首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of Neotropical birds of open landscapes remains largely unstudied. We investigate the diversification and biogeography of a group of Neotropical obligate grassland birds (Anthus: Motacillidae). We use a multilocus phylogeny of 22 taxa of Anthus to test the hypothesis that these birds radiated contemporaneously with the development of grasslands in South America. We employ the R package DDD to analyze the dynamics of Anthus diversification across time in Neotropical grasslands, explicitly testing for shifts in dynamics associated with the Miocene development of grasslands, the putative Pleistocene expansion of arid lowland biomes, and Pleistocene sundering of Andean highland grasslands. A lineage‐through‐time plot revealed increases in the number of lineages, and DDD detected shifts to a higher clade‐level carrying capacity during the late Miocene, indicating an early burst of diversification associated with grassland colonization. However, we could not corroborate the shift using power analysis, probably reflecting the small number of tips in our tree. We found evidence of a divergence at ~1 Mya between northern and southern Amazonian populations of Anthus lutescens, countering Haffer's idea of Pleistocene expansion of open biomes in the Amazon Basin. We used BioGeoBears to investigate ancestral areas and directionality of colonization of Neotropical grasslands. Members of the genus diversified into, out of, and within the Andes, within‐Andean diversification being mostly Pleistocene in origin.  相似文献   

2.
《PloS one》2014,9(9)
Species distributed across vast continental areas and across major biomes provide unique model systems for studies of biotic diversification, yet also constitute daunting financial, logistic and political challenges for data collection across such regions. The tree frog Dendropsophus minutus (Anura: Hylidae) is a nominal species, continentally distributed in South America, that may represent a complex of multiple species, each with a more limited distribution. To understand the spatial pattern of molecular diversity throughout the range of this species complex, we obtained DNA sequence data from two mitochondrial genes, cytochrome oxidase I (COI) and the 16S rhibosomal gene (16S) for 407 samples of D. minutus and closely related species distributed across eleven countries, effectively comprising the entire range of the group. We performed phylogenetic and spatially explicit phylogeographic analyses to assess the genetic structure of lineages and infer ancestral areas. We found 43 statistically supported, deep mitochondrial lineages, several of which may represent currently unrecognized distinct species. One major clade, containing 25 divergent lineages, includes samples from the type locality of D. minutus. We defined that clade as the D. minutus complex. The remaining lineages together with the D. minutus complex constitute the D. minutus species group. Historical analyses support an Amazonian origin for the D. minutus species group with a subsequent dispersal to eastern Brazil where the D. minutus complex originated. According to our dataset, a total of eight mtDNA lineages have ranges >100,000 km2. One of them occupies an area of almost one million km2 encompassing multiple biomes. Our results, at a spatial scale and resolution unprecedented for a Neotropical vertebrate, confirm that widespread amphibian species occur in lowland South America, yet at the same time a large proportion of cryptic diversity still remains to be discovered.  相似文献   

3.
Female army ants cannot fly, making them very poor dispersers across water barriers. This dependence on terrestrial corridors motivated the investigation by Winston et al. ( 2017 ), published in this issue of Molecular Ecology, into the role of Panamanian isthmus formation in the diversification of Eciton army ants. Complete closure of this isthmus occurred around three million years ago (3 Ma), but it has also been hypothesized that earlier, temporary land connections facilitated additional colonization events between South and Central America over the past 13 million years or more. The phylogenomic and population genomic analyses by Winston et al. ( 2017 ) uncovered multiple incursions of Eciton lineages into Central America between 4 and 7 Ma. Their study contributes to a growing body of evidence arguing that transitory land bridges predating 3 Ma supported substantial intercontinental biotic exchange.  相似文献   

