共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Laura Parducci Irina Matetovici Sonia L. Fontana K. D. Bennett Yoshihisa Suyama James Haile Kurt H. Kjær Nicolaj K. Larsen Andreas D. Drouzas Eske Willerslev 《Molecular ecology》2013,22(13):3511-3524
Plant and animal biodiversity can be studied by obtaining DNA directly from the environment. This new approach in combination with the use of generic barcoding primers (metabarcoding) has been suggested as complementary or alternative to traditional biodiversity monitoring in ancient soil sediments. However, the extent to which metabarcoding truly reflects plant composition remains unclear, as does its power to identify species with no pollen or macrofossil evidence. Here, we compared pollen‐based and metabarcoding approaches to explore the Holocene plant composition around two lakes in central Scandinavia. At one site, we also compared barcoding results with those obtained in earlier studies with species‐specific primers. The pollen analyses revealed a larger number of taxa (46), of which the majority (78%) was not identified by metabarcoding. The metabarcoding identified 14 taxa (MTUs), but allowed identification to a lower taxonomical level. The combined analyses identified 52 taxa. The barcoding primers may favour amplification of certain taxa, as they did not detect taxa previously identified with species‐specific primers. Taphonomy and selectiveness of the primers are likely the major factors influencing these results. We conclude that metabarcoding from lake sediments provides a complementary, but not an alternative, tool to pollen analysis for investigating past flora. In the absence of other fossil evidence, metabarcoding gives a local and important signal from the vegetation, but the resulting assemblages show limited capacity to detect all taxa, regardless of their abundance around the lake. We suggest that metabarcoding is followed by pollen analysis and the use of species‐specific primers to provide the most comprehensive signal from the environment. 相似文献
3.
Thomas W. A. Braukmann Natalia V. Ivanova Sean W. J. Prosser Vasco Elbrecht Dirk Steinke Sujeevan Ratnasingham Jeremy R. de Waard Jayme E. Sones Evgeny V. Zakharov Paul D. N. Hebert 《Molecular ecology resources》2019,19(3):711-727
Although DNA metabarcoding is an attractive approach for monitoring biodiversity, it is often difficult to detect all the species present in a bulk sample. In particular, sequence recovery for a given species depends on its biomass and mitome copy number as well as the primer set employed for PCR. To examine these variables, we constructed a mock community of terrestrial arthropods comprised of 374 species. We used this community to examine how species recovery was impacted when amplicon pools were constructed in four ways. The first two protocols involved the construction of bulk DNA extracts from different body segments (Bulk Abdomen, Bulk Leg). The other protocols involved the production of DNA extracts from single legs which were then merged prior to PCR (Composite Leg) or PCR‐amplified separately (Single Leg) and then pooled. The amplicons generated by these four treatments were then sequenced on three platforms (Illumina MiSeq, Ion Torrent PGM and Ion Torrent S5). The choice of sequencing platform did not substantially influence species recovery, although the Miseq delivered the highest sequence quality. As expected, species recovery was most efficient from the Single Leg treatment because amplicon abundance varied little among taxa. Among the three treatments where PCR occurred after pooling, the Bulk Abdomen treatment produced a more uniform read abundance than the Bulk Leg or Composite Leg treatment. Primer choice also influenced species recovery and evenness. Our results reveal how variation in protocols can have substantial impacts on perceived diversity unless sequencing coverage is sufficient to reach an asymptote. 相似文献
4.
Austen C. Thomas Bruce E. Deagle J. Paige Eveson Corie H. Harsch Andrew W. Trites 《Molecular ecology resources》2016,16(3):714-726
DNA metabarcoding is a powerful new tool allowing characterization of species assemblages using high‐throughput amplicon sequencing. The utility of DNA metabarcoding for quantifying relative species abundances is currently limited by both biological and technical biases which influence sequence read counts. We tested the idea of sequencing 50/50 mixtures of target species and a control species in order to generate relative correction factors (RCFs) that account for multiple sources of bias and are applicable to field studies. RCFs will be most effective if they are not affected by input mass ratio or co‐occurring species. In a model experiment involving three target fish species and a fixed control, we found RCFs did vary with input ratio but in a consistent fashion, and that 50/50 RCFs applied to DNA sequence counts from various mixtures of the target species still greatly improved relative abundance estimates (e.g. average per species error of 19 ± 8% for uncorrected vs. 3 ± 1% for corrected estimates). To demonstrate the use of correction factors in a field setting, we calculated 50/50 RCFs for 18 harbour seal (Phoca vitulina) prey species (RCFs ranging from 0.68 to 3.68). Applying these corrections to field‐collected seal scats affected species percentages from individual samples (Δ 6.7 ± 6.6%) more than population‐level species estimates (Δ 1.7 ± 1.2%). Our results indicate that the 50/50 RCF approach is an effective tool for evaluating and correcting biases in DNA metabarcoding studies. The decision to apply correction factors will be influenced by the feasibility of creating tissue mixtures for the target species, and the level of accuracy needed to meet research objectives. 相似文献
5.
