首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porphobilinogen synthase (formerly 5-aminolevulinic acid dehydratase,EC 4.2.1.24 [EC] ) was purified 7,405-fold from an aerobic photosyntheticbacterium, Erythrobacter sp. strain OCh 114. The molecular weightof the enzyme was determined to be 260,000 by Sephadex G-200gel filtration. The enzyme had a single pH optimum at 8.0 andshowed no requirement for metal ion and thiol compound for itsmaximum activity. The Km value for 5-aminolevulinic acid was0.29 mM. 4,5-Dioxovaleric acid and levulinic acid were foundto be competitive inhibitors of the enzyme, with Ki values of0.65 and 0.80 mM, respectively. The enzyme was extremely labilein acidic pH and almost completely lost its activity within1 h at pH 6.0 and 30?C. This Erythrobacter enzyme seems to besimilar to the enzyme from the anaerobic photosynthetic bacteriumRhodobacter capsulatus in its molecular and catalytic properties. (Received February 17, 1988; Accepted May 9, 1988)  相似文献   

2.
The F420-dependent NADP reductase of Methanobacterium thermoautotrophicum has been purified employing a combination of DEAE-cellulose ion-exchange chromatography, affinity chromatography with Blue Sepharose, Sephadex G-200 column chromatography and Red Sepharose affinity chromatography. The enzyme, which requires reduced F420 as an electron donor, has been purified over 3000-fold with a recovery of 65%. A molecular weight of 112000 was determined by Sephadex G-200 chromatography. A subunit molecular weight of 28 500 was determined by Sephadex G-200 chromatography. A subunit native enzyme is a tetramer. The optimal temperature for enzymatic activity was found to be 60°C with a pH optimum of 8.0. The NADP reductase had an apparent Km of 128 μMJ for reduced F420 and 40 μM for NADP. The enzyme was stable for at least 4 h at 65°C and pH 7.5. No loss of enzyme activity was detected when purified enzyme was stored aerobically in buffer containing 2-mercaptoethanol for 10 days at 4°C. Neither FMNH2 nor FADH2 could serve as electron donors; NAD was not utilized as electron acceptor.  相似文献   

3.
A moderately halophilic bacterium, Bacillus sp., isolated from rotting wood on the seashore in Nauru, produced an extracellular nuclease when cultivated aerobically in media containing 1 to 2 M NaCl. The enzyme was purified from the culture filtrate to an electrophoretically homogeneous state by ethanol precipitation, DEAE-Sephadex A-50 column chromatography, and Sephadex G-200 gel filtration. The enzyme consisted of two charge isomers and showed both RNase and DNase activities. Molecular weight was estimated to be 138,000 by Sephadex G-200 gel filtration. The enzyme had marked halophilic properties, showing maximal activities in the presence of 1.4 to 3.2 M NaCl or 2.3 to 3.2 M KCl. The enzyme hydrolyzed thymidine-5′-monophosphate-p-nitrophenyl ester at a rate that increased with NaCl concentration up to 4.8 M. In the presence of both Mg2+ and Ca2+, activity was greatly enhanced. The activity was lost by dialysis against water and low-salt buffer, but it was protected when 10 mM Ca2+ was added to the dialysis buffer. When the inactivated enzyme was dialyzed against 3.5 M NaCl buffer as much as 68% of the initial activity could be restored. The enzyme exhibited maximal activity at pH 8.5 and at 50°C on DNA and at 60°C on RNA and attacked RNA and DNA exonucleolytically and successively, producing 5′-mononucleotides.  相似文献   

4.
Carbonic anhydrase (CA) activity was detected in homogenatesfrom Anabaena variabilis ATCC 29413, M-2 and M-3, but not inthe suspension of the intact cells. Activity was higher in cellsgrown in ordinary air (low-CO2 cells) than in those grown inair enriched with 2–4% CO2 (high-CO2 cells). Fractionationby centrifugation indicated that the CA from A. variabilis ATCC29413 is soluble, whereas both soluble and insoluble forms existin A. variabilis M-2 and M-3. The addition of dithiothreitoland Mg2 $ greatly decreased the CA activity of A. variabilisATCC 29413. The specific activity of the CA from A. variabilis ATCC 29413was increased ca. 200 times by purification with ammonium sulfate,DEAE-Sephadex A-50 and Sephadex G-100. Major and minor CA peaksin Sephadex G-100 chromatography showed respective molecularweights of 48,000 and 25,000. The molecular weight of the CAdetermined by polyacrylamide disc gel electrophoresis was 42,000?5,000.The activity of CA was inhibited by ethoxyzolamide (I50=2.8?10-9M), acetazolamide (I50=2.5?10-7 M) and sulfanilamide (I50=2.9?10-6M). (Received January 5, 1984; Accepted April 26, 1984)  相似文献   