4.
Aim The tropical Andes are a world biodiversity hotspot. With diverse biomes and dramatic, geologically recent mountain uplift, they offer a system to study the relative contributions of geological and biome history to species richness. There are preliminary indications that historical species assembly in the Andes has been influenced by physiographical heterogeneity and that distinct biomes have evolved in relative isolation despite physical proximity. Here we test this ‘Andean biotic separation hypothesis’ by focusing on the low‐elevation, seasonally dry tropical forest (SDTF) biome to determine whether patterns of plant diversification within the SDTF differ from those in mid‐ and high‐elevation biomes. Location Tropical Andes, South America. Methods Densely sampled time‐calibrated phylogenies for five legume genera (Amicia, Coursetia, Cyathostegia, Mimosa and Poissonia) containing species endemic to the Andean SDTF biome were used to investigate divergence times and levels of geographical structure. Geographical structure was measured using isolation‐by‐distance methods. Meta‐analysis of time‐calibrated phylogenies of Andean plant groups was used to compare the pattern and tempo of endemic species diversification between the major Andean biomes. Results Long‐term persistence of SDTF in the Andes is suggested by old stem ages (5–27 Ma) of endemic genera/clades within genera, and deep divergences coupled with strong geographical structure among and within species. Comparison of species diversification patterns among different biomes shows that the relatively old, geographically confined pattern of species diversification in SDTF contrasts with the high‐elevation grasslands that show rapid and recent radiations driven by ecological opportunities. Main conclusions The SDTF biome has a long history in the Andes. We suggest that the diverse SDTF flora has been assembled gradually over the past c. 19 Ma from lineages exhibiting strong phylogenetic niche conservatism. These patterns suggest that Andean SDTFs have formed stable and strongly isolated ‘islands’ despite the upheavals of Andean uplift. Indeed, the Andean SDTFs may represent some of the most isolated and evolutionarily persistent continental plant communities, similar in many respects to floras of remote oceanic islands.  相似文献   

5.
Eurasia is a large continent characterized by heterogeneous environments. Glacial cycles during the late Pleistocene have had variable impacts on the avifauna across Eurasia. Bird populations from South‐East Asia show stability through the Last Glacial Maximum (LGM), while populations from Europe exhibit evidence of post‐LGM expansion. We investigated the phylogeography of the Long‐tailed Tit (Aegithalos caudatus), which spans the longitudinal breadth of Eurasia to test how climatic history and regional topographical complexity affected populations and diversification within the species complex. Our results show that two lineages from central and southern China (lineages C and D) segregate geographically, while lineages across northern Eurasia (lineage A and B) show substantial sympatry. Bayesian estimates for the timing of diversification suggest that the four lineages diverged during the middle Pleistocene, splitting in parallel and undergoing concurrent demographic histories since divergence. A. caudatus lineages experienced similar and synchronous population size dynamics during glacial cycles before the LGM. We conclude that the difference in geo‐topologic complexity may be an important factor that led to the variation in secondary admixture between northern Eurasian and eastern Asian lineages.  相似文献   

6.
Dated molecular phylogenetic trees show that the Andean uplift had a major impact on South American biodiversity. For many Andean groups, accelerated diversification (radiation) has been documented. However, not all Andean lineages appear to have diversified following the model of rapid radiation, particularly in the central and southern Andes. Here, we investigated the diversification patterns for the largest South American‐endemic lineage of Brassicaceae, composed of tribes Cremolobeae, Eudemeae and Schizopetaleae (CES clade). Species of this group inhabit nearly all Andean biomes and adjacent areas including the Atacama–Sechura desert, the Chilean Matorral and the Patagonian Steppe. First, we studied diversification times and historical biogeography of the CES clade. Second, we analysed diversification rates through time, lineages and associated life forms. Results demonstrate that early diversification of the CES clade occurred in the early to mid‐Miocene (c. 12–19 Mya) and involved the central Andes, the southern Andes and the Patagonian Steppe, and the Atacama–Sechura desert. The Chilean Matorral and northern Andes were colonized subsequently in the early Pliocene (4–5 Mya). Diversification of the CES clade was recovered as a gradual process without any evidence for rate shifts or rapid radiation, in contrast to many other Andean groups analysed so far. Diversification time/rates and biogeographical patterns obtained for the CES clade are discussed and compared with patterns and conclusions reported for other Andean plant lineages.  相似文献   

7.
Phenotypic and genetic variation are present in all species, but lineages differ in how variation is partitioned among populations. Examining phenotypic clustering and genetic structure within a phylogeographic framework can clarify which biological processes have contributed to extant biodiversity in a given lineage. Here, we investigate genetic and phenotypic variation among populations and subspecies within a Neotropical songbird complex, the White‐collared Seedeater (Sporophila torqueola) of Central America and Mexico. We combine measurements of morphology and plumage patterning with thousands of nuclear loci derived from ultraconserved elements (UCEs) and mitochondrial DNA to evaluate population differentiation. We find deep levels of molecular divergence between two S. torqueola lineages that are phenotypically diagnosable: One corresponds to S. t. torqueola along the Pacific coast of Mexico, and the other includes S. t. morelleti and S. t. sharpei from the Gulf Coast of Mexico and Central America. Surprisingly, these two lineages are strongly differentiated in both nuclear and mitochondrial markers, and each is more closely related to other Sporophila species than to one another. We infer low levels of gene flow between these two groups based on demographic models, suggesting multiple independent evolutionary lineages within S. torqueola have been obscured by coarse‐scale similarity in plumage patterning. These findings improve our understanding of the biogeographic history of this lineage, which includes multiple dispersal events out of South America and across the Isthmus of Tehuantepec into Mesoamerica. Finally, the phenotypic and genetic distinctiveness of the range‐restricted S. t. torqueola highlights the Pacific Coast of Mexico as an important region of endemism and conservation priority.  相似文献   

