首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The 3-hydroxypropionate cycle is a new autotrophic CO(2) fixation pathway in Chloroflexus aurantiacus and some archaebacteria. The initial step is acetyl-coenzyme A (CoA) carboxylation to malonyl-CoA by acetyl-CoA carboxylase, followed by NADPH-dependent reduction of malonyl-CoA to 3-hydroxypropionate. This reduction step was studied in Chloroflexus aurantiacus. A new enzyme was purified, malonyl-CoA reductase, which catalyzed the two-step reduction malonyl-CoA + NADPH + H(+) --> malonate semialdehyde + NADP(+) + CoA and malonate semialdehyde + NADPH + H(+) --> 3-hydroxypropionate + NADP(+). The bifunctional enzyme (aldehyde dehydrogenase and alcohol dehydrogenase) had a native molecular mass of 300 kDa and consisted of a single large subunit of 145 kDa, suggesting an alpha(2) composition. The N-terminal amino acid sequence was determined, and the incomplete gene was identified in the genome database. Obviously, the enzyme consists of an N-terminal short-chain alcohol dehydrogenase domain and a C-terminal aldehyde dehydrogenase domain. No indication of the presence of a prosthetic group was obtained; Mg(2+) and Fe(2+) stimulated and EDTA inhibited activity. The enzyme was highly specific for its substrates, with apparent K(m) values of 30 microM malonyl-CoA and 25 microM NADPH and a turnover number of 25 s(-1) subunit(-1). The specific activity in autotrophically grown cells was 0.08 micromol of malonyl-CoA reduced min(-1) (mg of protein)(-1), compared to 0.03 micromol min(-1) (mg of protein)(-1) in heterotrophically grown cells, indicating downregulation under heterotrophic conditions. Malonyl-CoA reductase is not required in any other known pathway and therefore can be taken as a characteristic enzyme of the 3-hydroxypropionate cycle. Furthermore, the enzyme may be useful for production of 3-hydroxypropionate and for a coupled spectrophotometric assay for activity screening of acetyl-CoA carboxylase, a target enzyme of potent herbicides.  相似文献   

3.
4.
The DNA fragment encoding malonate decarboxylase, involved in malonate assimilation, was cloned from Pseudomonas putida. The 11-kb DNA fragment contained nine open reading frames, which were designated mdcABCDEGHLM in the given order. N-terminal protein sequencing established that the mdcA, mdcC, mdcD, mdcE and mdcH genes encoded subunits alpha, delta, beta, gamma and epsilon of the malonate decarboxylase, respectively. Malonate decarboxylase was functionally expressed in Escherichia coli from plasmid harboring the entire gene cluster or the mdc genes lacking the mdcL and mdcM genes. The mdcL and mdcM genes encode membrane proteins and disruption of the genes of P. putida by the insertion of a kanamycin resistance cassette reduced the malonate uptake activity of the organism. Thus, we conclude that MdcLM is a malonate transporter.  相似文献   

5.
Anaerobic decarboxylation of malonate to acetate was studied withSporomusa malonica, Klebsiella oxytoca, andRhodobacter capsulatus. WhereasS. malonica could grow with malonate as sole substrate (Y=2.0 g·mol–1), malonate decarboxylation byK. oxytoca was coupled with anaerobic growth only in the presence of a cosubstrate, e.g. sucrose or yeast extract (Y s =1.1–1.8 g·mol malonate–1).R. capsulatus used malonate anaerobically only in the light, and growth yields with acetate and malonate were identical. Malonate decarboxylation in cell-free extracts of all three bacteria was stimulated by catalytic amounts of malonyl-CoA, acetyl-CoA, or Coenzyme A plus ATP, indicating that actually malonyl-CoA was the substrate of decarboxylation. Less than 5% of malonyl-CoA decarboxylase activity was found associated with the cytoplasmic membrane. Avidin (except forK. oxytoca) and hydroxylamine inhibited the enzyme completely, EDTA inhibited partially. InS. malonica andK. oxytoca, malonyl-CoA decarboxylase was active only after growth with malonate; malonyl-CoA: acetate CoA transferase was found as well. These results indicate that malonate fermentation by these bacteria proceedsvia malonyl-CoA mediated by a CoA transferase and that subsequent decarboxylation to acetyl-CoA is catalyzed, at least withS. malonica andR. capsulatus, by a biotin enzyme.Abbreviations CoASH Coenzyme A - EDTA ethylenediamine tetraacetate  相似文献   

