首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dominant growth strategies of soil microbial communities of mown and unmown meadows were assessed with respect to the constants of saturation and maximal specific growth rate of microorganisms. The microbial community of mown-meadow soil was characterized by a greater biomass and activity due to prevalence of microorganisms with the r strategy, compared to the microbial community of unmown-meadow soil. In contrast to nonrhizosphere soil, rhizosphere soil was dominated by rapidly growing microorganisms with the r strategy. The dependence of the dominant ecological strategy of the rhizosphere microbial community on the vegetation stage of plants has been traced. Study of the effect of plant species on the growth strategies of rhizosphere microorganisms showed that the features of the K strategy are more pronounced in the following rhizosphere microbial communities of grasses at the same growth stage: r strategy–Bromopsis inermis L.–Poa pratensis L., P. compressa L.–Dactylis glomerata L.–Festuca pratensisL.–K strategy. In the absence of limitation by climatic factors, the growth strategies of rhizosphere microorganisms are determined by the competition between microorganisms and plants for nutrients.  相似文献   

2.
Acetic acid fermentation is the biochemical process by which, under strict conditions of aerobiosis, Acetobacter aceti oxidises the ethanol contained in alcoholic substrates into acetic acid. This paper studies the effect of temperature on the specific growth rate of the microorganisms (μ C), in particular, the mathematical modelling of this process, with the aim of developing previous studies of the mathematical relationships between μ C of A. aceti and the concentrations of substrate (ethanol), product (acetic acid) and dissolved oxygen. Until now this relationship has not been widely studied, and only a few studies have looked at the influence of temperature on growth kinetics of this bacteria. We have developed an extensive experimental system, to determine precisely the influence of temperature on the maximum specific growth rate. Received: 15 July 1997 / Received revision: 7 October 1997 / Accepted: 19 October 1997  相似文献   

3.
Acidophilic chemolithotrophic microorganisms (CMs) are widely used for bioleaching of mineral resources. However, the growth of bacteria and their leaching activity are often inhibited (restricted) by organic components, e.g. lysates and exudates. The aims of this study were to examine the extent of cell lysis (CLs) inhibition on acidophilic microorganisms and to identify microorganisms that can utilize CLs products and eliminate their inhibition effect on acidophilic microorganisms. Specifically, it was revealed that Acidithiobacillus caldus was severely inhibited at 5% CLs products, whereas A. ferrooxidans and Leptospirillum ferriphilum are severely inhibited at 20%. It has been found that strains RBA and RBB of heterotrophic bacteria, isolated from anaerobic sludge, can biodegrade CLs products and when co-cultured with A. ferrooxidans, they can alleviate the toxic effect of CLs products under low pH (2–3). It has been shown that besides CLs, isolated strains can grow on glucose, glycerol, yeast extract, citric acid, and tryptone soya broth with an optimum temperature of 35°C and a pH of 3. The strains showed the ability to reduce ferric ions to ferrous ions when glycerol was used as a substrate after 2 days under both aerobic and anaerobic conditions. On the basis of morphophysiological and molecular biological studies, the isolated strains RBA and RBB were identified as Acidocella spp.  相似文献   

4.
Two stress factors, hypoxia (microaerobic conditions) and a high salt concentration, if applied simultaneously to aerobic microorganisms, display an antagonistic mode of interaction. As a result, the NaCl level that is usually optimal for moderate halophiles (5–6 %) becomes optimal for the growth of weak halophiles (Rhodococcus erythropolis and Shewanella sp. CN32); the halotolerant yeast Yarrowia lypolytica acquires halophilic properties (with a growth optimum at a NaCl concentration of 10%), and the growth rate of the extremely halophilic Halobacterium salinarum increases at supraoptimal salt concentrations (25–34%). This phenomenon is apparently due to multiple changes in metabolic reactions. In particular, high salt concentrations suppress respiration and the formation of enzymes (superoxide dismutase and catalase) that protect the cell from toxic oxygen species. Therefore, establishment of microaerobic conditions compensates for the loss of these protective mechanisms and enables cell growth at higher salt concentrations than under aerobic conditions. Of some importance can also be the increase in the intracellular concentrations of osmoprotectants caused by the suppression of their intracellular oxidation. The implications of this phenomenon for the ecophysiology of microorganisms (including oil-oxidizing species) and for the classification of weak and moderate halophiles are discussed.  相似文献   

