首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Free zinc ions are potent effectors of proteins. Their tightly controlled fluctuations ("zinc signals") in the picomolar range of concentrations modulate cellular signaling pathways. Sulfur (cysteine) donors generate redox-active coordination environments in proteins for the redox-inert zinc ion and make it possible for redox signals to induce zinc signals. Amplitudes of zinc signals are determined by the cellular zinc buffering capacity, which itself is redox-sensitive. In part by interfering with zinc and redox buffering, reactive species, drugs, toxins, and metal ions can elicit zinc signals that initiate physiological and pathobiochemical changes or lead to cellular injury when free zinc ions are sustained at higher concentrations. These interactions establish redox-inert zinc as an important factor in redox signaling. At the center of zinc/redox signaling are the zinc/thiolate clusters of metallothionein. They can transduce zinc and redox signals and thereby attenuate or amplify these signals.  相似文献   

2.
蛋白亚硝基化研究进展及其在植物抗病中的作用   总被引:1,自引:1,他引:0  
蛋白亚硝基化(S-nitrosylation)是一种在一氧化氮作用下与蛋白半胱氨酸巯基共价结合,使巯基-SH转化为-SNO的反应。作为一种氧化还原依赖的翻译后调控形式,蛋白亚硝基化对多种蛋白的功能具有调节作用,越来越多的证据表明蛋白亚硝基化在植物抗病中发挥重要的作用。简要介绍了蛋白巯基亚硝基化的特点、检测方法、功能研究以及在植物抗病调节方面的最新进展。  相似文献   

3.
Proteomic identification of S-nitrosylated proteins in Arabidopsis   总被引:11,自引:0,他引:11       下载免费PDF全文
Although nitric oxide (NO) has grown into a key signaling molecule in plants during the last few years, less is known about how NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation of cysteine (Cys) residues to be one of the dominant regulation mechanisms for many animal proteins. For plants, the principle of S-nitrosylation remained to be elucidated. We generated S-nitrosothiols by treating extracts from Arabidopsis (Arabidopsis thaliana) cell suspension cultures with the NO-donor S-nitrosoglutathione. Furthermore, Arabidopsis plants were treated with gaseous NO to analyze whether S-nitrosylation can occur in the specific redox environment of a plant cell in vivo. S-Nitrosylated proteins were detected by a biotin switch method, converting S-nitrosylated Cys to biotinylated Cys. Biotin-labeled proteins were purified and analyzed using nano liquid chromatography in combination with mass spectrometry. We identified 63 proteins from cell cultures and 52 proteins from leaves that represent candidates for S-nitrosylation, including stress-related, redox-related, signaling/regulating, cytoskeleton, and metabolic proteins. Strikingly, many of these proteins have been identified previously as targets of S-nitrosylation in animals. At the enzymatic level, a case study demonstrated NO-dependent reversible inhibition of plant glyceraldehyde-3-phosphate dehydrogenase, suggesting that this enzyme could be affected by S-nitrosylation. The results of this work are the starting point for further investigation to get insight into signaling pathways and other cellular processes regulated by protein S-nitrosylation in plants.  相似文献   

4.
We hypothesized that: (a) S-nitrosylation of metallothionein (MT) is a component of pulmonary endothelial cell nitric oxide (NO) signaling that is associated with an increase in labile zinc; and (b) NO mediated increases in labile zinc in turn reduce the sensitivity of pulmonary endothelium to LPS-induced apoptosis. We used microspectrofluorometric techniques to show that exposing mouse lung endothelial cells (MLEC) to the NO-donor, S-nitrosocysteine, resulted in a 45% increase in fluorescence of the Zn2+-specific fluorophore, Zinquin, that was rapidly reversed by exposure to the Zn2+ chelator, NNN'N'-tetrakis-(2-pyridylmethyl)ethylenediamine; TPEN). The absence of a NO-mediated increase in labile Zn2+ in MLEC from MT-I and -II knockout mice inferred a critical role for MT in the regulation of Zn2+ homeostasis by NO. Furthermore, we found that prior exposure of cultured endothelial cells from sheep pulmonary artery (SPAEC), to the NO-donor, S-nitroso-N-acetylpenicillamine (SNAP) reduced their sensitivity to lipopolysaccharide (LPS) induced apoptosis. The anti-apoptotic effects of NO were significantly inhibited by Zn2+ chelation with low doses of TPEN (10 microM). Collectively, these data suggest that S-nitrosylation of MT is associated with an increase in labile (TPEN chelatable) zinc and NO-mediated MT dependent zinc release is associated with reduced sensitivity to LPS-induced apoptosis in pulmonary endothelium.  相似文献   