5.
Delta5-3beta-hydroxysteroid oxidoreductase was extracted in magnesium-containing Tris buffer from sonicated Streptomyces griseocarneus cells. The enzyme was partially purified (150 X) by ion exchange chromatography and gel filtration following (NH4)2SO4 fractionation. Upon gel filtration on Sephadex G-75 to G-200, the greatest part of the activity gave a peak in the fractionation range. The enzyme obtained from the gel yielded small enzyme molecules on repeated chromatography. A molecular weight of 32 to 36 000 was calculated for the activity appearing in the fractionation range of Sephadex G-75 to G-200. The enzyme is highly specific for the irreversible oxidation of the 3beta-hydroxyl group in steroids with a trans-anellated A : B ring system with either C5 or C6 double bond. Delta5-3-ketosteroids are converted into delta5-3-ketosteroids at a high rate, but the isomerase activity cannot be separated from the oxidoreductase activity either by chromatography or by selective heat inactivation. NAD, NADP, FMN or FAD did not influence the activity, but the enzyme is inactive in the absence of molecular oxygen.  相似文献   

6.
An esterase was isolated and purified from baker's yeast by ammonium sulfate precipitation and column chromatographies on Sephacryl S-200, DEAE-Sephacel, chromatofocusing, and DEAE-Sephacel again. The molecular weight of the enzyme was approximately 84,000 on Sephadex G-100 and 40,000 by sodium dodecyl sulfate-poly-acrylamide gel electrophoresis, suggesting a dimer for the activity. This enzyme hydrolyzed short-chain naphthyl esters and p-nitrophenyl esters, and its activity was strongly inhibited by mercuric compounds. The esterase appeared to be an arylesterase (EC 3.1.1.2) and its optimum pH was 8.0 at 30°C.  相似文献   

7.
Candida utilis alkaline phosphatase has been detected in vacuoles. Liberation of the vacuoles was carried out by protoplast disruption under isotonic conditions. The polybase DEAE-dextran was used to induce damage to the yeast plasmalemma. The vacuoles were purified by centrifugation on sorbitol-Ficoll gradients. Alkaline phosphatase from a purified fraction of vacuoles was characterized after gel filtration on Sephadex G-200. We have found 15 mU of enzyme activity per 108 vacuoles. This enzyme activity elutes on Sephadex G-200 at a volume-to-void-volume ratio of 1.65. The approximate molecular weight is 1.35×105. TheK m value forp-nitrophenyl-phosphate is 2.5×10–3 M. The pH for maximum activity is 8.9, and the enzyme is stable at pH values between 7.0 and 9.0. Rapid inactivation occurs at temperatures above 45°C. The enzyme catalyzes the hydrolysis of phosphomonoester bonds of a wide variety of molecules, especially polyphosphates. Thus, vacuolar polyphosphates are probably the natural substrate of this enzyme. Orthophosphate, arsenate, ethylenediaminetetraacetate, molybdate, and borate act as inhibitors. Fluoride is not an inhibitor, and the activity is not affected byp-hydroxymercuribenzoate. Some metal ions also affect the activity of vacuolar alkaline phosphatase. This may indicate that this enzyme is a metalloprotein.  相似文献   

8.
Diamine oxidase (EC 1.4.3.6 [EC] ) from the leaves of Vicia faba waspurified to homogeneity by polyacrylamide gel electrophoresis.The molecular weight estimated by Sephadex G-200 gel filtrationwas about 126,000. Sodium dodecyl sulfate gel electrophoresisgave a single band at the molecular weight of 74,000. The isoelectricpoint was at pH 7.2. The enzyme contained two copper atoms permole of enzyme. Inhibition with phenylhydrazine showed thatthe Vicia enzyme contains one mole of the carbonyl group permole of the enzyme. The amino acid composition of the enzymealso is described. (Received February 23, 1981; Accepted April 7, 1981)  相似文献   

