首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maternal effects, either environmental or genetic in origin, are an underappreciated source of phenotypic variance in natural populations. Maternal genetic effects have the potential to constrain or enhance the evolution of offspring traits depending on their magnitude and their genetic correlation with direct genetic effects. We estimated the maternal effect variance and its genetic component for 12 traits expressed over the life history in a pedigreed population of wild red deer (morphology, survival/longevity, breeding success). We only found support for maternal genetic effect variance in the two neonatal morphological traits: birth weight ( = 0.31) and birth leg length ( = 0.17). For these two traits, the genetic correlation between maternal and direct additive effects was not significantly different from zero, indicating no constraint to evolution from genetic architecture. In contrast, variance in maternal genetic effects enhanced the additive genetic variance available to respond to natural selection. Maternal effect variance was negligible for late-life traits. We found no evidence for sex differences in either the direct or maternal genetic architecture of offspring traits. Our results suggest that maternal genetic effect variance declines over the lifetime, but also that this additional heritable genetic variation may facilitate evolutionary responses of early-life traits.  相似文献   

2.
3.
Beginning in 1977 the Washington Department of Fish and Wildlife conducted annual surveys to determine statewide golden eagle (Aquila chrysaetos) occupancy and productivity. Current interest in the regional and national status of the species prompted our investigation to determine utility of historical data in assessing trends in reproduction, and to test efficacy of a sampling protocol that surveyed randomly selected territories and also accounted for detection probability. We found evidence indicating poor reproduction from 38 annual surveys conducted at 301 known territories statewide between 1977 and 2014. At 256 territories in eastern Washington, USA, apparent occupancy was low ( = 50.9%) and nesting success declined by 22%. All reproductive parameters were higher than at 45 territories in western Washington. We tested efficacy of a sampling protocol in 2013 and 2014 by surveying 108 randomly selected eastern territories. Probability of detecting eagles for these years from ground (= 89%) was greater than from air (= 66%). Our estimate of territory occupancy, corrected by probability of detection, was lower in 2013 (= 56.7%, 95% CI = 46.3–66.7%) than in 2014 (= 73.7%, 95% CI = 64.8–81.7%), as was the estimated number of breeding pairs (2013: = 158, 95% CI = 151–164; 2014: = 187, 95% CI = 182–192). Higher productivity (young/occupied territory) in 2013 (= 0.59, 95% CI = 0.40–0.82) than in 2014 (= 0.41, 95% CI = 0.27–0.59) and lower proportions of ≥1 immature eagle among nesting pairs in 2013 (16%) than in 2014 (31%), suggested higher immature pairing among sampled pairs contributed to inter-year differences in these reproductive parameters. Current and historical evidence for depressed golden eagle nesting in Washington is consistent with documented effects from habitat conversion, prey declines, lead contamination, and wind power development. We recommend future surveys in eastern Washington adhere to the random sampling protocol and conduct surveys at regular intervals to allow for trend analysis of reproductive parameters to better monitor golden eagle status. Surveys in western Washington, conducted exclusively from ground at all nests, will improve detection and cost efficiency. © 2020 The Wildlife Society.  相似文献   

4.
The decision curve plots the net benefit of a risk model for making decisions over a range of risk thresholds, corresponding to different ratios of misclassification costs. We discuss three methods to estimate the decision curve, together with corresponding methods of inference and methods to compare two risk models at a given risk threshold. One method uses risks (R) and a binary event indicator (Y) on the entire validation cohort. This method makes no assumptions on how well-calibrated the risk model is nor on the incidence of disease in the population and is comparatively robust to model miscalibration. If one assumes that the model is well-calibrated, one can compute a much more precise estimate of based on risks R alone. However, if the risk model is miscalibrated, serious bias can result. Case–control data can also be used to estimate if the incidence (or prevalence) of the event () is known. This strategy has comparable efficiency to using the full data, and its efficiency is only modestly less than that for the full data if the incidence is estimated from the mean of Y. We estimate variances using influence functions and propose a bootstrap procedure to obtain simultaneous confidence bands around the decision curve for a range of thresholds. The influence function approach to estimate variances can also be applied to cohorts derived from complex survey samples instead of simple random samples.  相似文献   