5.
The advantages of the analysis of electrical impedance changes for the prediction of the metabolic activity of mixed Bacillus cultures used for high temperature industrial wastewater utilization are demonstrated. The primary aim of this study was to investigate the possibilities of a fast assessment of the biodegradative capabilities of microorganisms, their requirements regarding the medium composition as well as the inhibiting effect of high‐strength (i.e., highly concentrated) wastewaters on microbial growth. Four mixed Bacillus cultures were cultivated at 45 and 55 °C on two kinds of wastewater from the potato starch industry. The course of changes in the electrical impedance during the cultivation of the bacteria in the examined wastewaters was described by the mathematical Gompertz model. Three kinetics parameters (maximum rate of impedance changes, Imax; the time necessary to reach, Imax, TI; and the duration of the lag phase, λ) were proposed for the statistical analysis of the bacterial metabolic activity. The temperature of the biodegradation process and the type and strength of the wastewater significantly influenced the microbial metabolic activity of the mixed bacterial cultures used. Monitoring of the impedance changes, caused by microbial metabolism, and its proposed mathematical specification allowed for predicting the dynamics of the microbiological degradation of wastewater and estimating the inhibiting effects of these media on the microorganisms.  相似文献   

6.
Pure cultures of indigenous microorganisms Acidithiobacillus ferrooxidans strain TFUd, Leptospirillum ferrooxidans strain LUd, and Sulfobacillus thermotolerans strain SUd have been isolated from the oxidation zone of sulfide copper ore of the Udokanskoe deposit. Regimes of bacterial-chemical leaching of ore have been studied over a temperature range from −10 to +20°C. Effects of pH, temperature, and the presence of microorganisms on the extraction of copper have been shown. Bacterial leaching has been detected only at positive values of temperature, and has been much more active at +20 than at +4°C. The process of leaching was more active when the ore contained more hydrophilic and oxidized minerals. The possibility of copper ore leaching of the Udokanskoe deposit using sulfuric acid with pH 0.4 at negative values of temperature and applying acidophilic chemolithotrophic microorganisms at positive values of temperature and low pH values was shown.  相似文献   

7.
The most representative bacterium (Pseudonocardia sp.) and fungus (Fusarium sp.) from the microbial communities of a cave containing paleolithic paintings were isolated and their growth on natural substrates assessed. Growth was tested at the in situ and optimal, laboratory growth temperature. Development was analyzed with and without supplemented nutrients (glucose, ammonium, phosphate, peptone). Results showed that the assayed bacterium on natural substrate was able to develop best at in situ temperature and the addition of organic nutrients and/or phosphate enhanced its growth. The growth of the assayed fungus, however, was limited by low temperature and the availability of ammonium. These results confirm a differential behavior of microorganisms between the laboratory and the natural environments and could explain previous invasion of fungi reported for some caves with prehistoric paintings.  相似文献   

8.
1. A growth model, originally developed for brown trout (Salmo trutta), has now been fitted to data for Atlantic salmon (S. salar) and stone‐loach (Barbatula barbatula) from English populations, and Arctic charr (Salvelinus alpinus) from Sweden. The model relates growth rate to temperature for a fish of standard size and the functional relationship has a triangular shape with a sharp peak at the optimal temperature for growth and zero growth at the base of the triangle. It was unsuitable for growth data for Norwegian salmon, and a curvilinear Ratkowsky model provided a better fit, though the experimental protocol was different in the Norwegian and English experiments. 2. The Norwegian salmon were kept in groups in each tank, had to compete for food, and had to be divided into slow, moderate and fast growers before the Ratkowsky model could be fitted. Each English salmon was kept in its own tank and fed individually. For replicate experiments, fish of similar size were selected. Variation among fish kept under similar conditions was therefore small, and the triangular model was essentially for individual fish, not groups of fish. 3. The present simulation study tests the hypothesis that individual differences in the growth response could account for the curvilinear growth‐temperature relationship for the Norwegian salmon. The triangular model was used to generate the growth response to temperature for a group of salmon, each fish having a slightly different temperature preference and growth rate. The result was a curvilinear response, well approximated by the Ratkowsky model (adjusted R2 = 0.96). When the variability in individual temperature preference was increased, the Ratkowsky model was an even better fit (adjusted R2 = 0.98). Therefore, the apparent discrepancy between the two models was reconciled by allowing for individual differences in temperature preference and growth rate within groups of fish.  相似文献   

