首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylinositol (PI) synthesis and its role in controlling the cell cycle has been investigated using fibroblasts and liver cells in culture. PI synthesis as measured by incorporation of [3H]-myo-inositol into trichloroacetic acid precipitable material during 0–60 min after serum or growth factor stimulation of serum-starved cells is increased in primary fetal rat liver cells, rat embryo fibroblasts, and 3T3 mouse cells. In contrast, growth stimulation of 3T3 cells and hepatocytes rendered quiescent in G1 by amino acid starvation is not accompanied by increased incorporation of [3H]-myo-inositol into trichloroacetic acid precipitable material. This suggests that those cells might be arrested at a different point in G1 than cells arrested by serum depletion. Inhibition of PI synthesis by δ-hexachlorocyclohexane (HCH), a steric analog of myo-inositol, during early times (e.g., 0–4 hr) after growth stimulation, reversibly blocks initiation of DNA synthesis in 3T3 cells. The results support the idea that increased PI synthesis in response to growth stimulation in the cell types studied here is a prerequisite for progression through G1 and subsequent entry into S phase.  相似文献   

2.
Like all DNA viruses, human cytomegalovirus (HCMV) infection is known to result in profound effects on host cell cycle. Infection of fibroblasts with HCMV is known to induce an advance in cell cycle through the G0-G1 phase and then a subsequent arrest of cell cycle in early S-phase, presumably resulting in a cellular environment optimum for high levels of viral DNA replication whilst precluding replication of cellular DNA. Although the exact mechanisms used to arrest cell cycle by HCMV are unclear, they likely involve a number of viral gene products and evidence points to the ability of the virus to prevent licensing of cellular DNA synthesis. One viral protein known to profoundly alter cell cycle is the viral immediate early 86 (IE86) protein - an established function of which is to initially drive cells into early S phase but then inhibit cellular DNA synthesis. Here we show that, although IE86 interacts with the cellular licensing factor Cdt1, it does not inhibit licensing of cellular origins. Instead, IE86-mediated inhibition of cellular DNA synthesis requires mini-chromosome-maintenance 3 (MCM3) associated protein (MCM3AP), which can cause subsequent inhibition of initiation of cellular DNA synthesis in a licensing-independent manner.  相似文献   

3.
Effect of aphidicolin on avian sarcoma virus replication.   总被引:11,自引:4,他引:7       下载免费PDF全文
We studied the effect of aphidicolin, an inhibitor of eucaryotic DNA polymerase alpha, on viral DNA replication and integration during the first 24 h after infection of quail embryo fibroblasts with avian sarcoma virus. In drug-treated cells, the synthesis of unintegrated linear viral DNA species was not impaired; however, the subsequent accumulation of circular viral DNA species and integrated proviral DNA was reversibly inhibited. After removal of the drug, circular viral DNA species were derived from preexisting linear viral DNA species, instead of being derived by de novo synthesis.  相似文献   

4.
Summary Human embryonic lung fibroblasts (IMR-90 and WI-38) were arrested in the G1 phase of the cell cycle by serum deprivation and high population density. Within 1 hr after the addition of medium containing fresh serum, these cells showed an increase in rRNA synthesis. The inclusion of 100 μg per ml aminonucleoside of puromycin (AMS) in the fresh medium eliminated the serum stimulation of rRNA synthesis and prevented the cells from making the G1-resting phase to G1-prereplicative phase transition. AMS also prevented the synthesis of HnRNA normally found within 10 hr after serum stimulation. Serum-stimulated RNA synthesis in starved, SV-40 transformed fibroblasts (WI-38-VA-13 cells) was inhibited, but not completely prevented, by AMS indicating that transformed cells may produce specific RNA's that are not AMS-sensitive and that may be responsible for the failure of transformed cells to be arrested in G1. This work was supported by PHS Research Grant CA19750-02 from the National Cancer Institute. These results were reported previously in a preliminary form (7).  相似文献   