5.
The fixation of new deleterious mutations is analyzed for a randomly mating population of constant size with no environmental or demographic stochasticity. Mildly deleterious mutations are far more important in causing loss of fitness and eventual extinction than are lethal and semilethal mutations in populations with effective sizes, Ne, larger than a few individuals. If all mildly deleterious mutations have the same selection coefficient, s against heterozygotes and 2s against homozygotes, the mean time to extinction, , is asymptotically proportional to for 4Nes > 1. Nearly neutral mutations pose the greatest risk of extinction for stable populations, because the magnitude of selection coefficient that minimizes is about ? = 0.4/Ne. The influence of variance in selection coefficients among mutations is analyzed assuming a gamma distribution of s, with mean and variance . The mean time to extinction increases with variance in selection coefficients if is near ?, but can decrease greatly if is much larger than ?. For a given coefficient of variation of , the mean time to extinction is asymptotically proportional to for . When s is exponentially distributed, (c = 1) is asymptotically proportional to . These results in conjunction with data on the rate and magnitude of mildly deleterious mutations in Drosophila melanogaster indicate that even moderately large populations, with effective sizes on the order of Ne = 103, may incur a substantial risk of extinction from the fixation of new mutations.  相似文献   

6.
One of the most challenging tasks in wildlife conservation and management is to clarify how spatial variation in land cover due to anthropogenic disturbance influences wildlife demography and long-term viability. To evaluate this, we compared rates of survival and population growth by woodland caribou (Rangifer tarandus caribou) from 2 study sites in northern Ontario, Canada that differed in the degree of anthropogenic disturbance because of commercial logging and road development, resulting in differences in predation risk due to gray wolves (Canis lupus). We used an individual-based model for population viability analysis (PVA) that incorporated adaptive patterns of caribou movement in relation to predation risk and food availability to predict stochastic variation in rates of caribou survival. Field estimates of annual survival rates for adult female caribou in the unlogged ( 0.90) and logged ( 0.76) study sites recorded during 2010–2014 did not differ significantly (P > 0.05) from values predicted by the individual-based PVA model (unlogged: = 0.87; logged: 0.79). Outcomes from the individual-based PVA model and a simpler stage-structured matrix model suggest that substantial differences in adult survival largely due to wolf predation are likely to lead to long-term decline of woodland caribou in the commercially logged landscape, whereas the unlogged landscape should be considerably more capable of sustaining caribou. Estimates of population growth rates (λ) for the 2010–2014 period differed little between the matrix model and the individual-based PVA model for the unlogged (matrix model = 1.01; individual-based model = 0.98) and logged landscape (matrix model = 0.88; individual-based model = 0.89). We applied the spatially explicit PVA model to assess the viability of woodland caribou across 14 woodland caribou ranges in Ontario. Outcomes of these simulations suggest that woodland caribou ranges that have experienced significant levels of commercial forestry activities in the past had annual growth rates <0.89, whereas caribou ranges that had not experienced commercial forestry operations had population growth rates >0.96. These differences were strongly related to regional variation in wolf densities. Our results suggest that increased wolf predation risk due to anthropogenic disturbance is of sufficient magnitude to cause appreciable risk of population decline in woodland caribou in Ontario. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

7.
When the objective is to administer the best of two treatments to an individual, it is necessary to know his or her individual treatment effects (ITEs) and the correlation between the potential responses (PRs) and under treatments 1 and 0. Data that are generated in a parallel-group design RCT does not allow the ITE to be determined because only two samples from the marginal distributions of these PRs are observed and not the corresponding joint distribution. This is due to the “fundamental problem of causal inference.” Here, we present a counterfactual approach for estimating the joint distribution of two normally distributed responses to two treatments. This joint distribution of the PRs and can be estimated by assuming a bivariate normal distribution for the PRs and by using a normally distributed baseline biomarker functionally related to the sum . Such a functional relationship is plausible since a biomarker and the sum encode for the same information in an RCT, namely the variation between subjects. The estimation of the joint trivariate distribution is subjected to some constraints. These constraints can be framed in the context of linear regressions with regard to the proportions of variances in the responses explained and with regard to the residual variation. This presents new insights on the presence of treatment–biomarker interactions. We applied our approach to example data on exercise and heart rate and extended the approach to survival data.  相似文献   