5.
Sun J 《生理学报》2007,59(5):544-552
一氧化氮(nitricoxide,NO)作为一种重要的信使分子参与缺血预适应(ischemic preconditioning,IPC)心肌保护。目前普遍认为NO通过经典的NO/cGMP依赖的信号转导途径调节线粒体ATP敏感性钾(ATP-sensitive potassium,KATP通道来发挥其保护作用,然而越来越多的数据表明NO还可能通过蛋白质巯基亚硝基化(S-nitrosylation)来发挥生理功能。蛋白质巯基亚硝基化,即蛋白质半胱氨酸巯基与NO基团形成共价键,是一种氧化还原依赖的蛋白质翻译后可逆修饰。蛋白质巯基亚硝基化不仅可以改变蛋白质的结构和功能,而且还可以阻抑目标半胱氨酸的进一步氧化修饰。IPC增加S-亚硝基硫醇(S-nitrosothi01)含量,引起蛋白质巯基亚硝基化。S-亚硝基硫醇还能发挥药理性预适应作用,抵抗心肌缺血,再灌注损伤。因此,蛋白质巯基亚硝基化是IPC心肌保护的一种重要途径,参与抵抗细胞内氧化应激和亚硝化应激(nitrosative stress)。  相似文献   

6.
Metallothionein redox cycle and function   总被引:4,自引:0,他引:4  
The biologic function of metallothionein (MT) has been a perplexing topic ever since the discovery of this protein. Many studies have suggested that MT plays a role in the homeostasis of essential metals such as zinc and copper, detoxification of toxic metals such as cadmium, and protection against oxidative stress. However, mechanistic insights into the actions of MT have not been adequately achieved. MT contains high levels of sulfur. The mutual affinity of sulfur and transition metals makes the binding of these metals to MT thermodynamically stable. Under physiologic conditions, zinc-MT is the predominant form of the metal-binding protein. The recognition of the redox regulation of zinc release from or binding to MT provides an alternate perspective on biologic function of MT. Oxidation of the thiolate cluster by a number of mild cellular oxidants causes zinc release and formation of MT-disulfide (or thionin if all metals are released from MT, but this is unlikely to occur in vivo), which have been demonstrated in vivo. Therefore, the thermodynamic stability of zinc binding makes MT an ideal zinc reservoir in vivo, and the redox regulation of zinc mobilization enables MT function in zinc homeostasis. MT-disulfide can be reduced by glutathione in the presence of selenium catalyst, restoring the capacity of the protein to bind zinc. This MT redox cycle may play a crucial role in MT biologic function. It may link to the homeostasis of essential metals, detoxification of toxic metals and protection against oxidative stress.  相似文献   

7.
Nitric oxide (NO) plays an important role in the regulation of the functional integrity of the endothelium. The intracellular reaction of NO with reactive cysteine groups leads to the formation of S-nitrosothiols. To investigate the regulation of S-nitrosothiols in endothelial cells, we first analyzed the composition of the S-nitrosylated molecules in endothelial cells. Gel filtration revealed that more than 95% of the detected S-nitrosothiols had a molecular mass of more than 5000 Da. Moreover, inhibition of de novo synthesis of glutathione using N-butyl-sulfoximine did not diminish the overall cellular S-NO content suggesting that S-nitrosylated glutathione quantitatively plays only a minor role in endothelial cells. Having demonstrated that most of the S-nitrosothiols are proteins, we determined the regulation of the S-nitrosylation by pro-inflammatory and pro-atherogenic factors, such as TNFalpha and mildly oxidized low density lipoprotein (oxLDL). TNFalpha and oxLDL induced denitrosylation of various proteins as assessed by Saville-Griess assay, by immunostaining with an anti-S-nitrosocysteine antibody, and by a Western blot approach. Furthermore, the caspase-3 p17 subunit, which has previously been shown to be S-nitrosylated and thereby inhibited, was denitrosylated by TNFalpha treatment suggesting that S-nitrosylation and denitrosylation are important regulatory mechanisms in endothelial cells contributing to the integrity of the endothelial cell monolayer.  相似文献   

