首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Column experiments were conducted to investigate the removal of heavy metals from two mine tailings (El Arteal and Jaravías) using sewage sludge as a reactive material. When sewage sludge is used as a reactive material on the El Arteal tailings (sample SA), Fe, Mn, Zn and Pb are removed and Cu and Ni are mobilized. The experiments carried out on the Jaravías tailings give similar results, showing the retention of Cu, Pb, Fe and Mn and the mobilization of Ni and Zn. An analysis performed using the PHREEQC numerical code suggests that the retention of Fe in the sewage sludge may be caused by the precipitation of Fe(OH)2.7Cl0.3 and possibly pyrite, and that the retention of Pb at high pH may be caused by the formation of stable phase minerals such as Pb(OH)2 and PbS in these conditions. Ni mobilization in the column experiments with the two tailings samples may be caused by the presence of significant amounts of leachable Ni in the sewage sludge. The complexation of metals with dissolved organic matter, calculated with the Minteq model, may be moderate.  相似文献   

2.
污水污泥土地投放重金属的环境效应研究进展   总被引:5,自引:0,他引:5  
本文综述了污水污泥土地投放中重金属的环境效应研究方面的进展,重点就污水污泥土地投放中对植物生长的影响、对土壤微生物、土壤酶及昆虫生长的影响、重金属向地下水中的迁移情况、重金属在土壤中的生物活性变化及其影响因素、污水污泥土地投放后重金属的长期变化及土壤修复剂对重金属毒性的控制等方面的研究进展进行综述。  相似文献   

3.
We present a mechanistic model which describes root uptake and leaching of heavy metals in the plant root zone, accounting for solution- and surface-complexation, (kinetic) mineral dissolution, heavy metal diffusion towards the root, root uptake, root exudation, ligand degradation and convective-dispersive transport of the soluble species. The model was used to simulate the influence of EDTA addition on Cu transport and plant uptake and the effect of oxalate exudation by roots on Cu transport and bioavailability using parameter values from the literature. In the simulations we assumed that free Cu2+ is the bioavailable form. Under slightly acidic conditions (pH 6) the model predicted that EDTA stabilizes Cu while at a slightly alkaline pH (pH 7.5), EDTA mobilizes Cu. The addition of EDTA approximately halved the cumulative Cu uptake after 360 days at pH 4.5, and reduced the uptake by a factor of 100 and 1000 at pH 6 and 7.5, respectively. Although the total dissolved concentration was increased, plant uptake was reduced by the formation of bio-inavailable complexes. The exudation of oxalate resulted in a decrease of the Cu concentration breaking through below the root zone, due to sorption of Cu-oxalate. In the presence of dissolved organic carbon (DOC), the exudation of oxalate increased Cu leaching considerably at pH 6 and 7.5. In the absence of DOC, the exudation of oxalate reduced Cu uptake due to the formation and adsorption of Cu-oxalate on goethite surface sites. Exudation of oxalate in the presence of DOC resulted in a further decrease of Cu uptake. Oxalate gradually takes over from DOC in binding Cu due to simultaneous production of oxalate and leaching of DOC. The simulations show that addition or exudation of ligands does not necessarily increase the solubility, transport and bioavailability of metals. Depending on the conditions (mainly the pH), also reduced transport and uptake can be observed, either by formation of ternary surface complexes or reduction of free metal concentration. The model can be easily extended to include further processes.  相似文献   

4.
Amendments with glucose significantly reduced the amount of nitrate leached from a sandy soil amended with nitrate. The decrease was most likely caused by immobilisation of the nitrate into microbial cells. Populations of ciliates and flagellates and amoebae, but not nematodes, increased 7–14 days following glucose amendments. Mineralisation of the immobilised nitrate occurred during this period. Some of the mineralised nitrogen appeared to be available to ryegrass plants only if the roots exploited most of the soil during the period of maximum predator activity. After 28 days, 44% of the organic N remaining in the soil after leaching was taken up by the plants. The difference developed over the last 2 weeks when amoebal populations were large.  相似文献   