5.
The rate of synthesis of cellular DNA is stimulated in stationary phase mouse embryo cells infected with polyoma virus. Nascent cellular DNA strands pulselabeled with [3H]thymidine in the presence of replicating viral DNA are smaller, by an average of 2·1 × 107 daltons, than DNA made under similar conditions in uninfected cells. Previous work (Cheevers et al., 1972) has indicated that this observation is the consequence of activation in infected cells of cellular DNA initiation sites not in operation during a similar pulse-labeling interval in uninfected cells. Similar results were obtained using cells infected with the temperature-sensitive Ts-a mutant of polyoma at 32 °C, which permits both the induction of cellular DNA synthesis and replication of viral DNA. However, at a temperature of 39 °C, which permits only the induction of cellular DNA replication in Ts-a-infected cells, the size of newly synthesized DNA is not different from that of uninfected cells. Similarly, in rat embryo cells abortively infected with polyoma (wild-type), stimulation of cellular DNA synthesis occurs but viral DNA replication is restricted, and no difference is apparent in the size of newly formed DNA as compared to uninfected cells. These results are interpreted to mean that in productively infected cells, polyoma DNA and some regions of the host genome may be co-ordinately replicated.  相似文献   

6.
Growth stimulation of either fetal rat liver cells or rat embryo fibroblasts in culture results in considerable increases in intracellular polyamine levels as cells proceed through the cell cycle. Treatment of such cell cultures with appropriate levels of two inhibitors of polyamine synthesis, namely α-hydrazino ornithine and methylglyoxal bis(guanylhydrazone), can essentially completely block these increases in cellular polyamine content. Under such conditions, where the elevation in intracellular polyamine content is prevented, cell cultures are nevertheless able to initiate DNA synthesis and subsequently synthesize DNA at rates comparable to untreated control cultures that have been growth-stimulated. These two cell types therefore contain sufficient polyamines when in a resting state (G1) to enable them to enter from G1 into S phase and traverse S phase at normal rates in the absence of further polyamine synthesis. The recruitment of cells into the first cell cycle, through serum stimulation of growth, therefore appears not to be mediated or regulated by the increases in intracellular levels of polyamines that occurs under these conditions. Conversely, the arrest of growth of these cell types resulting from serum deprivation is not mediated by a limitation of intracellular polyamine content.  相似文献   

7.
The growth regulatory activity of transforming growth factor β (TGFβ) on chick embryo skin fibroblasts was compared in two developmental ages, days 7 and 14. The time course of 3H-thymidine incorporation, an S-phase marker of replication, was determined during 36 hr of TGFβ treatment. Seven-day-old cells showed a prereplicative phase of 6 hr, and 14-day-old cells showed a prereplicative phase of 12 hr. DNA synthesis peaked at 24 hr in 7-day-old fibroblasts and was 10 times higher than that in 14-day-old fibroblasts. Ornithine decarboxylase (ODC) activity and content of the natural polyamines spermine (Spm), spermidine (Spd), and putrescine (Put) differed during cell cycle. ODC activity peaked at 12 hr in 7-day-old cells and at 6 hr in 14-day-old cells. Its level was two times higher at day 7 and was associated with a greater content of ODC mRNA. The maximum of polyamine (PA) concentration was determined after 12 hr of treatment in 7-day-old cells and after 36 hr in 14-day-old cells. These findings indicate that the TGFβ proliferative response of embryo fibroblasts changes during development and is associated with activation of the ODC/PA system. Cotreatment with α-difluoromethylornithine, an enzyme-activated irreversible inhibitor of ODC, did not reduced growth rate. Inhibition of ODC resulted in levels of Put and Spd comparable to that of quiescent fibroblasts, whereas Spm concentration remained higher. Because an altered ODC metabolism does not convey the effects of TGFβ on DNA synthesis, the ODC/PA system may not play a role in the pathway of TGFβ signaling. J. Cell. Physiol. 178:304–310, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

8.
A trimodal change in the cellular levels of three major polyamines: spermidine, N,N′-bis(3-aminopropyl)-1, 3-propanediamine (BAP) and 3,3′-diaminodipropylamine (DAD) was observed during two successive cell cycles in synchronously dividing cultures of the algal flagellate, Euglena gracilis Z photoautotrophically grown in a 24-h light-dark cycle. The intracellular levels of these three polyamines decreased as cells divided and then were enhanced as cells exited the G1 phase and proceeded through the S and G2 phases. Spermidine, BAP and DAD concentrations increased about 2.5-fold during the S phase. Putrescine and 1,3-diaminopropane levels did not vary significantly. One peak of polyamine synthesis occurred in the G1 phase prior to DNA synthesis, followed by a second more important peak during the S-G2 phases before cell division; both peaks were observed during the light period. A third minor peak was observed during the pre-G1 (or G0) phase in the dark period after mitosis had been completed. In contrast, when the cells attained the “stationary” phase of growth, there was no significant increase in the content of polyamines during the light period although spermidine and BAP increased slightly twice during the dark period (putrescine and 1,3-diaminopropane and DAD levels remained almost constant). To ascertain whether the synthesis of polyamines was merely a direct effect of the photoperiod, parallel experiments with synchronous cultures were carried out in the presence and absence of 3-(3,4-dichlorophenyl)-1, 1-dimethyl urea, a photosynthetic inhibitor. Although a slight decrease in the concentration of polyamines was observed, the three maxima of polyamines synthesis were observed as in normal cultures. These results clearly suggest that polyamine biosynthesis is closely related to DNA replication and cell division in Euglena cells.  相似文献   