Taxon‐specific DNA tests are applied to many ecological and management questions, increasingly using environmental DNA (eDNA). eDNA facilitates noninvasive ecological studies but introduces additional risks of bias and error. For effective application, PCR primers must be developed for each taxon and validated in each system. We outline a nine step framework for the development and validation of taxon‐specific primers for eDNA analysis in ecological studies, involving reference database construction, phylogenetic evaluation of the target gene, primer design, primer evaluation in silico, and laboratory evaluation of primer specificity, sensitivity and utility. Our framework makes possible a rigorous evaluation of likely sources of error. The first five steps can be conducted relatively rapidly and (where reference DNA sequences are available) require minimal laboratory resources, enabling assessment of primer suitability before investing in further work. Steps six to eight require more costly laboratory analyses but are essential to evaluate risks of false‐positive and false‐negative results, while step 9 relates to field implementation. As an example, we have developed and evaluated primers to specifically amplify part of the mitochondrial ND2 gene from Australian bandicoots. If adopted during the early stages of primer development, our framework will facilitate large‐scale implementation of well‐designed DNA tests to detect specific wildlife from eDNA samples. This will provide researchers and managers with an understanding of the strengths and limitations of their data and the conclusions that can be drawn from them. 相似文献
6.
Angelina J. Kreuzinger Konrad Fiedler Harald Letsch Andrea Grill 《Ecology and evolution》2015,5(1):46-58
The use of DNA sequence data often leads to the recognition of cryptic species within putatively well‐known taxa. The opposite case, detecting less diversity than originally described, has, however, far more rarely been documented. Maniola jurtina, the Meadow Brown butterfly, occurs all over Europe, whereas all other six species in the genus Maniola are restricted to the Mediterranean area. Among them, three are island endemics on Sardinia, Cyprus, and Chios, respectively. Maniola species are almost indistinguishable morphologically, and hybridization seems to occur occasionally. To clarify species boundaries and diversification history of the genus, we reconstructed the phylogeography and phylogeny of all seven species within Maniola analyzing 138 individuals from across its range using mitochondrial and nuclear genetic markers. Examination of variation in mitochondrial and nuclear DNA surprisingly revealed a case of taxonomic “oversplitting”. The topology of the recovered phylogenetic tree is not consistent with accepted taxonomy, but rather reveals haplotype clades that are incongruent with nominal species boundaries: instead of seven species, we recognized only two major, yet incompletely segregated, lineages. Our results are consistent with the hypothesis that Maniola originated in Africa. We suggest that one lineage dispersed over the Strait of Gibraltar and the Iberian Peninsula to the west of Europe, while the other lineage spreads eastward through Asia Minor and over the Bosporus to Eastern Europe. 相似文献
7.
Bruce E. Deagle Laurence J. Clarke John A. Kitchener Andrea M. Polanowski Andrew T. Davidson 《Molecular ecology resources》2018,18(3):391-406
DNA metabarcoding is an efficient method for measuring biodiversity, but the process of initiating long‐term DNA‐based monitoring programmes, or integrating with conventional programs, is only starting. In marine ecosystems, plankton surveys using the continuous plankton recorder (CPR) have characterized biodiversity along transects covering millions of kilometres with time‐series spanning decades. We investigated the potential for use of metabarcoding in CPR surveys. Samples (n = 53) were collected in two Southern Ocean transects and metazoans identified using standard microscopic methods and by high‐throughput sequencing of a cytochrome c oxidase subunit I marker. DNA increased the number of metazoan species identified and provided high‐resolution taxonomy of groups problematic in conventional surveys (e.g., larval echinoderms and hydrozoans). Metabarcoding also generally produced more detections than microscopy, but this sensitivity may make cross‐contamination during sampling a problem. In some samples, the prevalence of DNA from large plankton such as krill masked the presence of smaller species. We investigated adding a fixed amount of exogenous DNA to samples as an internal control to allow determination of relative plankton biomass. Overall, the metabarcoding data represent a substantial shift in perspective, making direct integration into current long‐term time‐series challenging. We discuss a number of hurdles that exist for progressing DNA metabarcoding from the current snapshot studies to the requirements of a long‐term monitoring programme. Given the power and continually increasing efficiency of metabarcoding, it is almost certain this approach will play an important role in future plankton monitoring. 相似文献
8.