5.
This contribution presents the possibility of application of natural sorbent (Transcarpathian clinoptylolite (KL)) for immobilization of selected heavy metals in the sewage sludge. The influence of ion-exchange parameters (e.g. time, amount of zeolite) were discussed. Process of immobilization was performed using a static method (Batch). It was found that best possible conditions for immobilization of heavy metal ions were as follows: zeolite fraction 0.7–1.0 mm, 5 h of shaking, zeolite/sewage sludge ratio 2/98.  相似文献   

6.
EDTA-enhanced phytoremediation of copper contaminated soil was evaluated. Up to 740 g g–1 of Na2H2 EDTA in solution was added to repacked soil columns, and intact cores of a sandy loam of volcanic origin, that was growing Agrostis tenuis. The soil contained up to 400 g g–1 of copper due to a history of fungicide spraying. EDTA application increased the herbage copper concentration of the grass growing in repacked soil from 30 to 300 g g–1, but the same application to an intact core only brought about an increase from 10 to 60 g g–1. More copper accumulated in the herbage when the EDTA was applied in numerous small doses than in just one or two larger amounts. Calculation of the concentration of copper in the water taken up by the grass revealed this to be two orders of magnitude lower than that in the soil solution. As a result of the EDTA applications, about 100 times more copper was leached than was taken up by the herbage. This means that a strategy for managing leaching losses needs to be part of any plan for EDTA-enhanced phytoremediation.  相似文献   

7.
Using pot experiments, the effect of the application of the biodegradable chelating agent S,S-ethylenediaminedisuccinic acid (EDDS) in hot solutions at 90 degrees C on the uptake of Cu, Pb, Zn, and Cd by corn (Zea mays L. cv. Nongda No. 108) and beans (P vulgaris L. white bean), and the potential leaching of metals from soil, were studied. When EDDS was applied as a hot solution at the rate of 1 mmol kg(-1), the concentrations and total phytoextraction of metals in plant shoots exceeded or approximated those in the shoots of plants treated with normal EDDS at the rate of 5 mmol kg(-1). On the other hand, the leaching of Cu, Pb, Zn, and Cd after the application of the hot EDDS solution at the rate of 1 mmol kg(-1) was reduced by 46%, 21%, 57%, and 35% in comparison with that from the application of normal EDDS at 5 mmol kg(-1), respectively. For treatment with 1 mmol kg(-1) of EDDS, the leached metals decreased to the levels of the control group (that without EDDS amendment) 14 d after the application of EDDS. The soil amendment with biodegradable EDDS in hot solutions may provide a good alternative to chelate-enhanced phytoextraction in enhancing metal uptake by plants and limiting metals from leaching out of the soil.  相似文献   

8.
Yuan X  Huang H  Zeng G  Li H  Wang J  Zhou C  Zhu H  Pei X  Liu Z  Liu Z 《Bioresource technology》2011,102(5):4104-4110
The risk (including bioavailability and eco-toxicity) of heavy metals (Pb, Zn, Cu, Cd, Cr and Ni) in liquefaction residues (LR) of sewage sludge (SS) was estimated, according to both the speciation of heavy metals and the local environmental characteristics. The amount of organic matters in LR was lower than that in SS, resulting in a smaller calorific value, while the total content of heavy metals in LR nearly doubled. High residual rates of heavy metals (about 80%) indicated that the heavy metals in SS were concentrated into LR after liquefaction. The comparisons of sequential extraction results between SS and LR showed that after liquefaction, the mobile and easily available heavy metal fractions (acid soluble/exchangeable and reducible fractions) were mainly transformed into the relatively stable heavy metal fractions (oxidizable and residual fractions). The bioavailability and eco-toxicity of heavy metals in LR were relieved, though the total concentrations of heavy metals increased.  相似文献   