8.
BACKGROUND: S-Nitrosothiols are made by nitric oxide synthases and other metalloproteins. Unlike nitric oxide, S-nitrosothiols are involved in localized, covalent signaling reactions in specific cellular compartments. These reactions are enzymatically regulated. SCOPE: S-Nitrosylation affects interactions involved in virtually every aspect of normal cell biology. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation. MAJOR CONCLUSIONS AND SIGNIFICANCE: S-Nitrosylation is a regulated signaling reaction.  相似文献   

9.
Heo J  Campbell SL 《Biochemistry》2004,43(8):2314-2322
Nitric oxide (NO), a highly reactive redox molecule, can react with protein thiols and protein metal centers to regulate a multitude of physiological processes. NO has been shown to promote guanine nucleotide exchange on the critical cellular signaling protein p21Ras (Ras) by S-nitrosylation of a redox-active thiol group (Cys(118)). This increases cellular Ras-GTP levels in vivo, leading to activation of downstream signaling pathways. Yet the process by which this occurs is not clear. Although several feasible mechanisms for protein S-nitrosylation with NO and NO donating have been proposed, results obtained from our studies suggest that Ras can be S-nitrosylated by direct reaction of Cys(118) with nitrogen dioxide (*NO(2)), a reaction product of NO with O(2), via a Ras thiyl-radical intermediate (Ras-S*). Results from our studies also indicate that Ras Cys(118) can be S-nitrosylated by direct reaction of Cys(118) with a glutathionyl radical (GS*), a reaction product derived from homolytic cleavage of S-nitrosoglutathione (GSNO). Moreover, we present evidence that reaction of GS* with Ras generates a Ras-S* intermediate during GSNO-mediated Ras S-nitrosylation. The Ras-S(*) radical intermediate formed from reaction of the Ras thiol with either *NO(2) or GS*, in turn, reacts with NO to complete Ras S-nitrosylation. NO and GSNO modulate Ras activity by promoting guanine nucleotide dissociation from Ras. Our results suggest that formation of the Ras radical intermediate, Ras-S*, may perturb interactions between Ras and its guanine nucleotide substrate, resulting in enhancement of guanine nucleotide dissociation from Ras.  相似文献   

10.
Nitric oxide (NO) is a gaseous signaling molecule in the biological system. It mediates its function through the direct modification of various cellular targets, such as through S-nitrosylation. The process of S-nitrosylation involves the attachment of NO to the cysteine residues of proteins. Interestingly, an increasing number of cellular pathways are found to be regulated by S-nitrosylation, and it has been proposed that this redox signaling pathway is comparable to phosphorylation in cells. However, imbalance of NO metabolism has also been linked to a number of human diseases. For instance, NO is known to contribute to neurodegeneration by causing protein nitration, lipid peroxidation and DNA damage. Moreover, recent studies show that NO can also contribute to the process of neurodegeneration through the impairment of pro-survival proteins by S-nitroyslation. Thus, further understanding of how NO, through S-nitrosylation, can compromise neuronal survival will provide potential therapeutic targets for neurodegenerative diseases.  相似文献   