Jan Pawlowski Philippe Esling Franck Lejzerowicz Tomas Cedhagen Thomas A. Wilding 《Molecular ecology resources》2014,14(6):1129-1140
The measurement of species diversity represents a powerful tool for assessing the impacts of human activities on marine ecosystems. Traditionally, the impact of fish farming on the coastal environment is evaluated by monitoring the dynamics of macrobenthic infaunal populations. However, taxonomic sorting and morphology‐based identification of the macrobenthos demand highly trained specialists and are extremely time‐consuming and costly, making it unsuitable for large‐scale biomonitoring efforts involving numerous samples. Here, we propose to alleviate this laborious task by developing protist metabarcoding tools based on next‐generation sequencing (NGS) of environmental DNA and RNA extracted from sediment samples. In this study, we analysed the response of benthic foraminiferal communities to the variation of environmental gradients associated with salmon farms in Scotland. We investigated the foraminiferal diversity based on ribosomal minibarcode sequences generated by the Illumina NGS technology. We compared the molecular data with morphospecies counts and with environmental gradients, including distance to cages and redox used as a proxy for sediment oxygenation. Our study revealed high variations between foraminiferal communities collected in the vicinity of fish farms and at distant locations. We found evidence for species richness decrease in impacted sites, especially visible in the RNA data. We also detected some candidate bioindicator foraminiferal species. Based on this proof‐of‐concept study, we conclude that NGS metabarcoding using foraminifera and other protists has potential to become a new tool for surveying the impact of aquaculture and other industrial activities in the marine environment. 相似文献
9.
Petr Kohout Pavla Doubková Mohammad Bahram Jan Suda Leho Tedersoo Jana Voříšková Radka Sudová 《Molecular ecology》2015,24(8):1831-1843
Arbuscular mycorrhizal fungi (AMF) represent an important soil microbial group playing a fundamental role in many terrestrial ecosystems. We explored the effects of deterministic (soil characteristics, host plant life stage, neighbouring plant communities) and stochastic processes on AMF colonization, richness and community composition in roots of Knautia arvensis (Dipsacaceae) plants from three serpentine grasslands and adjacent nonserpentine sites. Methodically, the study was based on 454‐sequencing of the ITS region of rDNA. In total, we detected 81 molecular taxonomical operational units (MOTUs) belonging to the Glomeromycota. Serpentine character of the site negatively influenced AMF root colonization, similarly as higher Fe concentration. AMF MOTUs richness linearly increased along a pH gradient from 3.5 to 5.8. Contrary, K and Cr soil concentration had a negative influence on AMF MOTUs richness. We also detected a strong relation between neighbouring plant community composition and AMF MOTUs richness. Although spatial distance between the sampled sites (c. 0.3–3 km) contributed to structuring AMF communities in K. arvensis roots, environmental parameters were key factors in this respect. In particular, the composition of AMF communities was shaped by the complex of serpentine conditions, pH and available soil Ni concentration. The composition of AMF communities was also dependent on host plant life stage (vegetative vs. generative). Our study supports the dominance of deterministic factors in structuring AMF communities in heterogeneous environment composed of an edaphic mosaic of serpentine and nonserpentine soils. 相似文献
10.
Want a glimpse at past vegetation? Studying pollen and other plant remains, which are preserved for example in lake sediments or mires for thousands of years, allows us to document regional occurrences of plant species over radiocarbon‐dated time series. Such vegetation reconstructions derived from optical analyses of fossil samples are inherently incomplete because they only comprise taxa that contribute sufficient amounts of pollen, spores, macrofossil or other evidences. To complement optical analyses for paleoecological inference, molecular markers applied to ancient DNA (aDNA) may help in disclosing information hitherto inaccessible to biologists. Parducci et al. (2013) targeted aDNA from sediment cores of two lakes in the Scandes Mountains with generic primers in a meta‐barcoding approach. When compared to palynological records from the same cores, respective taxon lists show remarkable differences in their compositions, but also in quantitative representation and in taxonomic resolution similar to a previous study (Jørgensen et al. 2012). While not free of assumptions that need critical and robust testing, notably the question of possible contamination, this study provides thrilling prospects to improve our knowledge about past vegetation composition, but also other organismic groups, stored as a biological treasure in the ground. 相似文献
11.