6.
Biosynthesis of mevalonic acid (MVA), total formation of 14CO2 from [1,3-14C]malonyl-CoA and the activity of malonyl-CoA decarboxylase in subcellular fractions of rat liver were studied. The dependence of the rate of MVA biosynthesis on malonyl-CoA concentration was found to be linear both in 140,000 g supernatant and solubilized microsomal fractions. It was shown that in a composite system (140,000 g supernatant fraction added to washed microsomes, 10 : 1) the optimal concentration ratio for the substrates of MVA biosynthesis (malonyl-CoA and acetyl-CoA) is 1 to 2. In the absence of acetyl-CoA decarboxylation of [1,3-14C]malonyl-CoA was prevalent. In all subcellular fractions studied decarboxylation of [1,3-14C]malonyl-CoA prevailed over its incorporation into MVA, total non-saponified lipid fraction and fatty acids. The degree of malonyl-CoA, decarboxylation was not correlated with the rate of its incorporation into MVA, i. e. the increase in the 14CO2 formation was not accompanied by stimulation of [1,3-14C]malonyl-CoA incorporation either into MVA or into total non-saponified lipid fractions. The incorporation of [1-14C]acetyl-CoA into MVA under the same conditions was considerably lower than that of [1,3-14C]malonyl-CoA. In all subcellular fractions under study the activity of malonyl-CoA decarboxylase was found. The experimental data suggest that a remarkable part of malonyl-CoA is incorporated into MVA without preliminary decarboxylation. A possible role of malonyl-CoA decarboxylase as an enzyme which protects the cell against accumulation of malonyl-CoA and its immediate metabolites -- malonate and methylmalonyl-CoA is disucssed.  相似文献   

7.
The objective of this study was to identify a source of intramitochondrial malonyl-CoA that could be used for de novo fatty acid synthesis in mammalian mitochondria. Because mammalian mitochondria lack an acetyl-CoA carboxylase capable of generating malonyl-CoA inside mitochondria, the possibility that malonate could act as a precursor was investigated. Although malonyl-CoA synthetases have not been identified previously in animals, interrogation of animal protein sequence databases identified candidates that exhibited sequence similarity to known prokaryotic forms. The human candidate protein ACSF3, which has a predicted N-terminal mitochondrial targeting sequence, was cloned, expressed, and characterized as a 65-kDa acyl-CoA synthetase with extremely high specificity for malonate and methylmalonate. An arginine residue implicated in malonate binding by prokaryotic malonyl-CoA synthetases was found to be positionally conserved in animal ACSF3 enzymes and essential for activity. Subcellular fractionation experiments with HEK293T cells confirmed that human ACSF3 is located exclusively in mitochondria, and RNA interference experiments verified that this enzyme is responsible for most, if not all, of the malonyl-CoA synthetase activity in the mitochondria of these cells. In conclusion, unlike fungi, which have an intramitochondrial acetyl-CoA carboxylase, animals require an alternative source of mitochondrial malonyl-CoA; the mitochondrial ACSF3 enzyme is capable of filling this role by utilizing free malonic acid as substrate.  相似文献   

8.
Malonate decarboxylase from Pseudomonasputida is composed of five subunits, alpha, beta, gamma, delta, and epsilon. Two subunits, delta and epsilon, have been identified as an acyl-carrier protein (ACP) and malonyl-CoA:ACP transacylase, respectively. Functions of the other three subunits have not been identified, because recombinant subunits expressed in Escherichia coi formed inclusion bodies. To resolve this problem, we used a coexpression system with GroEL/ES from E. coli, and obtained active recombinant subunits. Enzymatic analysis of the purified recombinant subunits showed that the alpha subunit was an acetyl-S-ACP:malonate ACP transferase and that the betagamma-subunit complex was a malonyl-S-ACP decarboxylase.  相似文献   