8.
Regression modelling is a powerful statistical tool often used in biomedical and clinical research. It could be formulated as an inverse problem that measures the discrepancy between the target outcome and the data produced by representation of the modelled predictors. This approach could simultaneously perform variable selection and coefficient estimation. We focus particularly on a linear regression issue, , where is the parameter of interest and its components are the regression coefficients. The inverse problem finds an estimate for the parameter , which is mapped by the linear operator to the observed outcome data . This problem could be conveyed by finding a solution in the affine subspace . However, in the presence of collinearity, high-dimensional data and high conditioning number of the related covariance matrix, the solution may not be unique, so the introduction of prior information to reduce the subset and regularize the inverse problem is needed. Informed by Huber's robust statistics framework, we propose an optimal regularizer to the regression problem. We compare results of the proposed method and other penalized regression regularization methods: ridge, lasso, adaptive-lasso and elastic-net under different strong hypothesis such as high conditioning number of the covariance matrix and high error amplitude, on both simulated and real data from the South London Stroke Register. The proposed approach can be extended to mixed regression models. Our inverse problem framework coupled with robust statistics methodology offer new insights in statistical regression and learning. It could open a new research development for model fitting and learning.  相似文献   

9.
Chemotrophic microorganisms gain energy for cellular functions by catalyzing oxidation–reduction (redox) reactions that are out of equilibrium. Calculations of the Gibbs energy ( ΔG r ) can identify whether a reaction is thermodynamically favourable and quantify the accompanying energy yield at the temperature, pressure and chemical composition in the system of interest. Based on carefully calculated values of ΔG r , we predict a novel microbial metabolism – sulfur comproportionation (3H2S + + 2H+ ⇌ 4S0 + 4H2O). We show that at elevated concentrations of sulfide and sulfate in acidic environments over a broad temperature range, this putative metabolism can be exergonic ( ΔG r <0), yielding ~30–50 kJ mol−1. We suggest that this may be sufficient energy to support a chemolithotrophic metabolism currently missing from the literature. Other versions of this metabolism, comproportionation to thiosulfate (H2S + ⇌ + H2O) and to sulfite (H2S + 3 ⇌ 4 + 2H+), are only moderately exergonic or endergonic even at ideal geochemical conditions. Natural and impacted environments, including sulfidic karst systems, shallow-sea hydrothermal vents, sites of acid mine drainage, and acid–sulfate crater lakes, may be ideal hunting grounds for finding microbial sulfur comproportionators.  相似文献   

10.
11.
A mother can influence a trait in her offspring both by the genes she transmits (Mendelian inheritance) and by maternal attributes that directly affect that trait in her offspring (maternal inheritance). Maternal inheritance can alter the direction, rate, and duration of adaptive evolution from standard Mendelian models and its impact on adaptive evolution is virtually unexplored in natural populations. In a hierarchical quantitative genetic analysis to determine the magnitude and structure of maternal inheritance in the winter annual plant, Collinsia verna, I consider three potential models of inheritance. These range from a standard Mendelian model estimating only direct (i.e., Mendelian) additive and environmental variance components to a maternal inheritance model estimating six additive and environmental variance components: direct additive and environmental variances; maternal additive and environmental variances; and the direct-maternal additive () and environmental covariances. The structure of maternal inheritance differs among the 10 traits considered at four stages in the life cycle. Early in the life cycle, seed weight and embryo weight display substantial , a negative , and a positive . Subsequently, cotyledon diameter displays and of roughly the same magnitude and negative . For fall rosettes, leaf number and length are best described by a Mendelian model. In the spring, leaf length displays maternal inheritance with significant and and a negative . All maternally inherited traits show significant negative . Predicted response to selection under maternal inheritance depends on and as well as . Negative results in predicted responses in the opposite direction to selection for seed weight and embryo weight and predicted responses near zero for all subsequent maternally inherited traits. Maternal inheritance persists through the life cycle of this annual plant for a number of size-related traits and will alter the direction and rate of evolutionary response in this population.  相似文献   