9.
Cultures of Euglena gracilis (strain Z from French CNRS collection) can be made cadmium resistant if grown in a medium with 5x10-4M cadmium chloride. This resistance is reflected by the appearance of a second exponential growth phase. The development of this resistance was studied at the cellular level by determining the relative content of DNA at different stages of the cell cycle in an asynchronously grown culture. The culture was followed until the second, cadmium resistant, growth phase had reached its stationary state. During the first exponential growth phase, cells were mostly in the late period of DNA synthesis (stage S of the cell cycle), or in the gap preceding mitosis (stage G2 of the cell cycle). In addition, some cells contained high multiples of the normal amount of DNA. In the beginning of the second exponential growth phase, a few cells were again in G1 (the post mitotic stage of the cell cycle preceding DNA synthesis). These G1 cells were predominant at the end of the second growth period. During the second stationary phase the DNA content of the cadmium treated cells was similar to the stationary phase of the control culture. Cells had stopped growing in G1 with an unreplicated genome. The implications of these data are discussed.  相似文献   

10.
Chick embryo fibroblasts brought into stationary phase of growth by maintenance in serum-free Eagle's MEM medium were infected with the Bryan strain of Rous sarcoma virus (B-RSV) and incubated for 18 hr in the presence of 5-bromo-deoxyuridine (BUdR). The cells were then allowed to resume growth and deoxyribonucleic acid (DNA) synthesis by addition of an enriched F12 medium containing serum and RSV antibody to prevent spread of viral infection. After 48 hr, the cultures were exposed for various periods to visible light, overlaid with solid culture medium, and observed for the appearance of foci of transformed cells. In cultures treated with BUdR at the time of infection, exposure to light resulted in a suppression of focus formation of from 50 to 90% in various experiments. Treatment with BUdR for 18 hr before infection or on the day after infection, followed by exposure to light, had no effect on focus formation. In cultures in which almost all cells were infected, treatment with BUdR followed by exposure to light did not result in cell death. This suggests that suppression of transformation is not due to selective killing of infected cells by this treatment but rather to the intracellular inactivation of the transforming ability of Rous sarcoma proviral DNA.  相似文献   

11.
Terrinha, António M. (National Laboratory for Veterinary Research, Lisbon, Portugal), José D. Vigário, José L. Nunes Petisca, J. Moura Nunes, and Armando L. Bastos. Autoradiographic study on sheeppox virus infection. J. Bacteriol. 90:1703-1709. 1965.-An autoradiographic study of sheep embryo cell cultures infected with sheeppox virus showed that viral deoxyribonucleic acid (DNA) synthesis starts at 10 to 11 hr after infection. The number of cells which supported viral DNA synthesis increased until 22 to 23 hr. The extent of cytoplasmic continuity between cells might permit the cell-to-cell transfer of mature virus or perhaps viral DNA. There is evidence of an inhibitory action on cellular DNA synthesis in cells which supported viral DNA synthesis, but, in all cellular populations infected, a small proportion of cells was encountered which supported viral DNA synthesis in compartment S. No evidence for cellular division of sheeppox virus-infected cells has been found. Enzymatic digestion by deoxyribonuclease combined with autoradiography provided an indirect demonstration of the time at which the first viral structural proteins were found to be synthesized, that is, 18 hr after infection. A progressive increase in synthesis of viral structural proteins was demonstrated. Virus maturation occurred within the cells in the cytoplasm, predominantly in the same sites as viral DNA synthesis.  相似文献   

