共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Naoto F. Ishikawa Fumio Hayashi Yoko Sasaki Yoshito Chikaraishi Naohiko Ohkouchi 《Ecology and evolution》2017,7(6):1674-1679
The trophic discrimination factor (TDF) of nitrogen isotopes (15N/14N) within amino acids, between a stream‐dwelling dobsonfly larva (Protohermes grandis: Megaloptera; Corydalidae) and its diet (chironomid larvae), was determined in controlled feeding experiments. Last‐instar larvae of P. grandis were collected from the Yozawa‐gawa River, central Japan, and reared in the laboratory. After fed to satiation for 1 month, one group of larvae was each fed one living chironomid larva per day for 4 weeks, while a second group was starved for 8 weeks. The larvae were harvested at intervals and the nitrogen isotopic composition of glutamic acid (δ15NGlu) and phenylalanine (δ15NPhe) were determined to calculate TDF. The mean TDF of satiated and starved larvae were 7.1‰ ± 0.5‰ (n = 3) and 7.3‰ ± 0.5‰ (n = 5), respectively. Thus, the TDF for P. grandis larvae in this study was similar to that reported for other arthropods (approximately 7‰) and was independent of satiation or starvation. A previous study of wild P. grandis larvae, based on the δ15NGlu and δ15NPhe values, estimated its trophic position (TP) as approximately 2.0 ± 0.1 (n = 5), a low value close to that of algivores, although they are generally characterized as carnivores (usually accepted as TP ≥ 3). The TDF for P. grandis larvae suggests that their low TPs in nature were caused by incorporation of vascular plant‐derived amino acids (with a different δ15N profile from that of algae) and not by an unusually low TDF or by the effects of the satiation/starvation on amino acid metabolism. 相似文献
3.
4.
BRETT J. TIPPLE MELISSA A. BERKE BASTIAN HAMBACH JOHN S. RODEN JAMES R. EHLERINGER 《Plant, cell & environment》2015,38(6):1035-1047
The extent to which both water source and atmospheric humidity affect δ2H values of terrestrial plant leaf waxes will affect the interpretations of δ2H variation of leaf waxes as a proxy for hydrological conditions. To elucidate the effects of these parameters, we conducted a long‐term experiment in which we grew two tree species, Populus fremontii and Betula occidentalis, hydroponically under combinations of six isotopically distinct waters and two different atmospheric humidities. We observed that leaf n‐alkane δ2H values of both species were linearly related to source water δ2H values, but with slope differences associated with differing humidities. When a modified version of the Craig–Gordon model incorporating plant factors was used to predict the δ2H values of leaf water, all modelled leaf water values fit the same linear relationship with n‐alkane δ2H values. These observations suggested a relatively constant biosynthetic fractionation factor between leaf water and n‐alkanes. However, our calculations indicated a small difference in the biosynthetic fractionation factor between the two species, consistent with small differences calculated for species in other studies. At present, it remains unclear if these apparent interspecies differences in biosynthetic fractionation reflect species‐specific biochemistry or a common biosynthetic fractionation factor with insufficient model parameterization. 相似文献
5.
6.
7.
Cory J. D. Matthews Rocio I. Ruiz‐Cooley Corinne Pomerleau Steven H. Ferguson 《Ecology and evolution》2020,10(7):3450-3462
Compound‐specific stable isotope analysis (CSIA) of amino acids (AAs) has been rapidly incorporated in ecological studies to resolve consumer trophic position (TP). Differential 15N fractionation of “trophic” AAs, which undergo trophic 15N enrichment, and “source” AAs, which undergo minimal trophic 15N enrichment and serve as a proxy for primary producer δ15N values, allows for internal calibration of TP. Recent studies, however, have shown the difference between source and trophic AA δ15N values in higher marine consumers is less than predicted from empirical studies of invertebrates and fish. To evaluate CSIA‐AA for estimating TP of cetaceans, we compared source and trophic AA δ15N values of multiple tissues (skin, baleen, and dentine collagen) from five species representing a range of TPs: bowhead whales, beluga whales, short‐beaked common dolphins, sperm whales, and fish‐eating (FE) and marine mammal‐eating (MME) killer whale ecotypes. TP estimates (TPCSIA) using several empirically derived equations and trophic discrimination factors (TDFs) were 1–2.5 trophic steps lower than stomach content‐derived estimates (TPSC) for all species. Although TPCSIA estimates using dual TDF equations were in better agreement with TPSC estimates, our data do not support the application of universal or currently available dual TDFs to estimate cetacean TPs. Discrepancies were not simply due to inaccurate TDFs, however, because the difference between consumer glutamic acid/glutamine (Glx) and phenylalanine (Phe) δ15N values (δ15NGlx‐Phe) did not follow expected TP order. In contrast to pioneering studies on invertebrates and fish, our data suggest trophic 15N enrichment of Phe is not negligible and should be examined among the potential mechanisms driving “compressed” and variable δ15NGlx‐Phe values at high TPs. We emphasize the need for controlled diet studies to understand mechanisms driving AA‐specific isotopic fractionation before widespread application of CSIA‐AA in ecological studies of cetaceans and other marine consumers. 相似文献
8.