11.
S-Nitrosothiols may cause many of the biological effects of NO and cellular effects have been attributed to S-nitrosylation of reactive protein sulfhydryls. This report examines the effect of S-nitrosothiols on the low-molecular-weight thiols and protein thiols in NIH/3T3 cells. A low concentration of S-nitrosocysteine increased the cysteine content of the cells, with no evidence of either low-molecular-weight thiol or protein S-nitrosylation. Millimolar amounts of S-nitrosocysteine produced S-nitrosoglutathione (GSNO), cysteinyl glutathione, cysteine, and glutathione disulfide. Large amounts of protein S-nitrosylation and lesser amounts of protein S-glutathiolation and S-cysteylation were also observed. GSNO and S-nitroso-N-acetylpenicillamine (SNAP) were much less effective than S-nitrosocysteine, but a combination of cysteine and GSNO produced S-nitrosocysteine-like effects. In cultured hepatocytes, millimolar S-nitrosocysteine was significantly less effective since the cells contained three times more glutathione than NIH/3T3 cells. Results suggest that S-nitrosocysteine enters cells intact, and low concentrations do not significantly increase cellular pools of S-nitrosothiol or S-nitrosylated protein. Millimolar concentrations of S-nitrosocysteine generate S-nitrosylated, S-glutathiolated, and S-cysteylated proteins, as well as a variety of low-molecular-weight disulfides and S-nitrosothiols.  相似文献   

12.
Homeostatic control maintains essential transition metal ions at characteristic cellular concentrations to support their physiological functions and to avoid adverse effects. Zinc is especially widely used as a catalytic or structural cofactor in about 3000 human zinc proteins. In addition, the homeostatic control of zinc in eukaryotic cells permits functions of zinc(II) ions in regulation and in paracrine and intracrine signaling. Zinc ions are released from proteins through ligand-centered reactions in zinc/thiolate coordination environments, and from stores in cellular organelles, where zinc transporters participate in zinc loading and release. Muffling reactions allow zinc ions to serve as signaling ions (second messengers) in the cytosol that is buffered to picomolar zinc ion concentrations at steady-state. Muffling includes zinc ion binding to metallothioneins, cellular translocations of metallothioneins, delivery of zinc ions to transporter proteins, and zinc ion fluxes through cellular membranes with the result of removing the additional zinc ions from the cytosol and restoring the steady-state. Targets of regulatory zinc ions are proteins with sites for transient zinc binding, such as membrane receptors, enzymes, protein–protein interactions, and sensor proteins that control gene expression. The generation, transmission, targets, and termination of zinc ion signals involve proteins that use coordination dynamics in the inner and outer ligand spheres to control metal ion association and dissociation. These new findings establish critically important functions of zinc ions and zinc metalloproteins in cellular control.  相似文献   

13.
Chung KK 《Neuro-Signals》2006,15(6):307-313
Nitric oxide (NO) is an important signaling molecule that controls a wide range of biological processes. One of the signaling mechanisms of NO is through the S-nitrosylation of cysteine residues on proteins. S-nitrosylation is now regarded as an important redox signaling mechanism in the regulation of different cellular and physiological functions. However, deregulation of S-nitrosylation has also been linked to various human diseases such as neurodegenerative disorders. Nitrosative stress has long been considered as a major mediator in the development of neurodegeneration, but the molecular mechanism of how NO can contribute to neurodegeneration is not completely clear. Early studies suggested that nitration of proteins, which can induce protein aggregation might contribute to the neurodegenerative process. However, several recent studies suggest that S-nitrosylation of proteins that are important for neuronal survival contributes substantially in the development of various neurodegenerative disorders. Thus, in-depth understanding of the mechanism of neurodegeneration in relation to S-nitrosylation will be critical for the development of therapeutic treatment against these neurodegenerative diseases.  相似文献   

14.
Regulation of apoptosis by protein S-nitrosylation   总被引:1,自引:0,他引:1  
Mannick JB 《Amino acids》2007,32(4):523-526
Summary. S-nitrosylation/denitrosylation of critical cysteine residues on proteins serves as a redox switch that regulates the function of a wide array of proteins. A key signaling pathway that is regulated by S-nitrosylation is apoptotic cell death. Here we will review the proteins in apoptotic pathways that are known to be S-nitrosylated by endogenous NO production. The targets and functional consequences of S-nitrosylation during apoptosis are multifaceted, allowing cells to fine tune their response to apoptotic signals.  相似文献   