9.
The effects of the heavy metals Cu, Cd, Ni, Pb and Zn on [(14)C]methylamine and [(14)C]aminoisobutyric acid uptake were studied in the free-living fungus Paxillus involutus and in mycorrhizal and non-mycorrhizal birch roots. The uptake of both N sources by P. involutus was inhibited by the five metals tested. However, Cu(2+) and Pb(2+) had a greater inhibitory effect. Non-competitive inhibitions were determined between heavy metals and [(14)C]methylamine uptake. [(14)C]Methylamine uptake was reduced by one third by 2 μM Cd(2+) and Cu(2+) in non-mycorrhizal roots, whereas that of mycorrhizal roots was not affected. However, it was reduced by 30 to 80% by 200 μM Cd(2+) and Cu(2+) irrespective of the mycorrhizal status. [(14)C]Aminoisobutyric acid uptake in mycorrhizal roots was not significantly affected by Cd(2+) and Cu(2+), whereas that of non-mycorrhizal roots was decreased by 77% at 200 μM Cu(2+). [(14)C]Aminoisobutyric acid uptake was 4.5 to 6 fold higher in mycorrhizal roots, compared with non-mycorrhizal roots, even under metal exposure. The high efficiency of N acquisition by mycorrhizal birch seedlings under metal exposure might be regarded as a mechanism of stress avoidance.  相似文献   

10.
Effects of aluminium on fluoride uptake by plants   总被引:7,自引:1,他引:7  
  相似文献   

11.
Summary Long-term pot experiments were conducted to determine the leaching potential of topically applied lead, cadmium, and nickel through the soil. Four rates of each metal (0, 10, 100 and 200 mg/kg soil), in the nitrate form were used. Metals were extracted with acidic ammonium acetate after 30 weeks of intermittent leaching. The concentration of extractable element varied with the depth in the soil and the type of extractable metal. Lead was confined to the upper few centimeters of soil whereas cadmium moved down to a considerable depth. Nickel was more uniformly distributed over the total soil depth than the other two metals. The concentration gradients observed are discussed with respect to their effect on germination and yield of plants.  相似文献   

12.
Cations, including calcium, magnesium, potassium, sodium, copper, iron, nickel and zinc, inhibited (up to 40%) extracellular binding and intracellular uptake of cadmium by Lemna polyrhiza in solution culture. Test plants showed a high capacity of extracellular cadmium binding which was competitively inhibited by copper, nickel and zinc; however, calcium, magnesium and potassium caused non-competitive inhibition. Iron and sodium increased K m and decreased V max, thereby causing mixed inhibition of extracellular binding. Intracellular cadmium uptake displayed Michaelis-Menten kinetics. It was competitively inhibited by calcium, magnesium, iron, nickel and zinc. Monovalent cations (sodium and potassium) caused non-competitive and copper caused mixed inhibition of intracellular cadmium uptake. Thus, high levels of cations and metals in the external environment should be expected to lower the cadmium accumulation efficiency of L. polyrhiza.  相似文献   