9.
Mitochondria and high-speed supernatant were prepared from rat brain homogenates at 0–50 days of age. The development of malonyl-CoA synthetase, malonyl-CoA decarboxylase, coenzyme A-transferases and acetyl-CoA hydrolase was examined and compared to de novo fatty acid biosynthesis. The specific activity of malonyl-CoA synthetase rose steeply between 6 and 10 days, and this sudden increase coincided with peak specific activity of fatty acid synthetase. Similarly, malonate activation by coenzyme A-transfer from succinyl-CoA increased rapidly at the same time. Transfer of the coenzyme A moiety from acetoacetyl-CoA was only minimal during this period. Brain mitochondria had active malonyl-CoA decarboxylase which showed an almost linear increase of specific activity between 0 and 50 days. Acetyl-CoA resulting from malonyl-CoA decarboxylation underwent enzymatic hydrolysis to acetate and free coenzyme A. Only traces of acetoacetate were recovered. In mitochondria, acetyl-CoA hydrolase increased progressively whereas the cytosolic enzyme had high specific activity at birth which declined slowly during maturation.  相似文献   

10.
Malonate, Malonyl-Coenzyme A, and Acetyl-Coenzyme A in Developing Rat Brain   总被引:2,自引:2,他引:0  
Abstract: Free malonate, malonyl-coenzyme A (malonyl-CoA), and acetyl-CoA were assayed in rat brain at developmental ages from the 20th day of gestation to 60 days of postnatal life. The determination of malonate was based on its conversion to malonyl-CoA and decarboxylation to acetyl-CoA by enzyme extracts from Pseudo-monas fluorescens. The resulting acetyl-CoA reacted with [4-14C]oxaloacetate to form [5-14C]citrate, which was isolated by TLC. Malonyl-CoA in perchloric acid extracts from brain was converted to acetyl-CoA by rat liver mitochondrial malonyl-CoA decarboxylase (EC 4.1.1.9). Acetyl-CoA derived from this step was assayed by a modified CoA-cycling procedure. Brain acetyl-CoA was also assayed by CoA cycling. Prenatal brain contained no free malonate but malonyl-CoA was present. The acetyl-CoA level was relatively high just prior to birth and declined slightly with growth. Malonate concentrations after birth rose rapidly to reach 192 nmol/g wet weight at 60 days. Adult levels for malonyl-CoA and acetyl-CoA were 1.83 and 1.90 nmol/g wet weight, respectively. The origin and natural role of free malonate in brain are not known but deacylation of malonyl-CoA by reversal of the malonyl-CoA synthetase reaction is postulated. Rat liver and kidney also contain substantial concentrations of free malonate.  相似文献   

11.
Malonyl-CoA decarboxylase was purified (800-fold) from an erythromycin-producing strain of Streptomyces erythreus using DEAE-cellulose, Sephadex G-100, SP-Sephadex, and gel filtration with Sephadex G-75. The molecular weight of the native enzyme was 93,000 as determined by gel filtration and the subunit molecular weight was 45,000 as estimated by sodium dodecyl sulfate-polyacrylamide electrophoresis, suggesting an alpha 2 subunit composition for the native enzyme. Evidence is presented that during the purification procedure and storage a proteolytic cleavage occurred resulting in the formation of 30- and 15-kDa peptides. The enzyme showed a pH optimum of about 5.0 whereas the vertebrate enzyme showed an optimum at alkaline pH. The enzyme decarboxylated malonyl-CoA with a Km of 143 microM and V of 250 nmol min-1 mg-1. For the decarboxylation of methylmalonyl-CoA this enzyme showed the opposite stereospecificity to that shown by vertebrate enzyme; the (R) isomer was decarboxylated at 3% of the rate observed with malonyl-CoA while the (S) isomer was not a substrate. Neither avidin nor biotin affected the rate of malonyl-CoA decarboxylation, suggesting that biotin is not involved in catalysis. Acetyl-CoA and free CoA were found to be competitive inhibitors. Propionyl-CoA, butyryl-CoA, succinyl-CoA, and methylmalonyl-CoA showed little inhibition, and neither thiol-directed reagents nor chelating agents inhibited the enzyme. High ionic strength and sulfate ions caused reversible inhibition of the enzymatic activity. Under two different cultural conditions the time course of appearance of malonyl-CoA decarboxylase was determined by measuring the enzyme activity and the level of enzyme protein by an immunological method using rabbit antibodies prepared against the enzyme. In both cases the increase and decrease in the decarboxylase correlated with the rate of production of erythromycin, suggesting a possible role for this enzyme in the antibiotic production.  相似文献   