12.
We carried out a posthurricane evaluation of Broughtonia cubensis (Lindl.) Cogn., an endemic Cuban epiphytic orchid, after Hurricane Ivan (2004). We studied the transient responses in the stochastic dynamics of the species at three different sites over 13 successive years (2006–2019), monitored plot inventories (464 individuals in 10 transects) and built stochastic population models. The deterministic stochastic growth rate values () did not significantly differ (F = 2.76; p > 0.076) among the three sites over the 2006–2019 period. The long-term stochastic growth rate was 0.973 [0.932, 1.034]. The matrix elements that had the largest effect on were the transition to and stasis within the largest size class. Transient responses explained an average of 86% of the variation in the observed population growth rates , compared to 4% of the variation in the vital rates . Because transient dynamics are dependent on the population size composition, we ran extinction risk analyses under two scenarios: a population composed mainly of juveniles and another composed mainly of adults. There was little risk of falling below the quasi-extinction threshold before 25 year for both juveniles and adults. However, the risk of quasi-extinction was almost certain for both size classes by 80 year. We also simulated the effect of increasing the hurricane occurrence probability over 80 year on the population. There was little risk of extinction before 20 year in the baseline model, but there was a significant risk of extinction within 5 year when 90% of the individuals were affected by a new hurricane event.  相似文献   

13.
This study developed a portable, low-cost field respirometer for measuring oxygen consumption rates of large-bodied fishes. The respirometer performed well in laboratory tests and was used to measure the oxygen consumption rates ( O2) of bull sharks Carcharhinus leucas (mean: 249.21 ± 58.10 mg O2 kg−1 h−1 at 27.05°C). Interspecific comparisons and assessments of oxygen degradation curves indicated that the respirometer provided reliable measurements of O2. This system presents a field-based alternative to laboratory respirometers, opening opportunities for studies on species in remote localities, increasing the ability to validate physiological field studies.  相似文献   

14.
Wildlife populations are experiencing shifting dynamics due to climate and landscape change. Management policies that fail to account for non-stationary dynamics may fail to achieve management objectives. We establish a framework for understanding optimal strategies for managing a theoretical harvested population under non-stationarity. Building from harvest theory, we develop scenarios representing changes in population growth rate () or carrying capacity () and derive time-dependent optimal harvest policies using stochastic dynamic programming. We then evaluate the cost of falsely assuming stationarity by comparing the outcomes of forward projections in which either the optimal policy or a stationary policy is applied. When declines over time, the stationary policy leads to an underharvest of the population, resulting in less harvest over the short term but leaving the population in a higher-value state. When declines over time, the stationary policy leads to overharvest, resulting in greater harvest returns in the short term but leaving the population in a lower and potentially more vulnerable state. This work demonstrates the basic properties of time-dependent harvest management and provides a framework for evaluating the many outstanding questions about optimal management strategies under climate change. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

15.
This analysis shows good intentions in the selection of valid and precise oxygen uptake (O2) measurements by retaining only slopes of declining dissolved oxygen level in a respirometer that have very high values of the coefficient of determination, r2, are not always successful at excluding nonlinear slopes. Much worse, by potentially removing linear slopes that have low r2 only because of a low signal-to-noise ratio, this procedure can overestimate the calculation of standard metabolic rate (SMR) of the fish. To remedy this possibility, a few simple diagnostic tools are demonstrated to assess the appropriateness of a given minimum acceptable r2, such as calculating the proportion of rejected O2 determinations, producing a histogram of the r2 values and a plot of r2 as a function of O2. The authors offer solutions for cases when many linear slopes have low r2. The least satisfactory but easiest to implement is lowering the minimum acceptable r2. More satisfactory solutions involve processing (smoothing) the raw signal of dissolved oxygen as a function of time to improve the signal-to-noise ratio and the r2s.  相似文献   

16.
Models of the maintenance of genetic variance in a polygenic trait have usually assumed that population size is infinite and that selection is weak. Consequently, they will overestimate the amount of variation maintained in finite populations. I derive approximations for the equilibrium genetic variance, in finite populations under weak stabilizing selection for triallelic loci and for an infinite “rare alleles” model. These are compared to results for neutral characters, to the “Gaussian allelic” model, and to Wright's approximation for a biallelic locus under arbitrary selection pressures. For a variety of parameter values, the three-allele, Gaussian, and Wrightian approximations all converge on the neutral model when population size is small. As expected, far less equilibrium genetic variance can be maintained if effective population size, N, is on the order of a few hundred than if N is infinite. All of the models predict that comparisons among populations with N less than about 104 should show substantial differences in . While it is easier to maintain absolute when alleles interact to yield dominance or overdominance for fitness, less additivity also makes more susceptible to differences in N. I argue that experimental data do not seem to reflect the predicted degree of relationship between N and . This calls into question the ability of mutation-selection balance or simple balancing selection to explain observed . The dependence of on N could be used to test the adequacy of mutation-selection balance models.  相似文献   