8.
Ecological opportunity is often proposed as a driver of accelerated diversification, but evidence has been largely derived from either contemporary island radiations or the fossil record. Here, we investigate the potential influence of ecological opportunity on a transcontinental radiation of South American freshwater fishes. We generate a species‐dense, time‐calibrated molecular phylogeny for the suckermouth armored catfish subfamily Hypostominae, with a focus on the species‐rich and geographically widespread genus Hypostomus. We use the resulting chronogram to estimate ancestral geographical ranges, infer historical rates of cladogenesis and diversification in habitat and body size and shape, and test the hypothesis that invasions of previously unoccupied river drainages accelerated evolution and contributed to adaptive radiation. Both the subfamily Hypostominae and the included genus Hypostomus originated in the Amazon/Orinoco ecoregion. Hypostomus subsequently dispersed throughout tropical South America east of the Andes Mountains. Consequent to invasion of the peripheral, low‐diversity Paraná River basin in southeastern Brazil approximately 12.5 Mya, Paraná lineages of Hypostomus, experienced increased rates of cladogenesis and ecological and morphological diversification. Contemporary lineages of Paraná Hypostomus are less species rich but more phenotypically diverse than their congeners elsewhere. Accelerated speciation and morphological diversification rates within Paraná basin Hypostomus are consistent with adaptive radiation. The geographical remoteness of the Paraná River basin, its recent history of marine incursion, and its continuing exclusion of many species that are widespread in other tropical South American rivers suggest that ecological opportunity played an important role in facilitating the observed accelerations in diversification.  相似文献   

9.
The relative influence of Neogene geomorphological events and Quaternary climatic changes as causal mechanisms on Neotropical diversification remains largely speculative, as most divergence timing inferences are based on a single locus and have limited taxonomic or geographic sampling. To investigate these influences, we use a multilocus (two mitochondrial and 11 nuclear genes) range‐wide sampling of Phyllopezus pollicaris, a gecko complex widely distributed across the poorly studied South American ‘dry diagonal’ biomes. Our approach couples traditional and model‐based phylogeography with geospatial methods, and demonstrates Miocene diversification and limited influence of Pleistocene climatic fluctuations on P. pollicaris. Phylogeographic structure and distribution models highlight that persistence across multiple isolated regions shaped the diversification of this species complex. Approximate Bayesian computation supports hypotheses of allopatric and ecological/sympatric speciation between lineages that largely coincide with genetic clusters associated with Chaco, Cerrado, and Caatinga, standing for complex diversification between the ‘dry diagonal’ biomes. We recover extremely high genetic diversity and suggest that eight well‐supported clades may be valid species, with direct implications for taxonomy and conservation assessments. These patterns exemplify how low‐vagility species complexes, characterized by strong genetic structure and pre‐Pleistocene divergence histories, represent ideal radiations to investigate broad biogeographic histories of associated biomes.  相似文献   

10.
The extant distribution of sigmodontine rodents encompasses most of the New World, and the majority of the species in this subfamily inhabit South America. Nevertheless, the basal lineages of the Sigmodontinae are distributed in North and Central America, and the fossil record indicates a North American origin. This evidence has produced contentious theories concerning the evolution of these rodents. The dispute usually stems from a disagreement about the way in which sigmodontines reached South America, which was an isolated landmass during most of the Cenozoic. Fundamentally, the debate is associated with the role of Panamanian Isthmus formation and the Great American Biotic Interchange (GABI) in the diversification of the clade. An early hypothesis implies that sigmodontines arrived in South America before the complete rise of the Panamanian Isthmus, whereas a late hypothesis directly correlates the diversification of the lineage with this event. To address this question, we have sequenced nuclear and mitochondrial sequences, as well as the first Sigmodontinae mitochondrial genomes (Akodon montensis and Wiedomys cerradensis) and performed a Bayesian dating analysis. Our results showed that the most recent common ancestor of the subfamily lived at approximately 15 Ma. Although the diversification of sigmodontines was not associated with the complete rise of the Panamanian Isthmus, we cannot exclude the hypothesis that this event played a relevant role in the evolution of the lineage during the Miocene.  相似文献   