9.
脱落酸作为一种抑制生长的植物激素,是平衡植物内源激素和调节生长代谢的关键因子。脱落酸具有提高作物抗旱耐盐、减少果实褐变的作用,同时可降低疟疾发病率、刺激胰岛素分泌,因此在农业和医药领域有着广阔的应用前景。相较于传统的植物提取法和化学合成法,利用微生物合成脱落酸是一种经济、可持续的来源方式。目前利用天然微生物如灰葡萄孢霉菌、蔷薇色尾孢菌等合成脱落酸的研究已经取得了诸多进展,而脱落酸的异源微生物合成研究相对较少。酿酒酵母、解脂耶氏酵母、大肠杆菌等工程菌株作为天然产物异源合成的常用宿主,具有遗传背景清晰、易于操作、便于工业化生产等优势,因此利用微生物异源合成脱落酸是一种更具潜力的生产方式。本文着重从底盘细胞的选择、关键酶的筛选与表达强化、辅因子的调节、增强前体供应及促进脱落酸外排5个方面对微生物异源合成脱落酸的研究进行综述。最后,对该领域的未来发展方向进行了展望。  相似文献   

10.
A procedure for measuring the rate of heat production from a fermentation has been developed. The method is based on measuring the rate of temperature rise of the fermentation broth resulting from metabolism, when the temperature controller is turned off. The heat accumulation measured in this manner is then corrected for heat losses and gains. A sensitive thermistor is used to follow the temperature rise with time. This procedure is shown to be as accurate as previous methods but much simpler in execution. Using this technique, the rate of heat production during metabolism was found to correlate with the rate of oxygen consumption. Experiments were performed using bacteria (E. coli and B. subtilis), a yeast (C. intermedia), and a mold (A. niger). The substrates investigated included glucose, molasses, and soy bean meal. The proportionality constant for the correlation is independent of the growth rate, slightly dependent on the substrate, and possibly dependent On the type of organism growth. This correlation has considerable potential for predicting heat evolution from the metabolism of microorganisms on simple or complex substrates and providing quantitative parameters necessary for heat removal calculations.  相似文献   

11.
Ectotherms tend to grow faster, but reach a smaller size when reared under warmer conditions. This temperature‐size rule (TSR) is a widespread phenomenon. Despite the generality of this pattern, no general explanation has been found. We therefore tested the relative importance of two proposed mechanisms for the TSR: (1) a stronger increase in development rate relative to growth rate at higher temperatures, which would cause a smaller size at maturity, and (2) resource limitation placing stronger constraints on growth in large individuals at higher temperatures, which would cause problems with attaining a large size in warm conditions. We raised Daphnia magna at eight temperatures to assess their size at maturity, asymptotic size, and size of their offspring. We used three clonal lines that differed in asymptotic size and growth rate. A resource allocation model was developed and fitted to our empirical data to explore the effect of both mechanisms for the TSR. The genetic lines of D. magna showed different temperature dependence of growth and development rates resulting in different responses for size at maturity. Also, at warm temperatures, growth was constrained in large, but not in small individuals. The resource allocation model could fit these empirical data well. Based on our empirical results and model explorations, the TSR of D. magna at maturity is best explained by a stronger increase in development rate relative to growth rate at high temperature, and the TSR at asymptotic size is best explained by a size‐dependent and temperature‐dependent constraint on growth, although resource limitation could also affect size at maturity. In conclusion, the TSR can take different forms for offspring size, size at maturity, and asymptotic size and each form can arise from its own mechanism, which could be an essential step toward finding a solution to this century‐old puzzle.  相似文献   