9.
Leuconostoc mesenteroides B-512FMC, a constitutive mutant for dextransucrase, was grown on glucose, fructose, or sucrose. The amount of cell-associated dextransucrase was about the same for the three sugars at different concentrations (0.6% and 3%). Enzyme produced in glucose medium was adsorbed on Sephadex G-100 and G-200, but much less enzyme was adsorbed when it was produced in sucrose medium. Sephadex adsorption decreased when the glucose-produced enzyme was preincubated with dextrans of molecular size greater than 10 kDa. The release of dextransucrase activity from Sephadex by buffer (20 mM acetate, pH 5.2) was the highest at 28°–30°C. The addition of dextran to the enzyme stimulated dextran synthesis but had very little effect on the temperature or pH stability. Dextransucrase purified by ammonium sulfate precipitation, hydroxyapatite chromatography, and Sephadex G-200 adsorption did not contain any carbohydrate, and it synthesized dextran, showing that primers are not necessary to initiate dextran synthesis. The purified enzyme had a molecular size of 184 kDa on SDS-PAGE. On standing at 4°C for 30 days, the native enzyme was dissociated into three inactive proteins of 65, 62, and 57 kDa. However, two protein bands of 63 and 59 kDa were obtained on SDS-PAGE after heat denaturation of the 184-kDa active enzyme at 100°C. The amount of 63-kDa protein was about twice that of 59-kDa protein. The native enzyme is believed to be a trimer of two 63-kDa and one 59-kDa monomers.  相似文献   

10.
α-Galactosidase (E.C.3.2.1.22) from Penicillium janthinellum was purified by precipitation and fractionation with ammonium sulphate, cold acetone or ethanol, calcium phosphate gel, and column chromatographies on Sephadex G-100 and G-200. The enzyme was purified about 110.39-fold when Sephadex G-100 was used. α-Galactosidase exhibited the optimum pH and temperature at 4.5 and 60°C, respectively. The optimum enzyme stability was obtained at pH 3.5 for 24 h (at room temperature). The enzyme was found to be thermostable below 65°C up to 40 minutes and was gradually inactivated by increasing the temperature above this degree. The MICHAELIS constant was 0.55 mM for p-nitrophenyl-α-D-galactoside. The α-galactosidase activity was strongly inhibited by Hg++ and slightly activated by Mn++. The results show the possibility of producing a thermostable enzyme from a low-priced agricultural product, for instance, lupine.  相似文献   

11.
Dehydroquinate synthase from Phaseolus mungo seedlings was purified120-fold by DE-23, hydroxylapatite and Sephadex G-100 columnchromatography. The final preparation was free of dehydroquinatehydro-lyase and NAD(P)H2 oxidase. The dehydroquinate synthaserequired Co2+ and NAD as cofactors. Co2+ could be replaced byCu2+ at 0.1 mM, but Cu2+ at higher levels was inhibitory. Noneof the other metal ions tested activated the enzyme. Some activitywas observed in the absence of added Co2+ and this activitywas inhibited by EDTA but not by diethyldithiocarbamate, NaN3or NaCN. Heavy metal ions, such as Ag+ and Hg2+, and p-chloromercuribenzoatestrongly inhibited the enzyme activity. Of the pyridine nucleotidestested only NAD was required for the maximum activity of theenzyme. In the absence of NAD, the enzyme retained 30 to 40%of the activity obtained with added NAD. The apparent Km valuefor DAHP at pH 7.4 was about 23 µM. The enzyme activityappeared to be maximum at about pH 8.5. However, the characteristicsof the enzyme were studied at pH 7.4, because of the labilityof the enzyme under alkaline conditions. An Arrhenius plot ofthe enzyme reaction showed a break at about 21?C, and belowthis critical temperature the activation energy increased. (Received March 4, 1977; )  相似文献   