12.
Effect of cell physiological state on infection by rat virus   总被引:20,自引:18,他引:2       下载免费PDF全文
Infection by rat virus has been studied in cultures of rat embryo cells to evaluate the Margolis-Kilham hypothesis that the virus preferentially infects tissues with actively dividing cells. An enhancement of infection was seen in cultures infected 10 hr after fresh medium was added as compared to infection of stationary cultures (infected before addition of fresh medium). Since addition of fresh medium stimulates deoxyribonucleic acid (DNA) synthesis, the number of cells per culture synthesizing DNA at the time of infection was compared with the proportion of cells which synthesized viral protein. Cells were infected before the medium change and 10 or 24 hr after the medium change and were pulse-labeled with 3H-thymidine at the time virus was added. The cells were allowed to initiate viral protein synthesis before they were fixed and stained with fluorescein-conjugated anti-rat virus serum. Fluorescence microscopy permitted both labels to be counted simultaneouly and showed that the greatest proportion of cells synthesizing viral protein were those which had incorporated 3H-thymidine at the time of infection.  相似文献   

13.
B Hogan  R Shields  D Curtis 《Cell》1974,2(4):229-233
Quiescent baby hamster kidney cells in 0.5% serum synthesize little DNA and have low levels of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis. After adding serum to 5%, ODC activity is increased 30 fold, reaching a maximum at 6 hr, whereas DNA synthesis is reinitiated at 12 hr. Five μg/ml insulin also increases ODC activity 3 fold by 4 hr. In quiescent 3T3 cells and mouse embryo fibroblasts, serum and insulin may trigger many metabolic events by causing a transient drop in intracellular cyclic AMP and a rise in cyclic GMP. To test this hypothesis in BHK cells, cAMP levels were raised by adding dibutyryl cAMP and/or theophylline, or by stimulating adenylate cyclase with Prostaglandin E1. cAMP blocks the serum stimulation of DNA synthesis, but increases ODC activity, both in quiescent cells and in cells treated with serum and insulin. These results suggest that serum and insulin control ODC activity through a mechanism independent of a drop in cAMP.  相似文献   

14.
Using a new, sensitive and quantitative technique for determining the ribosomal-RNA content of a measured number of cells, the cellular ribosome complement was compared for cultured hamster embryo cells in the stationary growth phase and in the early G1 phase of the cell cycle. Cells from stationary phase cultures were found to contain less than 70% of the ribosome complement of the early G1 phase cells, though the volumes of the two cell types were similar. This would imply that the stationary phase cell is physiologically different from a cell merely arrested at some point in the cell cycle.  相似文献   

15.
We have investigated the capacity of a murine cell line with a temperature-sensitive (ts) mutation in the DNA polymerase α (Pola) locus and a series of ts non-Pola mutant cell lines from separate complementation groups to stimulate DNA synthesis, in senescent fibroblast nuclei in heterokaryons. In the Pola mutant × senescent heterodikaryons, both human and murine nuclei display significantly diminished levels of DNA synthesis at the restrictive temperature (39.5°C) as determined by [3H]thymidine labeling in autoradiographs. In contrast, all of the non-Pola mutants, as well as the parental (wild-type) murine cells, induced similar levels of DNA synthesis in both parental nuclei at the nonpermissive and permissive temperatures. Similarly, young human fibroblasts are also able to initiate DNA synthesis in heterokaryons with the ts Pola mutant at the two temperatures. In order to determine if complementation of the non-Pola mutants requires induction of serum responsive factors in the senescent cells, fusion studies of similar design were conducted with young and old human fibroblasts incubated in low serum (0.2%) for 48 hr prior to and after cell fusion. Again, a diminished level of DNA synthesis was observed at 39.5°C in the Pola mutant x senescent cell heterokaryons. In these low-serum studies, both parental nuclei in the Pola x young cell heterokaryons and the human nuclei in heterokaryons with one of the non-Pola mutants (FT107) also displayed diminished levels of DNA synthetic activity. All of the other mutants are able to support similar levels of synthetic activity at both temperatures in the presence of reduced serum. The nature of the mutation in three of the non-Pola lines has not been determined but, like the Pola mutant cells, are inhibited in the G1 phase of the cell cycle when incubated at the nonpermissive temperature (39.5°C). The fourth non-Pola mutant line is known to have at least one ts mutation in the cdc2 gene and is inhibited in the G2 phase when exposed to 39.5°C. These results suggest that there may be a functional deficiency of pol α in senescent human fibroblasts, and this replication factor may be one of the rate-limiting factors involved in loss of the capacity to initiate DNA synthesis in senescent cells. © 1994 Wiley-Liss, Inc.  相似文献   

