革命性的范式,集合群落研究的最基本问题是同一系统中多物种共存的机理、多样性的形成原因与维持机制。该范式强调区域范围内群落中的综合变异,强调环境特证和栖息地之间通过扩散调节的生物相互作用和空间变化。Leibold等提出了解释集合群落结果理论上的4个生态范式,即(1)中性理论;(2)斑块动态理论;(3)物种分配理论;(4)集团效应理论。之后有大量有关检验这4种生态理论的研究,但是有关陆地脊椎动物系统的集合群落的研究较少。2010—2012年,通过在内蒙古阿拉善荒漠景观中的8个固定样地中,对啮齿动物、栖息地环境因子进行调查。利用冗余分析和偏冗余分析,评估环境特征和空间特征对物种组成的影响。结果表明,环境特征独自解释72.8%的啮齿动物物种组成变化,空间特征独自解释33.8%的物种组成变化,环境特征和空间特征共同解释86.5%的啮齿动物物种组成变化,结果显著(P=0.032);去除环境特征之后,空间特征解释13.7%的变化(P=0.246),结果不显著;去除空间特征之后,栖息地变化解释52.7%的变化(P=0.016);环境特征和空间特征的交互作用解释20.1%的物种组成的变化,该区域啮齿动物群落构成集合群落,物种共存中环境特征起着主导作用,由物种分配理论解释该集合群落结构。  相似文献   

20.
The fragmentation of agricultural landscapes has a major impact on biodiversity. In addition to habitat loss, dispersal limitation increasingly appears as a significant driver of biodiversity decline. Landscape linear elements, like ditches, may reduce the negative impacts of fragmentation by enhancing connectivity for many organisms, in addition to providing refuge habitats. To characterize these effects, we investigated the respective roles of propagule source composition and connectivity at the landscape scale on hydrochorous and non-hydrochorous ditch bank plant metacommunities. Twenty-seven square sites (0.5 km2 each) were selected in an agricultural lowland of northern France. At each site, plant communities were sampled on nine ditch banks (totaling 243 ditches). Variables characterizing propagule sources composition and connectivity were calculated for landscape mosaic and ditch network models. The landscape mosaic influenced only non-hydrochorous species, while the ditch network impacted both hydrochorous and non-hydrochorous species. Non-hydrochorous metacommunities were dependent on a large set of land-use elements, either within the landscape mosaic or adjacent to the ditch network, whereas hydrochorous plant metacommunities were only impacted by the presence of ditches adjacent to crops and roads. Ditch network connectivity also influenced both hydrochorous and non-hydrochorous ditch bank plant metacommunity structure, suggesting that beyond favoring hydrochory, ditches may also enhance plant dispersal by acting on other dispersal vectors. Increasing propagule sources heterogeneity and connectivity appeared to decrease within-metacommunity similarity within landscapes. Altogether, our results suggest that the ditch network's composition and configuration impacts plant metacommunity structure by affecting propagule dispersal possibilities, with contrasted consequences depending on species' dispersal vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号