12.
Cell suspensions or crude extracts of Malonomonas rubra grown anaerobically on malonate catalyze the decarboxylation of this substrate at a rate of 1.7-2.5 mumol.min-1.mg protein-1 which is consistent with the malonate degradation rate during growth. After fractionation of the cell extract by ultracentrifugation, neither the soluble nor the particulate fraction alone catalyzed the decarboxylation of malonate, but on recombination of the two fractions 87% of the activity of the unfractionated extract was restored. The decarboxylation pathway did not involve the intermediate formation of malonyl-CoA, but decarboxylation proceeded directly with free malonate. The catalytic activity of the enzyme was completely abolished on incubation with hydroxylamine or NaSCN. Approximately 50-65% of the original decarboxylase activity was restored by incubation of the extract with ATP in the presence of acetate, and the extent of reactivation increased after incubation with dithioerythritol. Reactivation of the enzyme was also obtained by chemical acetylation with acetic anhydride. These results indicate modification of the decarboxylase by deacetylation leading to inactivation and by acetylation of the inactivated enzyme specimens leading to reactivation. It is suggested that the catalytic mechanism involves exchange of the enzyme-bound acetyl residues by malonyl residues and subsequent decarboxylation releasing CO2 and regenerating the acetyl-enzyme. The decarboxylase was inhibited by avidin but not by an avidin-biotin complex indicating that biotin is involved in catalysis. A single biotin-containing 120-kDa polypeptide was present in the extract and is a likely component of malonate decarboxylase.  相似文献   

13.
Malonyl-CoA decarboxylase (MCD) catalyzes the proton-consuming conversion of malonyl-CoA to acetyl-CoA and CO(2). Although defects in MCD activity are associated with malonyl-CoA decarboxylase deficiency, a lethal disorder characterized by cardiomyopathy and developmental delay, the metabolic role of this enzyme in mammals is unknown. A computer-based search for novel peroxisomal proteins led to the identification of a candidate gene for human MCD, which encodes a protein with a canonical type-1 peroxisomal targeting signal of serine-lysine-leucine(COOH). We observed that recombinant MCD protein has high intrinsic malonyl-CoA decarboxylase activity and that a malonyl-CoA decarboxylase-deficient patient has a severe mutation in the MCD gene (c.947-948delTT), confirming that this gene encodes human MCD. Subcellular fractionation experiments revealed that MCD resides in both the cytoplasm and peroxisomes. Cytoplasmic MCD is positioned to play a role in the regulation of cytoplasmic malonyl-CoA abundance and, thus, of mitochondrial fatty acid uptake and oxidation. This hypothesis is supported by the fact that malonyl-CoA decarboxylase-deficient patients display a number of phenotypes that are reminiscent of mitochondrial fatty acid oxidation disorders. Additional support for this hypothesis comes from our observation that MCD mRNA is most abundant in cardiac and skeletal muscles, tissues in which cytoplasmic malonyl-CoA is a potent inhibitor of mitochondrial fatty acid oxidation and which derive significant amounts of energy from fatty acid oxidation. As for the role of peroxisomal MCD, we propose that this enzyme may be involved in degrading intraperoxisomal malonyl-CoA, which is generated by the peroxisomal beta-oxidation of odd chain-length dicarboxylic fatty acids.  相似文献   