12.
The phase properties of membranes isolated from the psychrotrophBacillus psychrophilus and the mesophileB. megaterium were examined using wide-angle X-ray diffraction. The temperature at which the transition from liquid-crystalline to crystalline (gel) phase occurred was below −30°C for both microorganisms, regardless of the temperature at which the microbial cells were grown. Thus the membranes for both microorganisms were exclusively liquid-crystalline over the entire growth temperature range. Indeed, the membrane was completely fluid at temperatures where growth of the psychrotroph ceases, thus indicating that the phase transition temperature is not the determinant of the minimum growth temperature.  相似文献   

13.
A laboratory phenomenon involving autostimulation of growth by filtrates of the green alga Hormotila blennista is described, and stimulation attributed primarily to the secretion of organic metabolites. Filtrates obtained from actively growing cultures 1 through 4 weeks old showed maximum growth rate stimulation values in excess of 100%. Stimulatory properties of filtrate were heat labile, were not closely controlled by the starting pH within the limits normally encountered in culture, and did not result from depletion of essential nutrients. Concomitant with growth rate stimulation, filtrates characteristically extended the lag phase of culture growth. H. blennista filtrate can support bacterial growth and selectively stimulate or inhibit 2 planktonic green algae. It was suggested that extracellular organic products secreted by H. blennista during active growth could be of survival value to the organism, and could also play regulatory roles among other microorganisms in nature.  相似文献   

14.
15.
The biological treatment process is responsible for removing organic and inorganic matter in wastewater. This process relies heavily on microorganisms to successfully remove organic and inorganic matter. The aim of the study was to model biomass growth in the biological treatment process. Multilayer perceptron (MLP) Artificial Neural Network (ANN) algorithm was used to model biomass growth. Three metrics: coefficient of determination (R2), root mean squared error (RMSE), and mean squared error (MSE) were used to evaluate the performance of the model. Sensitivity analysis was applied to confirm variables that have a strong influence on biomass growth. The results of the study showed that MLP ANN algorithm was able to model biomass growth successfully. R2 values were 0.844, 0.853, and 0.823 during training, validation, and testing phases, respectively. RMSE values were 0.7476, 1.1641, and 0.7798 during training, validation, and testing phases respectively. MSE values were 0.5589, 1.3551, and 0.6081 during training, validation, and testing phases, respectively. Sensitivity analysis results showed that temperature (47.2%) and dissolved oxygen (DO) concentration (40.2%) were the biggest drivers of biomass growth. Aeration period (4.3%), chemical oxygen demand (COD) concentration (3.2%), and oxygen uptake rate (OUR) (5.1%) contributed minimally. The biomass growth model can be applied at different wastewater treatment plants by different plant managers/operators in order to achieve optimum biomass growth. The optimum biomass growth will improve the removal of organic and inorganic matter in the biological treatment process.  相似文献   

16.
When grown on solid substrates, different microorganisms often form colonies with very specific morphologies. Whereas the pioneers of microbiology often used colony morphology to discriminate between species and strains, the phenomenon has not received much attention recently. In this study, we use a genome‐wide assay in the model yeast Saccharomyces cerevisiae to identify all genes that affect colony morphology. We show that several major signalling cascades, including the MAPK, TORC, SNF1 and RIM101 pathways play a role, indicating that morphological changes are a reaction to changing environments. Other genes that affect colony morphology are involved in protein sorting and epigenetic regulation. Interestingly, the screen reveals only few genes that are likely to play a direct role in establishing colony morphology, with one notable example being FLO11, a gene encoding a cell‐surface adhesin that has already been implicated in colony morphology, biofilm formation, and invasive and pseudohyphal growth. Using a series of modified promoters for fine‐tuning FLO11 expression, we confirm the central role of Flo11 and show that differences in FLO11 expression result in distinct colony morphologies. Together, our results provide a first comprehensive look at the complex genetic network that underlies the diversity in the morphologies of yeast colonies.  相似文献   