11.
Previous phylogenetic studies of Lupinus (Leguminosae) based on nuclear DNA have shown that the western New World taxa form a monophyletic group representing the majority of species in the genus, with evidence for high rates of recent diversification in South America following final uplift of the Andes 2–4 million years ago (Mya). For this study, three regions of rapidly evolving non-coding chloroplast DNA (trnL intron, trnS–trnG, and trnT–trnL) were examined to estimate the timing and rates of diversification in the western New World, and to infer ancestral states for geographic range, life history, and maximum elevation. The western New World species (5.0–9.3 Mya, 0.6–1.1 spp./My) comprise a basally branching assemblage of annual plants endemic to the lower elevations of western North America, from which two species-rich clades are recently derived: (i) the western North American perennials from the Rocky Mountains, Great Basin, and Pacific Slope (0.7–2.1 Mya, 2.0–5.9 spp./My) and (ii) the predominantly perennial species from the Andes Mountains of South America and highlands of Mexico (0.8–3.4 Mya, 1.4–5.7 spp./My). Bayesian posterior predictive tests for association between life history and maximum elevation demonstrate that perennials are positively correlated with higher elevations. These results are consistent with a series of one or more recent radiations in the western New World, and indicate that rapid diversification of Lupinus coincides with the derived evolution of perennial life history, colonization of montane habitats, and range expansion from North America to South America.  相似文献   

12.
The woodpecker genus Colaptes (flickers) has its highest diversity in South America and the closely related genus Piculus is restricted to South and Central America. Two species of flickers occur in North America, and one species is endemic to Cuba. We conducted a Bayesian phylogenetic analysis of three mitochondrial encoded genes (cyt b, COI, 12S rRNA) and confirmed that the two genera are paraphyletic. Three species historically classified as Piculus are actually flickers. We found that the Cuban endemic C. fernandinae is the most basal species within the flickers and that the Northern Flicker is the next most basal species within the Colaptes lineage. The South American clade is most derived. The age of the South American diversification is estimated to be 3.6 MY, which is synchronous with the emergence of the Isthmus of Panama. The pattern of diversification of South American flickers is common among South American woodpeckers. Although woodpeckers have their greatest diversity in South America, we hypothesize that woodpeckers (Family Picidae) originated in Eurasia, dispersed to North America via the Bering land bridge, and multiple lineages entered South America as the Isthmus approached its final closing.  相似文献   

13.
Parasites can have strong effects on host life-history and behaviour, and result in changes in host population dynamics and community structure. We applied a PCR-based technique and examined prevalence of malaria and related haemosporidian parasites in two arctic breeding shorebird species: the Semipalmated Sandpiper (Calidris pusilla) and the Pectoral Sandpiper (C. melanotos). During the non-breeding season, Semipalmated Sandpipers inhabit coastal marine habitats, whereas Pectoral Sandpipers are found in inland areas. In accordance with the hypothesis that the risk of parasite infection is higher in a species wintering in freshwater areas, we found Plasmodium sp. infection during the breeding season only in Pectoral Sandpipers, whereas Semipalmated Sandpipers were parasite free. However, even in Pectoral Sandpipers sampled in the arctic, prevalence of malaria parasites was very low (<3% of individuals, n = 114). Overall, three different Plasmodium sp. lineages were found, one of which has never been described before.  相似文献   

14.
The lichen-forming genus Parmelia Acharius occurs worldwide but its centre of distribution is in the northern hemisphere and it is widespread in boreal-temperate Eurasia and North America. Recent molecular work on Parmelia has identified phylogenetic relationships within two major groups of the genus: P. saxatilis s. lat. and P. sulcata s. lat. However, little is known about the diversification and historical biogeography of these groups. Here we have used a dataset of two genetic markers and 64 samples to estimate phylogenetic relationships within Parmelia. The dated phylogeny provides evidence for major diversification during the Neogene and Pleistocene. These diversification events are probably correlated with climatic changes during these periods. Evidence of gene flow within species between populations from North America and Europe has been found in three species: P. sulcata Taylor, P. saxatilis (L.) Acharius and P. barrenoae Divakar, M.C. Molina & A. Crespo. Cryptic species recently segregated on the basis of molecular differences (P. encryptata A. Crespo, Divakar & M.C. Molina vs. P. sulcata and P. saxatilis vs. P. mayi Divakar, A. Crespo & M.C. Molina) do not share a common ancestor. Moreover, the P. saxatilis complex is remarkably diverse. Two morphotypes of P. saxatilis s. lat. were shown to represent independent monophyletic lineages. Consequently, two species (P. sulymae Goward, Divakar, & M.C. Molina & A. Crespo and P. imbricaria Goward, Divakar, M.C. Molina & A. Crespo) are newly described here.  相似文献   