14.
Hoenke S  Wild MR  Dimroth P 《Biochemistry》2000,39(43):13223-13232
Malonate decarboxylase from Klebsiella pneumoniae consists of four subunits MdcA, D, E, and C and catalyzes the cleavage of malonate to acetate and CO(2). The smallest subunit MdcC is an acyl carrier protein to which acetyl and malonyl thioester residues are bound via a 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA prosthetic group and turn over during the catalytic mechanism. We report here on the biosynthesis of holo acyl carrier protein from the unmodified apoprotein. The prosthetic group biosynthesis starts with the MdcB-catalyzed condensation of dephospho-CoA with ATP to 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA. In this reaction, a new alpha (1' ' --> 2') glycosidic bond between the two ribosyl moieties is formed, and thereby, the adenine moiety of ATP is displaced. MdcB therefore is an ATP:dephospho-CoA 5'-triphosphoribosyl transferase. The second protein involved in holo ACP synthesis is MdcG. This enzyme forms a strong complex with the 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA prosthetic group precursor. This complex, called MdcG(i), is readily separated from free MdcG by native polyacrylamide gel electrophoresis. Upon incubation of MdcG(i) with apo acyl carrier protein, holo acyl carrier protein is synthesized by forming the phosphodiester bond between the 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA prosthetic group and serine 25 of the protein. MdcG corresponds to a 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA:apo ACP 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA transferase. In absence of the prosthetic group precursor, MdcG catalyzes at a low rate the adenylylation of apo acyl carrier protein using ATP as substrate. The adenylyl ACP thus formed is an unphysiological side product and is not involved in the biosynthesis of holo ACP. The 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA precursor of the prosthetic group has been purified and its identity confirmed by mass spectrometry and enzymatic analysis.  相似文献   

15.
Malonate decarboxylation by crude extracts of Malonomonas rubra was specifically activated by Na+ and less efficiently by Li+ ions. The extracts contained an enzyme catalyzing CoA transfer from malonyl-CoA to acetate, yielding acetyl-CoA and malonate. After about a 26-fold purification of the malonyl-CoA:acetate CoA transferase, an almost pure enzyme was obtained, indicating that about 4% of the cellular protein consisted of the CoA transferase. This abundance of the transferase is in accord with its proposed role as an enzyme component of the malonate decarboxylase system, the key enzyme of energy metabolism in this organism. The apparent molecular weight of the polypeptide was 67,000 as revealed from SDS-polyacrylamide gel electrophoresis. A similar molecular weight was estimated for the native transferase by gel chromatography, indicating that the enzyme exists as a monomer. Kinetic analyses of the CoA transferase yielded the following: pH-optimum at pH 5.5, an apparent Km for malonyl-CoA of 1.9mM, for acetate of 54mM, for acetyl-CoA of 6.9mM, and for malonate of 0.5mM. Malonate or citrate inhibited the enzyme with an apparent Ki of 0.4mM and 3.0mM, respectively. The isolated CoA transferase increased the activity of malonate decarboxylase of a crude enzyme system, in which part of the endogenous CoA transferase was inactivated by borohydride, about three-fold. These results indicate that the CoA transferase functions physiologically as a component of the malonate decarboxylase system, in which it catalyzes the transfer of acyl carrier protein from acetyl acyl carrier protein and malonate to yield malonyl acyl carrier protein and acetate. Malonate is thus activated on the enzyme by exchange for the catalytically important enzymebound acetyl thioester residues noted previously. This type of substrate activation resembles the catalytic mechanism of citrate lyase and citramalate lyase.Abbreviations DTNB 5,5 Dithiobis (2-nitrobenzoate) - MES 2-(N-Morpholino)ethanesulfonic acid - TAPS N-[Tris(hydroxymethyl)-methyl]-3-aminopropanesulfonic acid - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

16.
Malonate decarboxylase from Pseudomonas putida is composed of five subunits, α, β, γ, δ, and ε. Two subunits, δ and ε, have been identified as an acyl-carrier protein (ACP) and malonyl-CoA:ACP transacylase, respectively. Functions of the other three subunits have not been identified, because recombinant subunits expressed in Escherichia coli formed inclusion bodies. To resolve this problem, we used a coexpression system with GroEL/ES from E. coli, and obtained active recombinant subunits. Enzymatic analysis of the purified recombinant subunits showed that the α subunit was an acetyl-S-ACP:malonate ACP transferase and that the βγ-subunit complex was a malonyl-S-ACP decarboxylase.  相似文献   