植物的特有现象与生物多样性 总被引:32,自引:2,他引:32
特有现象是生物多样性的依据,多样性是特有现象的体现,特圾现象是种系分化的结果,特有现象的成因是多方面的,包括地貌因子、土壤因子、气候因子、边缘效应、海洋岛屿隔离以及自然杂交。全球各大的自然条件的多样性,促成了各大陆各异的特有现象和生物多样性,生物多样性是生命运动的属性,它是在系统发育过程中发展壮大的,因此,它的发展有生的,既具有普遍性,又具有特殊性,保护生物多样性是当前的迫切任务。 相似文献
12.
Toshifumi Minamoto 《DNA research》2022,29(3)
In an era of severe biodiversity loss, biological monitoring is becoming increasingly essential. The analysis of environmental DNA (eDNA) has emerged as a new approach that could revolutionize the biological monitoring of aquatic ecosystems. Over the past decade, macro-organismal eDNA analysis has undergone significant developments and is rapidly becoming established as the golden standard for non-destructive and non-invasive biological monitoring. In this review, I summarize the development of macro-organismal eDNA analysis to date and the techniques used in this field. I also discuss the future perspective of these analytical methods in combination with sophisticated analytical techniques for DNA research developed in the fields of molecular biology and molecular genetics, including genomics, epigenomics, and single-cell technologies. eDNA analysis, which to date has been used primarily for determining the distribution of organisms, is expected to develop into a tool for elucidating the physiological state and behaviour of organisms. The fusion of microbiology and macrobiology through an amalgamation of these technologies is anticipated to lead to the future development of an integrated biology. 相似文献
13.
Alejandra Ortega Nathan R. Geraldi Rubn Díaz‐Rúa Sarah B.
rberg Marlene Wesselmann Dorte Krause‐Jensen Carlos M. Duarte 《Molecular ecology resources》2020,20(4):920-935
Studies focusing on marine macrophyte metabarcoding from environmental samples are scarce, due to the lack of a universal barcode for these taxa, and to their poor representation in DNA databases. Here, we searched for a short barcode able to identify marine macrophytes from tissue samples; then, we created a DNA reference library which was used to identify macrophytes in eDNA from coastal sediments. Barcoding of seagrasses, mangroves and marine macroalgae (Chlorophyta, Rhodophyta and Phaeophyceae) was tested using 18 primer pairs from six barcoding genes: the plant barcodes rbcL, matK and trnL, plus the genes ITS2, COI and 18S. The 18S gene showed the highest universality among marine macrophytes, amplifying 95%–100% of samples; amplification performance of the other barcodes was limited. Taxonomy was assigned using a phylogeny‐based approach to create an 18S DNA reference library. Macrophyte tissue sequences were accurately identified within their phyla (88%), order (76%), genus (71%) and species (23%). Nevertheless, out of 86 macrophytes tested, only 48% and 15% had a reference sequence at genus and at species level, respectively. Identification at these levels can be improved by more inclusive reference libraries. Using the 18S mini‐barcode and the reference library, we recovered eDNA from 21 marine macrophytes in sediments, demonstrating the barcode's ability to trace primary producers that contribute to blue carbon. We expect this barcode to also be useful for other ecological questions, such as tracing macro primary producers in marine food webs. 相似文献
14.
Kristine Bohmann Siavash Mirarab Vineet Bafna M. Thomas P. Gilbert 《Molecular ecology》2020,29(14):2521-2534
Genetic tools are increasingly used to identify and discriminate between species. One key transition in this process was the recognition of the potential of the ca 658bp fragment of the organelle cytochrome c oxidase I (COI) as a barcode region, which revolutionized animal bioidentification and lead, among others, to the instigation of the Barcode of Life Database (BOLD), containing currently barcodes from >7.9 million specimens. Following this discovery, suggestions for other organellar regions and markers, and the primers with which to amplify them, have been continuously proposed. Most recently, the field has taken the leap from PCR‐based generation of DNA references into shotgun sequencing‐based “genome skimming” alternatives, with the ultimate goal of assembling organellar reference genomes. Unfortunately, in genome skimming approaches, much of the nuclear genome (as much as 99% of the sequence data) is discarded, which is not only wasteful, but can also limit the power of discrimination at, or below, the species level. Here, we advocate that the full shotgun sequence data can be used to assign an identity (that we term for convenience its “DNA‐mark”) for both voucher and query samples, without requiring any computationally intensive pretreatment (e.g. assembly) of reads. We argue that if reference databases are populated with such “DNA‐marks,” it will enable future DNA‐based taxonomic identification to complement, or even replace PCR of barcodes with genome skimming, and we discuss how such methodology ultimately could enable identification to population, or even individual, level. 相似文献
15.