12.
The enzymic activity responsible for synthesis of willardiine and isowillardiine in pea seedlings has been extracted and partially purified. Fresh tissue, pulverized in liquid-N2, was extracted in a phosphate buffer (pH 7) and subjected to fractional precipitation with ammonium sulphate. After desalting on Sephadex G-25 and concentration by ultrafiltration, the fraction containing the activity was chromatographed sequentially on DEAE-Sepharose CL-6B, DEAE-cellulose (DE 52) and Sephadex G-200. Electrophoretic separation in polyacrylamide gels was also used. A 120-fold purification was achieved but at no stage was there any indication of a separation of willardiine synthase activity from that of isowillardiine synthase. Both activities paralleled one another when the enzymic preparation was progressively denatured by subjecting it to gradually increasing temperatures. Similarly, ageing at 4° and at ?196° resulted in a parallel loss of activity. Both synthase activities were maximal at 7.8–7.9and the pH optimum curves were of closely similar shape. From the results described, it is concluded that a single enzyme of relatively low MW (ca 50 000) is responsible for the synthesis of both uracilylalanines. Studies of the alanylation of uracil using a pyridoxal-metal ion model-enzyme system are described.  相似文献   

13.
The nitrate reductase inactivating factor in cultured rice cellswas purified 320-fold. The purification procedure involved precipitationwith (NH4)2SO4, fractionation at pH 4.0, adsorption on CM-cellulose,and gel filtration on Sephadex G-200. The molecular weight wasestimated to be 200,000 from the Sephadex G-200 gel filtration. The inactivating factor shows maximal activity at pH 8.0 andappears to be located in the cytoplasm of the cultured ricecells. The inactivating factor was more stable to heat treatmentthan NADH nitrate reductase. The factor inactivated nitratereductase complex except for reduced methylviologen nitratereductase. It had no influence on the activity of nitrite reductase,glutamate dehydrogenase, and NADH diaphorase, but inactivatedxanthine oxidase. The inactivating factor had no protease activitywhen casein, bovine serum albumin, or nitrate reductase fractionwas used as the substrate. The type of inactivation of nitratereductase by the inactivating factor was noncompetitive. Inhibitionof the inactivating factor by o-phenanthroline, EDTA, and p-chloromercuribenzoicacid suggested the involvement of a metal and sulfhydryl groupat its active site. (Received January 28, 1977; )  相似文献   

14.
Myrosinases (thioglucoside glucohydrolases E.C. 3.2.3.1 [EC] .), whichcatalyse the hydrolysis of glucosinolates present in Brassicaceae,were isolated from Sinapis alba L. seeds. The crude enzyme extractwas purified using gel and ion-exchange chromatography, isoelectricfocusing, and polyacrylamide gel electrophoresis. The separationof two myrosinase isoenzymes was obtained after gel chromatographyon Sephadex G-100. Further purification of the main myrosinasecomponents was achieved when the combined isoenzymes were separatedon the anion-exchanger DEAE-Sephadex A-50 followed by polyacrylamidegel electrophoresis. A similar purification was obtained when the crude extract wasgroup-fractionated on Sephadex G-50 followed by DEAE-cellulosechromatography on Whatman DE-52 and gel chromatography on SephadexG-200. The enzyme from the last step was further separated byisolectric focusing into two isoenzymes with isoelectric points4.9 and 6.2. In order to clarify where the myrosinase was localized in theroot tip cells, cell fractionation studies were performed usingaldehydes as pre-fixatives to stabilize the enzymes and thecell organelles. Biochemical tests of crude and purified samplesof the isolated myrosinases showed that when glutaraldehydeor formaldehyde were used as pre-fixatives at a final concentrationof 1% (w/v), they did not inhibit the enzyme activity. Relativelyhomogeneous cell organelle fractions were obtained using ultracentrifugationand stepwise sucrose gradients. The myrosinase activity expressedon the basis of the protein content was found to be highestin the dictyosome and smooth endoplasmic reticulum fractions  相似文献   

15.
Isocitrate lyase (EC 4.1.3.1) was purified from acetate-grown cells of Candida brassicae E-17, by ammonium sulfate fractionation and DEAE-cellulose and Sephadex G-200 gel filtration column chromatographies. The purified enzyme was electrophoretically homogeneous. The molecular weight of this enzyme was 290,000 by gel filtration, and it was composed of four identical subunits whose molecular weights were 71,000 each. The pH and temperature optima were 6.8 and 37°C, respectively. The enzyme was stable from pH 6.0 to 7.0. The enzyme was activated by Mg2+ and the maximum activity was obtained with a concentration of 8 mM Mg2+. The enzyme was also activated by Mn2+ and Ba2+. The activity of this enzyme was stimulated by reducing agents. The Km values for dl-isocitrate were 1.5 mM in sodium phosphate buffer and 0.62 mM in imidazole-HCl buffer.  相似文献   