17.
Several strategies have been used in insecticide resistance management to prevent the evolution of resistance, but the spatial aspects of insecticide application are crucially important among these strategies. Here, we consider a structured environment that consists of on-farm and off-farm fields where crops are planted periodically in on-farm fields during cultivation periods. We define the basic reproduction rate () of resistance as the expected number of offspring of a resistant individual divided by that of a susceptible individual under the condition that the proportion of resistance is extremely small; it is measured as the quantity per cycle of the cultivation period. We calculate using realistic dose-survival curves under a given fitness cost of resistance genes. The evolution of resistance occurs if and only if the value is larger than 0. Then, we propose a procedure for calculating the optimal design of rotational spraying that prevents the evolution of resistance, that is, the evolutionary stable strategy (ESS) for farmers, satisfying the mortality required for managing the abundance of insects. We consider the following controllable factors in calculating the optimal design: the dose of insecticide, the number of sprays, the number of different types of insecticides and potentially, the size of on-farm fields.  相似文献   

18.
Earth's temperature is increasing due to anthropogenic CO emissions; and organisms need either to adapt to higher temperatures, migrate into colder areas, or face extinction. Temperature affects nearly all aspects of an organism's physiology via its influence on metabolic rate and protein structure, therefore genetic adaptation to increased temperature may be much harder to achieve compared to other abiotic stresses. There is still much to be learned about the evolutionary potential for adaptation to higher temperatures, therefore we studied the quantitative genetics of growth rates in different temperatures that make up the thermal performance curve of the fungal model system Neurospora crassa. We studied the amount of genetic variation for thermal performance curves and examined possible genetic constraints by estimating the G -matrix. We observed a substantial amount of genetic variation for growth in different temperatures, and most genetic variation was for performance curve elevation. Contrary to common theoretical assumptions, we did not find strong evidence for genetic trade-offs for growth between hotter and colder temperatures. We also simulated short-term evolution of thermal performance curves of N. crassa, and suggest that they can have versatile responses to selection.  相似文献   

19.
Angelica Sinensis polysaccharide cerium (ASP−Ce) was prepared by Angelica Sinensis polysaccharide (ASP) and cerium ammonium nitrate (NH4)2Ce(NO3)6. and its morphology, and solid structure was investigated. The antioxidant activity of the ASP−Ce complex in vitro was evaluated. The antioxidant activity of ASP−Ce complex in vitro was evaluated by the scavenging activity of 2,2-diphenyl-1-picrylhyrazyl radical (DPPH), hydroxyl radical (⋅OH) and superoxide anion radical ( ⋅). The results showed that the ASP−Ce had the more ordered structure for inserting the Ce4+ into the polymer chain of ASP and there was little change in the conformation of the polysaccharide from Ce4+. Three free radical scavenging experiments proved that ASP−Ce had better antioxidant capacity than of ASP, especially on DPPH, and then on ⋅. The scavenging rate of ASP−Ce at 1.0 mg/mL on DPPH reached 71.6 %. Therefore, these results provide references for the further development and utilization of rare earth-polysaccharide.  相似文献   

20.
Explaining nature’s biodiversity is a key challenge for science. To persist, populations must be able to grow faster when rare, a feature called negative frequency dependence and quantified as ‘niche differences’ () in modern coexistence theory. Here, we first show that available definitions of differ in how link to species interactions, are difficult to interpret and often apply to specific community types only. We then present a new definition of that is intuitive and applicable to a broader set of (modelled and empirical) communities than is currently the case, filling a main gap in the literature. Given , we also redefine fitness differences () and illustrate how and determine coexistence. Finally, we demonstrate how to apply our definitions to theoretical models and experimental data, and provide ideas on how they can facilitate comparison and synthesis in community ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号