Christina Cheung Estelle Herrscher Aline Thomas 《American journal of physical anthropology》2022,179(1):118-133
9.
Sami Johan Taipale Kimmo Kalevi Kahilainen Gordon William Holtgrieve Elina Talvikki Peltomaa 《Ecology and evolution》2018,8(5):2671-2687
The first few months of life is the most vulnerable period for fish and their optimal hatching time with zooplankton prey is favored by natural selection. Traditionally, however, prey abundance (i.e., zooplankton density) has been considered important, whereas prey nutritional composition has been largely neglected in natural settings. High‐quality zooplankton, rich in both essential amino acids (EAAs) and fatty acids (FAs), are required as starting prey to initiate development and fast juvenile growth. Prey quality is dependent on environmental conditions, and, for example, eutrophication and browning are two major factors defining primary producer community structures that will directly determine the nutritional quality of the basal food sources (algae, bacteria, terrestrial matter) for zooplankton. We experimentally tested how eutrophication and browning affect the growth and survival of juvenile rainbow trout (Oncorhynchus mykiss) by changing the quality of basal resources. We fed the fish on herbivorous zooplankton (Daphnia) grown with foods of different nutritional quality (algae, bacteria, terrestrial matter), and used GC‐MS, stable isotope labeling as well as bulk and compound‐specific stable isotope analyses for detecting the effects of different diets on the nutritional status of fish. The content of EAAs and omega‐3 (ω‐3) polyunsaturated FAs (PUFAs) in basal foods and zooplankton decreased in both eutrophication and browning treatments. The decrease in ω‐3 PUFA and especially docosahexaenoic acid (DHA) was reflected to fish juveniles, but they were able to compensate for low availability of EAAs in their food. Therefore, the reduced growth and survival of the juvenile fish was linked to the low availability of DHA. Fish showed very low ability to convert alpha‐linolenic acid (ALA) to DHA. We conclude that eutrophication and browning decrease the availability of the originally phytoplankton‐derived DHA for zooplankton and juvenile fish, suggesting bottom‐up regulation of food web quality. 相似文献
10.
Marco Griepentrog Samuel Bodé Pascal Boeckx Frank Hagedorn Alexander Heim Michael W. I. Schmidt 《Global Change Biology》2014,20(1):327-340
Atmospheric nitrogen (N) deposition has frequently been observed to increase soil carbon (C) storage in forests, but the underlying mechanisms still remain unclear. Changes in microbial community composition and substrate use are hypothesized to be one of the key mechanisms affected by N inputs. Here, we investigated the effects of N deposition on amino sugars, which are used as biomarkers for fungal‐ and bacterial‐derived microbial residues in soil. We made use of a 4‐year combined CO2 enrichment and N deposition experiment in model forest ecosystems, providing a distinct 13C signal for ‘new’ and ‘old’ C in soil organic matter and microbial residues measured in density and particle‐size fractions of soils. Our hypothesis was that N deposition decreases the amount of fungal residues in soils, with the new microbial residues being more strongly affected than old residues. The soil fractionation showed that organic matter and microbial residues are mainly stabilized by association with soil minerals in the heavy and fine fractions. Moreover, the bacterial residues are relatively enriched at mineral surfaces compared to fungal residues. The 13C tracing indicated a greater formation of fungal residues compared to bacterial residues after 4 years of experiment. In contradiction to our hypotheses, N deposition significantly increased the amount of new fungal residues in bulk soil and decreased the decomposition of old microbial residues associated with soil minerals. The preservation of old microbial residues could be due to decreased N limitation of microorganisms and therefore a reduced dependence on organic N sources. This mechanism might be especially important in fine heavy fractions with low C/N ratios, where microbial residues are effectively protected from decomposition by association with soil minerals. 相似文献
11.