17.
Summary The effect of some nonylphenyl-ethylene oxide polymers on the growth of Bacillus megaterium, B. cereus var. mycoides, B. polymyxa, B. subtilis, Pseudomonas fluorescence and Azotobacter chroococcum was investigated in the concentration range 20–800 ppm with the agar diffusion method. The zones of inhibition, restricted growth and eventual stimulation were determined with a Shimadzu C-930 dual wavelength TLC scanner. The data matrix was evaluated by principal component analysis. A. chroococcum was insensitive to each tenside at each concentration. The growth of the other microorganisms was inhibited by the tensides. With B. megaterium and B. cereus var. mycoides stimulation was also observed. The effect of the non-ionic tensides decreased with increasing length of the hydrophilic ethylene oxide chain. This phenomenon can be explained by the assumption that the activity of tensides depends on their membrane-damaging effect. The bulky nonylphenyl group inserts between the apolar fatty acid chains disorganizing the membrane structure. The longer hydrophilic ethylene oxide chain modifies the distribution of tenside between the apolar and polar regions of the membrane, preferring the aqueous phase. This results in the decrease or loss of biological activity. Offprint requests to: T. Cserháti  相似文献   

18.
Extremophiles are microorganisms that flourish in habitats of extreme temperature, pH, salinity, or pressure. All extreme environments are dominated by microorganisms belonging to Archaea, the third domain of life, evolutionary distinct from Bacteria and Eucarya. Over the past few years the biology of extremophilic Archaea has stimulated a lot of interest, aimed at understanding at molecular level the adaptation to their life conditions, as well as their evolutionary relationships to other organisms. Here, we review recent insights in the molecular biology of thermoacidophilic Archaea of the genus Sulfolobus, which has been used as a model system for biochemical, structural, and genetic studies in Archaea and extremophiles in general. With the recent completion of the genome sequence of Sulfolobus solfataricus it is expected that these organisms will contribute new discoveries in the near future. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The aim was to investigate known and potential new inhibitiors of dipeptidyl peptidases (DPP) for their effects on ruminal microorganisms. Gly-Phe diazomethylketone (GPD), Ala-Ala chloromethylketone (AAC), benserazide (DL-serine 2-(2,3,4- trihydroxybenzyl) hydrazide), and diprotin A (Ile-Pro-Ile) inhibited DPP activities of Prevotella albensis, P. ruminicola, P. bryantii, P. brevis, and mixed ruminal microorganisms, though incompletely and, except for diprotin A, without absolute specificity for any of the peptidases. Leucine aminopeptidase activity of Streptococcus bovis was also inhibited by GPD and benserazide. The inhibitors had no effect on the growth of the bacteria, except for GPD, which inhibited growth of P. albensis when only peptides were available for growth. Benserazide had some inhibitory effects on the growth of Megasphaera elsdenii and Prevotella spp., even in the absence of peptides. The predatory activity of ciliate protozoa on bacteria was unaffected by DPP inhibitors. Ammonia production from casein by mixed ruminal microorganisms was inhibited significantly (P < 0.05) by AAC (29% inhibition) and benserazide (33%). It was concluded that DPP inhibitors can influence the rate of NH3 production in the rumen and may form the basis for developing protein-sparing feed additives for ruminants.  相似文献   

20.
Biomining is the use of microorganisms to catalyze metal extraction from sulfide ores. However, the available water in some biomining environments has high chloride concentrations and therefore, chloride toxicity to ferrous oxidizing microorganisms has been investigated. Batch biooxidation of Fe2+ by a Leptospirillum ferriphilum‐dominated culture was completely inhibited by 12 g L?1 chloride. In addition, the effects of chloride on oxidation kinetics in a Fe2+ limited chemostat were studied. Results from the chemostat modeling suggest that the chloride toxicity was attributed to affects on the Fe2+ oxidation system, pH homeostasis, and lowering of the proton motive force. Modeling showed a decrease in the maximum specific growth rate (µmax) and an increase in the substrate constant (Ks) with increasing chloride concentrations, indicating an effect on the Fe2+ oxidation system. The model proposes a lowered maintenance activity when the media was fed with 2–3 g L?1 chloride with a concomitant drastic decrease in the true yield (Ytrue). This model helps to understand the influence of chloride on Fe2+ biooxidation kinetics. Biotechnol. Bioeng. 2010; 106: 422–431. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号