13.
Di  H.J.  Cameron  K.C.  Moore  S.  Smith  N.P. 《Plant and Soil》1999,210(2):189-198
The objective of this study was to compare the N leaching loss and pasture N uptake from autumn-applied dairy shed effluent and ammonium fertilizer (NH4Cl) labeled with 15N, using intact soil lysimeters (80 cm diameter, 120 cm depth). The soil used was a sandy loam, and the pasture was a mixture of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens). The DSE and NH4Cl were applied twice annually in autumn (May) and late spring (November), each at 200 kg N ha-1. The N applied in May 1996 was labeled with 15N. The lysimeters were either spray or flood irrigated during the summer. The autumn-applied DSE resulted in lower N leaching losses compared with NH4Cl. However, the N applied in the autumn had a higher potential for leaching than N applied in late spring. Between 4.5–8.1% of the 15N-labeled mineral N in the DSE and 15.1–18.8% of the 15N-labeled NH4Cl applied in the autumn were leached within a year of application. Of the annual N leaching losses in the DSE treatments (16.0–26.9 kg N ha-1), a fifth (20.3–22.9%) was from the mineral N fraction of the DSE applied in the autumn, with the remaining larger proportion from the organic fraction of the DSE, soil N and N applied in spring. In the NH4Cl treatments, more than half (53.8–64.8%) of the annual N leaching loss (55.9–57.6 kg N ha-1) was derived from the autumn-applied NH4Cl. DSE was as effective as NH4Cl in stimulating pasture production. Since only 4.4–4.5% of the annual herbage N uptake in the DSE treatment and 12.3–13.3% in the NH4Cl treatment were derived from the autumn-applied mineral N, large proportions of the annual herbage N uptake must have been derived from the N applied in spring, the organic N fraction in the DSE, soil N and N fixed by clover. The recoveries of 15N in the herbage were similar between the DSE and the NH4Cl treatments, but those in the leachate were over 50% less from the DSE than from the NH4Cl treatment. The lower leaching loss of 15N in the DSE treatment was attributed to the stimulated microbial activities and increased immobilization following the application of DSE. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Drobner  Ute  Tyler  Germund 《Plant and Soil》1998,201(2):285-293
Earlier studies have demonstrated close inverse relationships between Rb+ concentrations in plants and pH or base (including K+) saturation of soils. This study aims at elucidating conditions in soils influencing plant uptake of Rb+. Growth experiments with Carex pilulifera L. were performed, modifying the acidity and K+ supply of acid soils and solutions. We were unable to assess any reduction in Rb+ uptake by adding precipitated CaCO3 to acid soil unless pH was raised to near neutrality. Though not fully compensating the loss of soil solution K+and exchangeable K+ from uptake by the growing plants, soil treated with 0.5 mM K+ (as KCl) reduced the Rb+ concentration in the shoots by 40% without measurably changing soil pH. Experiments varying the pH and K+ concentration of a nutrient solution (20% Hoagland), spiked with 6 uM Rb+, clearly demonstrated that plant uptake of Rb+ and K+ was unaffected by acidity in the pH range 3.6–5.0 tested, whereas Rb+ uptake was reduced by ca. 50%, when K+ concentration was increased from 1.2 to 3.6 mM. The sensitivity of this reaction indicates that shortage or low availability of K+ controls Rb+ uptake from acid soils, being probably more important than soil acidity per se. Secondary effects of high soil acidity, such as leaching losses of K+, might also be of importance in accounting for the high uptake of Rb+ from such soils. It is suggested that leaf analysis of Rb+ may be used as a method to assess early stages of K+ deficiency in plants on acid soils.  相似文献   

15.
This study compared the PHAs production behavior of sludges from the anaerobic and oxic phases of an enhanced biological phosphorus removal (EBPR) system. This was accomplished by using the kinetics and stoichiometric coefficients obtained from aerobic batch tests to evaluate the performance of these two sludges. Experimental results indicated that the metabolic behavior of the sludges for PHAs production depend significantly on the operating sludge retention time (SRT) of the EBPR system. The oxic sludge with 5 days of SRT exhibited better PHAs production performance than anaerobic sludge. Conversely, the anaerobic sludge with 15 days of SRT had superior PHAs production capability compared to oxic sludge. These comparisons suggest that whether anaerobic or oxic sludge should be employed for PHAs production depends mainly on the operating SRT of the EBPR system.  相似文献   

16.
The aim of the study was to evaluate the efficacy of the multiflora rose var. “Jatar” (Rosa multiflora Thunb. ex Murray) and the Virginia fanpetals (Sida hermaphrodita Rusby) to phytoextract heavy metals from municipal sewage sludge. The 6-year field experiment involved four levels of fertilization with sewage sludge at doses of 0, 10, 20, 40, and 60 Mg DM (Dry Mass) sludge ha?1. The increasing doses of sewage sludge were found to significantly increase the yield of multiflora rose and Virginia fanpetals biomass. They also significantly increased the content of heavy metals in these plants. The highest uptake of heavy metals by the multiflora rose and Virginia fanpetals crops was recorded at the fertilization dose of 60 Mg DM ? ha?1. Our investigations show that the Virginia fanpetals was more efficient in the phytoextraction of Cr, Ni, Cu, Zn, and Cd from the sewage sludge than the multiflora rose, due to the greater yields and higher heavy metal uptake by the former plant. In turn, the multiflora rose phytoextracted greater amounts of Pb from the sewage sludge. The analyses indicate that the Virginia fanpetals can be used for phytoremediation (phytoextraction) of heavy metals contained in sewage sludge.  相似文献   