15.
Protein S-nitrosylation mediated by cellular nitric oxide (NO) plays a primary role in executing biological functions in cGMP-independent NO signaling. Although S-nitrosylation appears similar to Cys oxidation induced by reactive oxygen species, the molecular mechanism and biological consequence remain unclear. We investigated the structural process of S-nitrosylation of protein-tyrosine phosphatase 1B (PTP1B). We treated PTP1B with various NO donors, including S-nitrosothiol reagents and compound-releasing NO radicals, to produce site-specific Cys S-nitrosylation identified using advanced mass spectrometry (MS) techniques. Quantitative MS showed that the active site Cys-215 was the primary residue susceptible to S-nitrosylation. The crystal structure of NO donor-reacted PTP1B at 2.6 A resolution revealed that the S-NO state at Cys-215 had no discernible irreversibly oxidized forms, whereas other Cys residues remained in their free thiol states. We further demonstrated that S-nitrosylation of the Cys-215 residue protected PTP1B from subsequent H(2)O(2)-induced irreversible oxidation. Increasing the level of cellular NO by pretreating cells with an NO donor or by activating ectopically expressed NO synthase inhibited reactive oxygen species-induced irreversible oxidation of endogenous PTP1B. These findings suggest that S-nitrosylation might prevent PTPs from permanent inactivation caused by oxidative stress.  相似文献   

16.
Nitric oxide (NO˙) is a short-lived, endogenously produced gas that is highly diffusible across cell membranes and acts as a signaling molecule in the body. The redox state and chemistry of NO˙ facilitate its interaction with various proteins thus regulating various intracellular and intercellular events. One of the key mechanisms by which NO˙ regulates the function of various target proteins is through the coupling of a nitroso moiety from NO-derived metabolites to a reactive cysteine leading to the formation of a S-nitrosothiol (SNO), a process commonly known as S-nitrosylation. S-nitrosylation signaling events within the cell have led to the discovery of many other physiological functions of NO˙ in many other types of cells including cancer cells. Only recently are the diverse roles of S-nitrosylation in cancer beginning to be understood. In the present review we discuss the recent evidence for the diverse roles of NO˙/SNO-related mechanisms in cancer biology and therapy, including the participation of NO˙ in the pathogenesis of cancer, its duality in protecting against or inducing cancer cell death and the contribution of NO˙ to metastatic processes. In addition, NO˙ can be therapeutically used in the reversal of tumor cell resistance to cytotoxic drugs and as a sensitizing agent to chemo- and radiotherapy. Finally, recent studies providing evidence for NO-related mechanisms of epigenetic gene expression regulation will also be discussed. Undoubtedly, new exciting results will contribute to this rapidly expanding area of cancer research.  相似文献   

17.
We hypothesized that: (a) S-nitrosylation of metallothionein (MT) is a component of pulmonary endothelial cell nitric oxide (NO) signaling that is associated with an increase in labile zinc; and (b) NO mediated increases in labile zinc in turn reduce the sensitivity of pulmonary endothelium to LPS-induced apoptosis. We used microspectrofluorometric techniques to show that exposing mouse lung endothelial cells (MLEC) to the NO-donor, S-nitrosocysteine, resulted in a 45% increase in fluorescence of the Zn2+-specific fluorophore, Zinquin, that was rapidly reversed by exposure to the Zn2+ chelator, NNNN-tetrakis-(2-pyridylmethyl)ethylenediamine; TPEN). The absence of a NO-mediated increase in labile Zn2+ in MLEC from MT-I and -II knockout mice inferred a critical role for MT in the regulation of Zn2+ homeostasis by NO. Furthermore, we found that prior exposure of cultured endothelial cells from sheep pulmonary artery (SPAEC), to the NO-donor, S-nitroso-N-acetylpenicillamine (SNAP) reduced their sensitivity to lipopolysaccharide (LPS) induced apoptosis. The anti-apoptotic effects of NO were significantly inhibited by Zn2+ chelation with low doses of TPEN (10 M). Collectively, these data suggest that S-nitrosylation of MT is associated with an increase in labile (TPEN chelatable) zinc and NO-mediated MT dependent zinc release is associated with reduced sensitivity to LPS-induced apoptosis in pulmonary endothelium.  相似文献   