16.
Deficiency of arginase (E.C. 3.5.3.1), the fifth enzyme of the urea cycle, was found in the red blood cells (RBCs) of Macaca fascicularis monkeys (<0.2 µmol arginine cleaved/g Hb/min; normal =49.2). Liver biopsies were obtained from two of these monkeys and from one monkey with normal levels of RBC arginase activity. Arginase from both groups of animals required Mn2+ for maximal enzyme activity and demonstrated a pH optimum of 10.2 in vitro. The activity of arginase in the livers of all three monkeys was 1.1 mmol arginine cleaved/g protein/min. The apparent K m for arginine of arginase in the livers of the RBC-deficient monkeys was 7.4 and 5.9mm and in the normal monkey was 6.9mm. Similar patterns of heat denaturation were seen at 69 C without Mn2+ present and 79 C in the presence of 20mm Mn2+. No difference in mobility on either acidic or basic polyacrylamide gels for liver arginase from either RBC-deficient or normal monkeys was found. In addition, liver arginase from all three monkeys reacted similarly with anti-human liver arginase antibody. Liver arginases in RBC-deficient and normal monkeys were identical by ten criteria. These studies do not distinguish among several hypotheses for the genetic determination of arginase in different organs of this species and of man.  相似文献   

17.
A constitutive beta-glucosidase of Erwinia herbicola Y46 was studied as a prerequisite to an assessment of its significance in the release of bacteriotoxic aglycones from plant beta-glucosides, and the possible effects of the aglycones on the course of such plant diseases as "fire-blight". The enzyme was purified 86.5-fold from crude extracts of cells grown on yeast beef broth. Ammonium sulfate precipitation, DEAE-cellulose fractionation, and gel filtration through Sephadex G-100 resulted in a preparation having one peak of activity on isoelectrofocussing, on gel filtration through Sephadex G-200, and on polyacrylamide gel electrophoresis. The latter techniques demonstrated, in addition to the major protein band associated with activity, a single minor impurity. The enzyme was active against p-nitrophenyl-beta-glucoside (p-NPG) and phloridzin, but showed only very slight activity against salicin and arbutin, and no detectable activity against beta-methyl-D-glucoside, cellobiose, lactose, and esculin. The production of beta-glucosidase was maximum at the late log phase of growth on yeast beef broth medium and declined somewhat thereafter. The incorporation of inducers (carbohydrates) in defined basal medium resulted in only small variations in specific activity in the resulting cells; The activity (p-NPG substrate) was not inhibited by D-glucose, phloretin, esculin, salicin, arbutin, lactose, or cellobiose, but was slightly inhibited by 1.0 mM phloridzin. Slight inhibition was observed in the presence of sulfhydryl reagents (iodoacetamide, p-chloromercuribenzoate), but sodium azide, ethylene-diaminetetraacetic acid, Cu2+, and Zn2+ ions produced no effect. The activity was stable, in both crude and purified preparations, over the pH ranges 6.0-7.5 (100% activity) and 4.5-greater than 8.5 (50% activity). The enzyme retained 80% activity after 30 min at 50 degrees C, but only 25% after 30 min at 60 degrees C. The enzyme had a mean K-m value (phloridzin) of 1.35 times 10-4 M, an isoelectric point of 4.75, a molecular weight, determined by Sephadex G-200 gel filtration, of about 122 000, and an optimum pH for activity of 6.5-7.0.  相似文献   