Marco Griepentrog Timothy I. Eglinton Frank Hagedorn Michael W. I. Schmidt Guido L. B. Wiesenberg 《Global Change Biology》2015,21(1):473-486
Atmospheric carbon dioxide (CO2) and reactive nitrogen (N) concentrations have been increasing due to human activities and impact the global carbon (C) cycle by affecting plant photosynthesis and decomposition processes in soil. Large amounts of C are stored in plants and soils, but the mechanisms behind the stabilization of plant‐ and microbial‐derived organic matter (OM) in soils are still under debate and it is not clear how N deposition affects soil OM dynamics. Here, we studied the effects of 4 years of elevated (13C‐depleted) CO2 and N deposition in forest ecosystems established in open‐top chambers on composition and turnover of fatty acids (FAs) in plants and soils. FAs served as biomarkers for plant‐ and microbial‐derived OM in soil density fractions. We analyzed above‐ and belowground plant biomass of beech and spruce trees as well as soil density fractions for the total organic C and FA molecular and isotope (δ13C) composition. FAs did not accumulate relative to total organic C in fine mineral fractions, showing that FAs are not effectively stabilized by association with soil minerals. The δ13C values of FAs in plant biomass increased under high N deposition. However, the N effect was only apparent under elevated CO2 suggesting a N limitation of the system. In soil fractions, only isotope compositions of short‐chain FAs (C16+18) were affected. Fractions of ‘new’ (experimental‐derived) FAs were calculated using isotope depletion in elevated CO2 plots and decreased from free light to fine mineral fractions. ‘New’ FAs were higher in short‐chain compared to long‐chain FAs (C20?30), indicating a faster turnover of short‐chain compared to long‐chain FAs. Increased N deposition did not significantly affect the quantity of ‘new’ FAs in soil fractions, but showed a tendency of increased amounts of ‘old’ (pre‐experimental) C suggesting that decomposition of ‘old’ C is retarded by high N inputs. 相似文献
12.
13.
Compound‐specific 15N analysis of amino acids (AAs) is a powerful tool to determine the trophic position (TP) of organisms. However, it has only been used in a few studies of avian ecology because the AA patterns in the consumer‐diet nitrogen trophic discrimination factor (TDFGlu‐Phe = ?15NGlu??15NPhe) were unknown in birds until recently, and tropical seabirds have never been investigated with this methodology. Here, we explore the application of this method to tropical seabirds. In this study, we recovered the fossilized bones of tropical seabirds from ornithogenic sediments on two coral islands in the Xisha Islands, South China Sea, as well as the bones and muscle of their predominant food source, flying fish (Exocoetus volitans). Compound‐specific 15N and 13C analyses of AAs in both seabird and fish bone collagen were conducted. The TP of flying fish was calculated based on a widely used single TDFGlu‐Phe approach. We then calculated the TP of tropical seabirds in three different ways: (a) according to the composition of their diet; (b) based on the single TDFGlu‐Phe approach; and (c) using a multi‐TDFGlu‐Phe approach. The results of the multi‐TDFGlu‐Phe approach were much closer to the results based on the composition of the seabird diet than the results of the single TDFGlu‐Phe approach, confirming its applicability for tropical seabirds. For seabird bone samples of different ages, TP determined from the multi‐TDFGlu‐Phe approach was most similar to that of bulk δ15N of bird collagen, with seabirds occupying higher TPs during the Little Ice Age, as previously shown. In addition, the 13C Suess effect was reflected in the AAs δ13C in our samples. This study applied a compound‐specific 15N analysis of AAs to determine the TP of tropical seabirds that has potential to extend to all tropical seabirds many of which are widely distributed and play a key role in the evolution of coral island ecosystems. 相似文献
14.
David J. Yurkowski Thomas A. Brown Paul J. Blanchfield Steven H. Ferguson 《Proceedings. Biological sciences / The Royal Society》2020,287(1940)
Climate change is altering the biogeochemical and physical characteristics of the Arctic marine environment, which impacts sea ice algal and phytoplankton bloom dynamics and the vertical transport of these carbon sources to benthic communities. Little is known about whether the contribution of sea ice-derived carbon to benthic fauna and nitrogen cycling has changed over multiple decades in concert with receding sea ice. We combined compound-specific stable isotope analysis of amino acids with highly branched isoprenoid diatom lipid biomarkers using archived (1982–2016) tissue of benthivorous Atlantic walrus to examine temporal trends of sea ice-derived carbon, nitrogen isotope baseline and trophic position of Atlantic walrus at high- and mid-latitudes in the Canadian Arctic. Associated with an 18% sea ice decline in the mid-Arctic, sea ice-derived carbon contribution to Atlantic walrus decreased by 75% suggesting a strong decoupling of sea ice-benthic habitats. By contrast, a nearly exclusive amount of sea ice-derived carbon was maintained in high-Arctic Atlantic walrus (98% in 1996 and 89% in 2006) despite a similar percentage in sea ice reduction. Nitrogen isotope baseline or the trophic position of Atlantic walrus did not change over time at either location. These findings indicate latitudinal differences in the restructuring of carbon energy sources used by Atlantic walrus and their benthic prey, and in turn a change in Arctic marine ecosystem functioning between sea ice–pelagic–benthic habitats. 相似文献
15.