18.
Nitric oxide(NO) is an important signaling molecule regulating diverse biological processes in all living organisms. A major physiological function of NO is executed via protein S-nitrosylation, a redox-based the past decade, significant progress has been made in functional characterization of S-nitrosylated proteins Inviteposttranslational modification by covalently adding a NO molecule to a reactive cysteine thiol of a target protein.S-nitrosylation is an evolutionarily conserved mechanism modulating multiple aspects of cellular signaling. Duringin plants. Emerging evidence indicates that protein Snitrosylation is ubiquitously involved in the regulation of plant development and stress responses. Here we review current understanding on the regulatory mechanisms of protein S-nitrosylation in various biological processes in plants and highlight key challenges in this field.  相似文献   

19.
Neuronal protection and destruction by NO   总被引:7,自引:0,他引:7  
Nitric oxide (NO)-related species include different redox states of the NO group, which have recently been reported to exist endogenously in biological tissues including the brain. The importance of these different NO-related species is that their distinct chemical reactivities can influence the life and death of neurons in response to various insults. In the case of NO+ equivalents (having one less electron than NO.), the mechanism of reaction often involves S-nitrosylation or transfer of the NO group to the sulfhydryl of a cysteine residue (or more properly to a thiolate anion) to form an RS-NO; further oxidation of critical thiols can possibly then form disulfide bonds from neighboring cysteine residues. We have mounted both physiological and chemical evidence that N-methyl-D-aspartate receptor (NMDAR) activity and caspase enzyme activity can be decreased by S-nitrosylation, as can other signaling molecules involved in neuronal apoptotic pathways, to afford neuroprotection. Over the past 5 years, beginning with our report on the NMDAR, evidence has accumulated that S-nitrosylation can regulate the biological activity of a great variety of proteins, in some ways akin to phosphorylation. Thus, this chemical reaction is gaining acceptance as a newly-recognized molecular switch to control protein function via reactive thiol groups, such as those encountered on the NMDAR and in the active site of caspases. One method of producing S-nitrosylation of the NMDAR and caspases is the administration of nitroglycerin, and nitroglycerin can be neuroprotective in acute focal ischemia/reperfusion models via mechanisms other than increasing cerebral blood flow. In contrast, NO* itself does not appear to react with thiol under physiological conditions. In fact, the favored reaction of NO* is with O2*- (superoxide anion) to form ONOO- (peroxynitrite), which can lead to neurotoxicity. A third NO-related species with one added electron compared to NO* is nitroxyl anion (NO-). NO- -unlike NO* but reminiscent of NO+ transfer - reacts with critical thiol groups of the NMDA receptor to curtail excessive Ca2+ influx and thus provide neuroprotection from excitotoxic insults.  相似文献   

20.
S-Nitrosylation of protein thiols is one of the cellular regulatory mechanisms induced by NO. The cysteine protease papain has a critical thiol residue (Cys(25)). It has been demonstrated that NO or NO donors such as sodium nitroprusside and N-nitrosoaniline derivatives can reversibly inhibit this enzyme by S-NO bond formation in its active site. In this study, a different regulated mechanism of inactivation was reported using S-nitrosothiols as the NO donor. Five S-nitroso compounds, S-nitroso-N-acetyl-dl-penicillamine, S-nitrosoglutathione, S-nitrosocaptopril, glucose-S-nitroso-N-acetyl-dl-penicillamine-2, and the S-nitroso tripeptide acetyl-Phe-Gly-S-nitrosopenicillamine, exhibited different inhibitory activities toward the enzyme in a time- and concentration-dependent manner with second-order rate constants (k(i)/K(I)) ranging from 8.9 to 17.2 m(-1) s(-1). The inhibition of papain by S-nitrosothiol was rapidly reversed by dithiothreitol, but not by ascorbate, which could reverse the inhibition of papain by NOBF(4). Incubation of the enzyme with a fluorescent S-nitroso probe (S-nitroso-5-dimethylaminonaphthalene-1-sulfonyl) resulted in the appearance of fluorescence of the protein, indicating the formation of a thiol adduct. Moreover, S-transnitrosylation in the incubation of S-nitroso inactivators with papain was excluded. These results suggest that inactivation of papain by S-nitrosothiols is due to a direct attack of the highly reactive thiolate (Cys(25)) in the enzyme active site on the sulfur of S-nitrosothiols to form a mixed disulfide between the inactivator and papain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号