17.
Phosphatidylserine decarboxylase of Escherichia coli is one of a small group of pyruvoyl-dependent enzymes (Satre, M., and Kennedy, E.P. (1978) J. Biol. Chem. 253, 479-483). The DNA sequence of the structural gene (psd) and partial protein sequence studies demonstrate that the enzyme contains two nonidentical subunits, alpha (Mr = 7,332) and beta (Mr = 28,579), which are derived from a single proenzyme. These two subunits are blocked at their respective amino termini. Reduction of the enzyme with NaCNBH3 in the presence of radiolabeled phosphatidylserine resulted in association of the label with the alpha subunit. Similar reduction in the presence of ammonium ions exposed a new amino terminus for the alpha subunit beginning with alanine. Therefore, the pyruvate prosthetic group is in amide linkage to the amino terminus of the alpha subunit. The amino terminus of the beta subunit was determined to be formylmethionine. The carboxyl terminus of the beta subunit was determined to be glycine as predicted by the DNA sequence. Comparison of the DNA sequence and protein sequence information revealed that the decarboxylase is made as a proenzyme (Mr = 35,893), and the predicted amino acid at the position of the pyruvate within the open reading frame of the proenzyme is serine. Therefore, as with other pyruvoyl-dependent decarboxylases, the prosthetic group is derived from serine through a post-translational cleavage of a proenzyme.  相似文献   

18.
19.
Citrobacter diversus ATCC 27156 was able to grow by decarboxylation of malonate to acetate under strictly anaerobic conditions, in the presence of yeast extract. The growth yield, corrected for growth on yeast extract, was 2.03 g cell dry mass per mol malonate. The addition of malonate to ATP-depleted cell suspensions (less than 0.2 nmol ATP/mg cell protein) resulted in a rapid increase in cellular ATP levels to between 4.5 and 6.0 nmol/mg cell protein. Intact cells decarboxylated malonate at rates of up to 1.5 mumol/min.mg protein. Enzyme assays on malonate-grown cells indicated activation of malonate by an ATP-dependent ligase reaction and by CoA transfer from acetyl-CoA, followed by decarboxylation of malonyl-CoA to acetyl-CoA with subsequent recovery of the invested ATP by substrate level phosphorylation through the activity of acetate kinase. Net ATP synthesis is postulated to be mediated by gradient formation coupled to the decarboxylation of malonyl-CoA. The protonophore CCCP and H(+)-ATPase inhibitor DCCD significantly reduced cellular ATP levels, suggesting a role for proton gradients in the energy metabolism of this strain when growing an malonate. Inhibitors of sodium metabolism or ommission of sodium had no effect on ATP levels or malonate decarboxylation.  相似文献   

20.
Two methods were used for the quantitation of S-adenosylmethionine decarboxylase protein. The first involved titrating the active site of the enzyme by reduction of the Schiff base between 3H-decarboxylated S-adenosylmethionine and the pyruvate prosthetic group with sodium cyanoborohydride. The second method was radioimmunoassay with rabbit antiserum which was used to determine the total immunoreactive enzyme protein. It was found that the increased S-adenosylmethionine decarboxylase activity produced in rat prostate by treatment with alpha-difluoromethylornithine and in both prostate and liver by methylglyoxal bis(guanylhydrazone) were due entirely to increases in the amount of enzyme protein. The ratio of enzyme activity to protein (measured by either method) remained constant in rats treated with the drugs. Treatment with 2% alpha-difluoromethylornithine in the drinking water for 3 days increased prostatic S-adenosylmethionine decarboxylase protein by 5-fold. A substantial part, but not all, of this increase could be accounted for by a slowing of the rate of degradation of the enzyme. The half-life for loss of activity and titratable protein after inhibition of protein synthesis by cycloheximide was increased from 35 to 108 min by treatment with alpha-difluoromethylornithine. However, the half-life for loss of immunoreactive protein which was considerably longer was only increased from 139 to 213 min. The molecular weight of the S-adenosylmethionine decarboxylase subunit determined by immunoblotting was 32,000, and no smaller immunoreactive fragments were detected. These results indicate that spermidine depletion produced by alpha-difluoromethylornithine affects the degradation of S-adenosylmethionine decarboxylase at an early step involving the loss of the active site without substantial breakdown of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号