Sønstebø JH Gielly L Brysting AK Elven R Edwards M Haile J Willerslev E Coissac E Rioux D Sannier J Taberlet P Brochmann C 《Molecular ecology resources》2010,10(6):1009-1018
Palaeoenvironments and former climates are typically inferred from pollen and macrofossil records. This approach is time-consuming and suffers from low taxonomic resolution and biased taxon sampling. Here, we test an alternative DNA-based approach utilizing the P6 loop in the chloroplast trnL (UAA) intron; a short (13–158 bp) and variable region with highly conserved flanking sequences. For taxonomic reference, a whole trnL intron sequence database was constructed from recently collected material of 842 species, representing all widespread and/or ecologically important taxa of the species-poor arctic flora. The P6 loop alone allowed identification of all families, most genera (>75%) and one-third of the species, thus providing much higher taxonomic resolution than pollen records. The suitability of the P6 loop for analysis of samples containing degraded ancient DNA from a mixture of species is demonstrated by high-throughput parallel pyrosequencing of permafrost-preserved DNA and reconstruction of two plant communities from the last glacial period. Our approach opens new possibilities for DNA-based assessment of ancient as well as modern biodiversity of many groups of organisms using environmental samples. 相似文献
17.
Trigonostigma somphongsi, a critically endangered species, is a rare and endemic fish in Thailand. This species had disappeared from its natural habitat for 20 years until 2006. The DNA barcodes or the fragments of cytochrome c oxidase I (COI) of T. somphongsi were investigated for species identification. The remaining two native species in the genus Trigonostigma, T. heteromorpha and T. espei were also identified using Boraras urophthalmoides as an outgroup species. The 707-bp fragments were successfully amplified and sequenced in all fifteen fish samples. In the genus Trigonostigma, the genetic distance within and between species ranged from 0.000 to 0.005 and 0.016 to 0.039, respectively. The lowest genetic distance (0.016) was between T. heteromorpha and T. espei, while the highest genetic distance (0.039) was between T. somphongsi and T. espei, followed by T. somphongsi and T. heteromorpha (0.035). The phylogenetic analysis showed that the relationship between the three Trigonostigma species (T. somphongsi was clearly separated from T. heteromorpha and T. espei) agreed with the morphological characteristics. These results suggest that DNA barcoding is an effective approach to identify Trigonostigma species for use in the conservation and management of fisheries. 相似文献
18.
Karen L. Bell Robert A. Petit III Anya Cutler Emily K. Dobbs J. Michael Macpherson Timothy D. Read Kevin S. Burgess Berry J. Brosi 《Ecology and evolution》2021,11(22):16082
Molecular identification of mixed‐species pollen samples has a range of applications in various fields of research. To date, such molecular identification has primarily been carried out via amplicon sequencing, but whole‐genome shotgun (WGS) sequencing of pollen DNA has potential advantages, including (1) more genetic information per sample and (2) the potential for better quantitative matching. In this study, we tested the performance of WGS sequencing methodology and publicly available reference sequences in identifying species and quantifying their relative abundance in pollen mock communities. Using mock communities previously analyzed with DNA metabarcoding, we sequenced approximately 200Mbp for each sample using Illumina HiSeq and MiSeq. Taxonomic identifications were based on the Kraken k‐mer identification method with reference libraries constructed from full‐genome and short read archive data from the NCBI database. We found WGS to be a reliable method for taxonomic identification of pollen with near 100% identification of species in mixtures but generating higher rates of false positives (reads not identified to the correct taxon at the required taxonomic level) relative to rbcL and ITS2 amplicon sequencing. For quantification of relative species abundance, WGS data provided a stronger correlation between pollen grain proportion and sequence read proportion, but diverged more from a 1:1 relationship, likely due to the higher rate of false positives. Currently, a limitation of WGS‐based pollen identification is the lack of representation of plant diversity in publicly available genome databases. As databases improve and costs drop, we expect that eventually genomics methods will become the methods of choice for species identification and quantification of mixed‐species pollen samples. 相似文献
20.
The snakehead fish of the genus Channa are an important food fish in China. However, the molecular identification and phylogeny of this genus is poorly understood. Here, we present the utility of partial sequences of the COI gene for use in DNA barcoding for the identification of Channa individuals, which includes four species: Channa argus, Channa maculata, Channa asiatica, and Channa striata. A total of 19 haplotypes were identified in this study. The interspecific K2P distances were higher than intraspecific distances. The lowest interspecific distance (0.091) was between C. argus and C. maculata while the highest interspecific distance (0.219) was between C. argus and C. striata. No intraspecific–interspecific distance overlaps were observed, and a distinct barcoding gap was found between intraspecific and interspecific distances in each species. Our results showed that the partial COI gene is an effective DNA barcoding marker for identifying Channa species. 相似文献