15.
Geographic range shifts can cause secondary contact and hybridization between closely related species, revealing mechanisms of species formation and integrity. These dynamics typically play out in restricted geographic regions, but highly vagile species may experience major distributional changes resulting in broad areas of contact. The Glossy Ibis (Plegadis falcinellus) is a dispersive waterbird of the Old World and Australia that colonized eastern North America in the early 19th century and came into contact with the native White‐faced Ibis (P. chihi). Putative hybrids between the two species have been observed across North America. To examine the population genomic consequences of this natural invasion, we sequenced 4,616 ultraconserved elements from 66 individuals sampled across the distributions of falcinellus, chihi, and the Puna Ibis (P. ridgwayi) of South America. We found genomic differentiation among the three species. Loci with high sequence divergence were often shared across all pairwise species comparisons, were associated with regions of high nucleotide diversity, and were concentrated on the Z chromosome. We detected signals of genetic admixture between chihi and falcinellus in individuals both near and far from their core area of sympatry. Genomic cline analyses revealed evidence of greater introgression into falcinellus from chihi, but we found little evidence for selection against hybrids. We also found signals of admixture between ridgwayi and South American populations of chihi. Our results indicate vagile species can experience pervasive introgression upon secondary contact, although we suggest these dynamics may be more ephemeral than the stable hybrid zones often observed in less dispersive organisms.  相似文献   

16.
Western North America includes the California Floristic Province and the Pacific Northwest, biologically diverse regions highlighted by a complex topography, geology, climate and history. A number of animals span these regions and show distinctive patterns of dispersal, vicariance and lineage diversification. Examining phylogeographic patterns in the fauna of this area aids in our understanding of the forces that have contributed to the generation and maintenance of regional biodiversity. Here, we investigate the biogeography and population structure of the Northern Alligator Lizard (Elgaria coerulea), a wide‐ranging anguid endemic to western North America. We sequenced two mtDNA fragments (ND2 and ND4) for 181 individuals across the range of the species and analysed these data with phylogenetic approaches to infer population and biogeographic history, and date major divergences within the taxon. We further used Bayesian clustering methods to assess major patterns of population structure and performed ecological niche modelling (ENM) to aid in our interpretation of geographic structure and diversification of E. coerulea lineages. Our phylogeographic examination of E. coerulea uncovered surprising diversity and structure, recovering 10 major lineages, each with substantial geographic substructure. While some divergences within the species are relatively old (Pliocene, 5.3–2.6 mya), most intraspecific variation appears to be of more recent origin (Pleistocene, 2.6 mya‐11,700 ya). Current diversity appears to have arisen in the Sierra Nevada Mountains and spread west and north since the Pliocene. Finally, our ENMs suggest that much of the Coast Ranges in California provided ideal habitat during the Last Glacial Maxima (LGM) that has since contracted dramatically and shifted northwards, whereas significant portions of the Sierra Nevada were unsuitable during the LGM and have since become more suitable. Interestingly, E. coerulea shares a number of genetic boundaries with other sympatric taxa, suggesting common historical events and geomorphological features have shaped the biota of this region.  相似文献   

17.
The geological record of South American mammals is spatially biased because productive fossil sites are concentrated at high latitudes. As a result, the history of mammalian diversification in Amazonia and other tropical biomes is largely unknown. Here we report diversification analyses based on a time‐calibrated molecular phylogeny of opossums (Didelphidae), a species‐rich clade of mostly tropical marsupials descended from a Late Oligocene common ancestor. Optimizations of habitat and geography on this phylogeny suggest that (1) basal didelphid lineages inhabited South American moist forests; (2) didelphids did not diversify in dry‐forest habitats until the Late Miocene; and (3) most didelphid lineages did not enter North America until the Pliocene. We also summarize evidence for an Early‐ to Middle‐Miocene mass extinction event, for which alternative causal explanations are discussed. To the best of our knowledge, this study provides the first published molecular‐phylogenetic evidence for mass extinction in any animal clade, and it is the first time that evidence for such an event (in any plant or animal taxon) has been tested for statistical significance. Potentially falsifying observations that could help discriminate between the proposed alternative explanations for didelphid mass extinction may be obtainable from diversification analyses of other sympatric mammalian groups.  相似文献   