18.
A proteolytic enzyme capable of cleaving intact proteins and synthetic substrates α?N?benzoyl?DL?arginine β?naphthylamide (Bz-Arg-NNap), α-N-benzoyl-L-arginine p-nitroanilde (Bz-Arg-NPhNO2), and α-N-benzoyl-L-arginine ethyl ester (Bz-Arg-OEt) was purified 92– fold from the rabbit testes. The enzyme exhibited optimal activity at pH 9.0 and 50°C. The polyacrylamide gel electrophoresis and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of the purified enzyme demonstrated multiple forms; the major band in the SDS-polyacrylamide gel electrophoresis corresponded to a Mt 48,000. The same value was established by the gel filtration over Sephadex G-75. The rabbit testicular alkaline proteinase (TAP) resembled acrosin in the hydrolysis of Bz-Arg-OEt. However, CaCl2, a potential stimulator of acrosin activity, inhibited the alkaline proteinase. The strong inhibitors of acrosin, eg pheny methyl sulphonyl fluoride (PMSF), tosyl lysine chloromethyl ketone (TLCK), and benzamidine did not inhibit the alkaline proteinase. TAP was activated by an acrosin inhibitor isolated from the rabbit testes. Since 0.5 M KCl was necessary for complete extraction of the enzyme and the bulk of the activity was present in 9,000g pellet of the testicular homogenate. The alkaline proteinase appeared to be associated with the membranous structures.  相似文献   

19.
Bacillus subtilis P-11, capable of producing extracellular maltase, was isolated from soil. Maximum enzyme production was obtained on a medium containing 2.0% methyl-alpha-D-glucose, 0.5% phytone, and 0.2% yeast extract. After the removal of cells, extracellular maltase was precipitated by ammonium sulfate (85% saturation). The enzyme was purified by using the following procedures: Sephadex G-200 column chromatography, diethylaminoethyl-Sephadex A-50 ion-exchange column chromatography, and a second Sephadex G-200 column chromatography. A highly purified maltase without amylase or proteinase activities was obtained. Some properties of the extracellular maltase were determined: optimum pH, 6.0; optimum temperature, 45 C, when the incubation time was 30 min; pH stability, within 5.5 to 6.5; heat stability, stable up to 45 C; isoelectric point, pH 6.0 (by gel-isoelectric focusing); molecular weight, 33,000 (by gel filtration with Sephadex G-200); substrate specificity: the relative rates of hydrolysis of maltose, maltotriose, isomaltose, and maltotetraose were 100:15:14:4, respectively, and there was no activity toward alkyl or aryl-alpha-D-glucosides, amylose, or other higher polymers. Transglucosylase activity was present. Glucose and tris(hydroxymethyl)aminomethane were competitive inhibitors with Ki values of 4.54 and 75.08 mM, respectively; cysteine was a noncompetitive inhibitor. Michaelis constants were 5 mM for maltose, 1 mM for maltoriose, and 10 mM for isomaltose. A plot of pKm (-log Km) versus pH revealed two deflection points, one each at 5.5 and 6.5; these probably corresponded to an imidazole group of a histidine residue in or near the active center; this assumption was supported by the strong inhibition of enzyme activity by rose bengal.  相似文献   

20.
Bacillus subtilis P-11, capable of producing extracellular maltase, was isolated from soil. Maximum enzyme production was obtained on a medium containing 2.0% methyl-alpha-D-glucose, 0.5% phytone, and 0.2% yeast extract. After the removal of cells, extracellular maltase was precipitated by ammonium sulfate (85% saturation). The enzyme was purified by using the following procedures: Sephadex G-200 column chromatography, diethylaminoethyl-Sephadex A-50 ion-exchange column chromatography, and a second Sephadex G-200 column chromatography. A highly purified maltase without amylase or proteinase activities was obtained. Some properties of the extracellular maltase were determined: optimum pH, 6.0; optimum temperature, 45 C, when the incubation time was 30 min; pH stability, within 5.5 to 6.5; heat stability, stable up to 45 C; isoelectric point, pH 6.0 (by gel-isoelectric focusing); molecular weight, 33,000 (by gel filtration with Sephadex G-200); substrate specificity: the relative rates of hydrolysis of maltose, maltotriose, isomaltose, and maltotetraose were 100:15:14:4, respectively, and there was no activity toward alkyl or aryl-alpha-D-glucosides, amylose, or other higher polymers. Transglucosylase activity was present. Glucose and tris(hydroxymethyl)aminomethane were competitive inhibitors with Ki values of 4.54 and 75.08 mM, respectively; cysteine was a noncompetitive inhibitor. Michaelis constants were 5 mM for maltose, 1 mM for maltoriose, and 10 mM for isomaltose. A plot of pKm (-log Km) versus pH revealed two deflection points, one each at 5.5 and 6.5; these probably corresponded to an imidazole group of a histidine residue in or near the active center; this assumption was supported by the strong inhibition of enzyme activity by rose bengal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号