Bohyung Choi Changhwa Lee Yuko Takizawa Yoshito Chikaraishi Hye‐Ji Oh Kwang‐Hyeon Chang Min‐Ho Jang Hyun‐Woo Kim Kyung‐Lak Lee Kyung‐Hoon Shin 《Ecology and evolution》2020,10(14):7250-7260
- To adapt to ecological and environmental conditions, species can change their ecological niche (e.g., interactions among species) and function (e.g., prey‐predation, diet competition, and habitat segregation) at the species and guild levels. Stable isotope analysis of bulk carbon and nitrogen of organisms has conventionally been used to evaluate such adaptabilities in the scenopoetic and bionomic views as the isotopic niche width.
- Compound‐specific stable isotope analysis (CSIA) of nitrogen within amino acids provides trophic information without any disruption of scenopoetic views in the isotope ratios, unlike conventional bulk isotope analysis provides both information and therefore frequently hinders its usefulness for trophic information.
- We performed CSIA of amino acids to understand the trophic variability of the pike gudgeon Pseudogobio esocinus and largemouth bass Micropterus salmoides as representative specialist and generalist fish species, respectively, from 16 ecologically variable habitats in the four major rivers of Korea.
- There was little variation (1σ) in the trophic position (TP) among habitats for P. esocinus (± 0.2); however, there was considerably large variation for M. salmoides (± 0.6). The TP of M. salmoides was negatively correlated with the benthic invertebrate indices of the habitats, whereas the TP of P. esocinus showed no significant correlation with any indices. Thus, these two representative fish species have different trophic responses to ecological conditions, which is related to known differences in the trophic niche between specialists (i.e., small niche width) and generalists (i.e., large niche width).
- Over the past four decades, the conventional bulk isotope analysis has not been capable of deconvoluting “scenopoetic” and “bionomic” information. However, in the present study, we demonstrated that the CSIA of amino acids could isolate trophic niches from the traditional ecological niche composed of trophic and habitat information and evaluated how biological and ecological indices influence the trophic response of specialists and generalists.
16.
Compound‐specific stable isotope analysis (CSIA) of amino acids (AA) has rapidly become a powerful tool in studies of food web architecture, resource use, and biogeochemical cycling. However, applications to avian ecology have been limited because no controlled studies have examined the patterns in AA isotope fractionation in birds. We conducted a controlled CSIA feeding experiment on an avian species, the gentoo penguin (Pygoscelis papua), to examine patterns in individual AA carbon and nitrogen stable isotope fractionation between diet (D) and consumer (C) (Δ13CC‐D and Δ15NC‐D, respectively). We found that essential AA δ13C values and source AA δ15N values in feathers showed minimal trophic fractionation between diet and consumer, providing independent but complimentary archival proxies for primary producers and nitrogen sources respectively, at the base of food webs supporting penguins. Variations in nonessential AA Δ13CC‐D values reflected differences in macromolecule sources used for biosynthesis (e.g., protein vs. lipids) and provided a metric to assess resource utilization. The avian‐specific nitrogen trophic discrimination factor (TDFGlu‐Phe = 3.5 ± 0.4‰) that we calculated from the difference in trophic fractionation (Δ15NC‐D) of glutamic acid and phenylalanine was significantly lower than the conventional literature value of 7.6‰. Trophic positions of five species of wild penguins calculated using a multi‐TDFGlu‐Phe equation with the avian‐specific TDFGlu‐Phe value from our experiment provided estimates that were more ecologically realistic than estimates using a single TDFGlu‐Phe of 7.6‰ from the previous literature. Our results provide a quantitative, mechanistic framework for the use of CSIA in nonlethal, archival feathers to study the movement and foraging ecology of avian consumers. 相似文献
17.