18.
Phylogeographic studies provide an important framework for investigating the mechanisms operating during the earliest stages of speciation, as reproductive barriers can be examined among divergent lineages in a geographic context. We investigated the evolution of early stages of intrinsic postmating isolation among different populations and lineages of Epidendrum denticulatum, a Neotropical orchid distributed across different biomes in South America. We estimated genetic diversity and structure for both nuclear and plastid markers, using a haplotype network, differentiation tests, Bayesian assignment analysis, and divergence time estimates of the main lineages. Reproductive barriers among divergent lineages were examined by analyzing seed viability following reciprocal crossing experiments. Strong plastid phylogeographic structure was found, indicating that E. denticulatum was restricted to multiple refuges during South American forest expansion events. In contrast, significant phylogeographic structure was not found for nuclear markers, suggesting higher gene flow by pollen than by seeds. Large asymmetries in seed set were observed among different plastid genetic groups, suggesting the presence of polymorphic genic incompatibilities associated with cytonuclear interactions. Our results confirm the importance of phylogeographic studies associated with reproductive isolation experiments and suggest an important role for outbreeding depression during the early stages of lineage diversification.  相似文献   

19.
Aim The Alstroemeriaceae is among 28 angiosperm families shared between South America, New Zealand and/or Australia; here, we examine the biogeography of Alstroemeriaceae to better understand the climatic and geological settings for its diversification in the Neotropics. We also compare Alstroemeriaceae with the four other Southern Hemisphere families that expanded from Patagonia to the equator, to infer what factors may have permitted such expansions across biomes. Location South America, Central America, Australia and New Zealand. Methods Three chloroplast genes, one mitochondrial gene and one nuclear DNA region were sequenced for 153 accessions representing 125 of the 200 species of Alstroemeriaceae from throughout the distribution range; 25 outgroup taxa were included to securely infer evolutionary directions and be able to use both ingroup and outgroup fossil constraints. A relaxed‐clock model relied on up to three fossil calibrations, and ancestral ranges were inferred using statistical dispersal–vicariance analysis (S‐DIVA). Southern Hemisphere disjunctions in the flowering plants were reviewed for key biological traits, divergence times, migration directions and habitats occupied. Results The obtained chronogram and ancestral area reconstruction imply that the most recent common ancestor of Colchicaceae and Alstroemeriaceae lived in the Late Cretaceous in southern South America/Australasia, the ancestral region of Alstroemeriaceae may have been South America/Antarctica, and a single New Zealand species is due to recent dispersal from South America. Chilean Alstroemeria diversified with the uplift of the Patagonian Andes c. 18 Ma, and a hummingbird‐pollinated clade (Bomarea) reached the northern Andes at 11–13 Ma. The South American Arid Diagonal (SAAD), a belt of arid vegetation caused by the onset of the Andean rain shadow 14–15 Ma, isolated a Brazilian clade of Alstroemeria from a basal Chilean/Argentinean grade. Main conclusions Only Alstroemeriaceae, Calceolariaceae, Cunoniaceae, Escalloniaceae and Proteaceae have expanded and diversified from Patagonia far into tropical latitudes. All migrated northwards along the Andes, but also reached south‐eastern Brazil, in most cases after the origin of the SAAD. Our results from Alstroemeria now suggest that the SAAD may have been a major ecological barrier in southern South America.  相似文献   

20.
With about 400 living species and 82 genera, rodents of the subfamily Sigmodontinae comprise one of the most diverse and more broadly distributed Neotropical mammalian clades. There has been much debate on the origin of the lineage or the lineages of sigmodontines that entered South America, the timing of entrance and different aspects of further diversification within South America. The ages of divergence of the main lineages and the crown age of the subfamily were estimated by using sequences of the interphotoreceptor retinoid binding protein and cytochrome b genes for a dense sigmodontine and muroid sampling. Bayesian inference using three fossil calibration points and a relaxed molecular clock estimated a middle Miocene origin for Sigmodontinae (~12 Ma), with most tribes diversifying throughout the Late Miocene (6.9–9.4 Ma). These estimates together results of analyses of ancestral area reconstructions suggest a distribution for the most recent common ancestor of Sigmodontinae in Central-South America and a South American distribution for the most recent common ancestor of Oryzomyalia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号