17.
Artificial urine, equivalent to 30 g N m-2, was applied to replicated plots in a perennial ryegrass (Lolium perenne L.) sward, each plot receiving a single application on one of six dates between July and November 1990. Recoveries of urine-N in herbage up to the end of the growing season in November decreased linearly for consecutive application dates, ranging from 40% of the urine-N applied in July to a negligible proportion of the final application. In contrast, contents of urine-derived N remaining in the soil (to 1-m depth) in November increased from 3% of the N applied in July to 66% for the final application. Almost all of this was present as nitrate + nitrite-N. Only soils that had received urine in September or later contained significantly greater quatities of mineral-N than the control plots. The mineral-N content of soils collected the following April indicated that most of this urine-derived N had been lost from the soil over the winter. Estimates of the quantities of N leached ranged from 0.7 g N m-2 from untreated plots to 18.6 g N m-2 from plots treated with urine in November. Although grass yields and N uptakes in March and April provided evidence of a residual effect from the previous year's urine applications, contents of mineral-N and of potentially mineralisable N in urine-treated soils in April were not significantly different from those in untreated soils.  相似文献   

18.
The goal of this research is to compare the metal binding characteristics of an anoxic selector activated sludge system and a conventional activated sludge system. Metal biosorption by biomass harvested from experimental systems was determined by a series of batch experiments. Heavy metals studied in this research were zinc, cadmium, and nickel. The sorption isotherm showed that the selector sludge had significantly higher sorption capacity than did the control sludge. Metal biosorption behavior closely followed a Freundlich isotherm model for equilibrium concentrations. ECP contents of biomass estimated by alkali extraction technique showed that ECP levels in the selector sludge significantly higher than that in the sludge harvested from the conventional system, indicating that the higher metal sorption capacity of selector sludge may be due to the selection of the ECP-producing bacteria (i.e., Zoogloca sp.) by the selector system.  相似文献   

19.
Sequential sampling of precipitation under mature spruce trees and time-series analysis of the data were performed in order to assess, in natural conditions, the relative importance of different factors that could influence the leaching and uptake of inorganic ions in the canopy. Eleven rain events were analyzed in order to estimate how external factors, rain intensity, H+, and ionic concentration of the incident rain influence the ionic throughfall concentrations and the net throughfall fluxes. The results led to the conclusion that leaching or uptake mostly occur by diffusion. The influence of the open rain acidity was not conclusive; however, it was shown that the tested external factors only controlled a few percent of the variation of the data. By contrast, the autocorrelation of the data always explained a large portion of the variance. It could result from the gradual changes in the course time of internal factors related to the exchange system including waxes, cuticles, apoplast and xylem sap. These constituents were known to control the exchange at the canopy surface and to be sensitive to the plant physiology and environmental conditions.  相似文献   

20.
环境介质中病毒生态的研究   总被引:1,自引:0,他引:1  
病毒是许多人及重要经济动、植物病患的病原。一些病毒在环境中可因条件不同而生存数小时到数月, 并在水、气、士中迁移达若干公里。现有的污水处理方法对病毒, 特别是肠道病毒效果欠佳, 土地处置原污泥以及污水灌溉的水果和蔬菜能传播人肠道病毒。即使小至一个组织培养的感染剂量(病毒)也可引起人的疾病, 因此对环境介质中, 特别是饮水和食物中的少量病毒的去除也是重要的。现有的指示物不能确切地指示粪便污染, 更不能充分反映人肠道病毒的污染。大肠菌噬菌体在地表水、地下水和污水中比人肠道病毒更呈持久性, 还有许多适于选择分析技术特有性能, 因此很可能在一定条件下用它作人肠道病毒的指示物。作者对我国今后需要开展的研究提出了建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号