Ren Sahm Eike Sünger Lisa Burmann Jochen P. Zubrod Ralf Schulz Patrick Fink 《International Review of Hydrobiology》2021,106(1):41-47
Invasion of non‐native species in freshwater ecosystems often alters the indigenous macroinvertebrate community and food web structure by changing the resource availability. One of these species is the invasive amphipod Dikerogammarus villosus, whose impact by predation, especially on coexisting amphipods, is still under debate. In this study, we aim to apply compound‐specific stable isotope analysis of amino acid δ15N, which is the state‐of‐the‐art approach for marine systems to estimate trophic positions, (1) to calculate β values (i.e., the differences in δ15N values of trophic and source amino acids in primary producer) for freshwater systems, based on field samples of freshwater primary consumers (i.e., mussels) from the River Rhine, and (2) use these β values in a case study to calculate the trophic position of the invasive D. villosus in comparison with coexisting indigenous and non‐native amphipod species from the river Alb sampled in 2013 and river Speyerbach sampled in 2014, two tributaries of the River Rhine, Central Europe. Our results show that our freshwater β values calculated for six combinations of trophic and source amino acids were lower by between approximately 0.85‰ and 5.67‰ than those found for marine animals in previous studies. This highlights that more attention is needed on the variability of the natural differences in β values between ecosystems. By using the freshwater β values, we showed that the trophic position of D. villosus is comparable to those of coexisting amphipod species. These findings confirm that D. villosus has a flexible and omnivorous feeding strategy like other amphipod species, and suggest that predation is not the main responsible factor for the impact of D. villosus on other species. 相似文献
18.
19.
Rachel L. Welicky Terry Rolfe Karrin Leazer Katherine P. Maslenikov Luke Tornabene Gordon W. Holtgrieve Chelsea L. Wood 《Ecology and evolution》2021,11(1):415-426
- There are few resources available for assessing historical change in fish trophic dynamics, but specimens held in natural history collections could serve as this resource. In contemporary trophic ecology studies, trophic and source information can be obtained from compound‐specific stable isotope analysis of amino acids of nitrogen (CSIA‐AA‐N).
- We subjected whole Sebastes ruberrimus and Clupea pallasii to formalin fixation and 70% ethanol preservation. We extracted tissue samples from each fish pre‐fixation, after each chemical change, and then in doubling time for 32–64 days once placed in the final preservative. All samples were subjected to CSIA‐AA‐N, and their glutamic acid and phenylalanine profiles and associated trophic position were examined for differences over time by species.
- Glutamic acid and phenylalanine values were inconsistent in direction and magnitude, particularly during formalin fixation, but stabilized similarly (in 70% ethanol) among conspecifics. In some cases, the amino acid values of our final samples were significantly different than our initial pre‐preservation samples. Nonetheless, significant differences in glutamic acid, phenylalanine, and estimated trophic position were not detected among samples that were in 70% ethanol for >24 hr.
- Our results suggest that the relative trophic position of fluid‐preserved specimens can be estimated using CSIA‐AA‐N, and CSIA‐AA‐N estimates for fluid‐preserved specimens should only be reported as relative differences. Timelines of trophic position change can be developed by comparing specimens collected at different points in time, revealing trophic information of the past and cryptic ecosystem responses.
20.
Dietary effects on life history traits of riverine Bosmina 总被引:1,自引:0,他引:1
1. We compared growth, reproduction and life history characteristics of Bosmina raised on Ohio River seston versus a unialgal culture (Scenedesmus acutus), to assess potential nutritional constraints experienced by riverine populations. 2. Bosmina grew well in both treatments during their juvenile stage. Analysis of variance showed that Bosmina growth prior to the start of reproduction did not differ significantly between the treatments. After the onset of reproduction Bosmina fed on Scenedesmus grew faster and exhibited higher fecundity than their counterparts fed river seston. 3. Significant quantities of triacylglycerol (visible lipid droplets) were gradually accumulated in Bosmina fed on Scenedesmus. Visual lipid ovary indices were positively correlated with adult growth rate and fecundity and negatively correlated with longevity. 4. Biochemical analysis showed that Scenedesmus had significantly greater total ω3, ω6 and polyunsaturated fatty acids (PUFA) whereas river seston had more eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Thus, in contrast to Daphnia, EPA and DHA do not appear to influence Bosmina growth or reproductive performance, but linolenic acid or total PUFA may be important. 5. Comparatively weak performance by Bosmina feeding on river seston suggest that nutritional constraints may be important despite high particulate organic carbon and low C : N and C : P of river seston. 相似文献