16.
We studied the effect of murine epidermal growth factor on cell proliferation and DNA synthesis in macronuclei of ciliate Tetrahymena pyriformis Gl. Mitogenic effect of epidermal growth factor on proliferation-induced tetrahymena cells has been revealed. This effect is due to the induced progression of cells at G 1 and, consequently, their earlier entering DNA synthesis phase of the first cell cycle. Epidermal growth factor had no mitogenic effect on the resting cells in a stationary culture (G 0 phase) whose development is independent of the growth factors in the medium.  相似文献   

17.
Chick embryo fibroblasts in monolayer culture were synchronized by contact inhibition and serum starvation. Nuclear DNA isolated from the [3H] thymidine pulse-labelled cells throughout the period of DNA synthesis (S phase) was analysed by hydroxylapatite chromatography after renaturation at different C0t values. It is shown that repeated sequences having different frequencies of reassociation, replicate differently throughout the S period. In order to study the distribution of the repeated sequences, DNA isolated during the S period was fractionated according to its buoyant density. It is shown that only some of the highly reiterated sequences which are included in the high buoyant density DNA fractions, replicate equally well during the early and the late S periods. By contrast, reiterated sequences of the low buoyant density DNA fractions replicate mainly during the late S period.  相似文献   

18.
Density-arrested BALB/c-3T3 cells stimulated to proliferate in an amino acid-deficient medium arrest in mid-G1 at a point termed the V point. Cells released from V point arrest require 6 hr to traverse late G1 and enter S phase. As data presented here show that mRNA synthesis is needed for 2–3 hr after release of cells from the V point, after which inhibition of mRNA synthesis does not prevent entry into S phase, we used this mid-G1 arrest protocol to analyze gene expression in late G1. We found that although stimulation of cells in amino acid-deficient medium did not inhibit the induction of genes expressed in early G1, genes normally expressed in late G1 were expressed only after release from the V point. The expression of late G1 genes in cells released from the V point was temporally similar, in respect to G1 location, as was seen in stimulation of quiescent Go cells. As this protocol effectively divides gene expression into early (pre-V point) and late (post-V point) categories, it should be useful in studies of growth factor-modulated events that regulate traverse of late G1 and commitment to DNA synthesis. In addition, we used c-myb antisense oligonucleotides to show that c-myb expression, which occurs in late G1, is required for BALB/c-3T3 fibroblasts to traverse late G1 and initiate DNA synthesis. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Confluent quiescent monolayers of aneuploid and euploid cells in culture can be stimulated to proliferate by appropriate nutritional changes. In confluent monolayers of WI-38 human diploid fibroblasts the uptake of cycloleucine is increased three hours after these cells are stimulated to proliferate by a change of medium plus 10% serum. No changes in the uptake of cycloleucine are observed in logarithmically-growing WI-38 cells exposed to fresh medium plus 10% serum, or in WI-38 confluent monolayers in which the conditioned medium has been replaced by fresh medium with 0.3% serum (a change that does not cause stimulation of cellular proliferation in WI-38 cells). In 3T6 cells in the stationary phase stimulated to proliferate by nutritional changes, there is a prompt increase in the uptake of cycloleucine, within one hour after stimulation of cell proliferation. Similar results were obtained with stationary 2RA cells which are SV-40 transformed WI-38 fibroblasts. In addition, chromatin template activity which is known to increase in the early stages after stimulation of confluent WI-38 cells, was unchanged in confluent 3T6 or 2RA cells stimulated to proliferate. These results show that at least two of the very early biochemical events occurring in response to stimulation of cell proliferation are different in WI-38 diploid cells and in aneuploid 2RA or 3T6 cells. It is proposed that WI-38 cells in the stationary phase are arrested in the G0 phase of the cell cycle, while 2RA and 3T6 cells are arrested in the G1 phase.  相似文献   

20.
Following provision of sucrose to starved, stationary phase pea root meristems, G1 and G2 cells enter DNA synthesis and mitosis, respectively. Puromycin (450 μg/ml) and cycloheximide (5 μg/ml) completely prevent this initiation of progression through the cell cycle. Actinomycin D (10 μg/ml) has no effect on the initial entry of G1 and G2 cells into S and mitosis, although later entry is prevented. The resistance of the cells to actinomycin D is lost slowly with time in medium without sucrose, suggesting that an RNA required for the resumption of proliferative activity is being gradually lost. The effects of the inhibitors on transitional and proliferative phase meristem cells indicate that such dividing cells do indeed have sufficient of the requisite RNA for 8-12 hr progression through the cycle, but that protein synthesis is required continuously. It is suggested that this RNA is the one lost slowly during starvation, allowing starved cells to reinitiate progression through the cycle in the presence of actinomycin D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号