首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The centriole is a minute cylindrical organelle present in a wide range of eukaryotic species. Most centrioles have a signature ninefold radial symmetry of microtubules that is imparted to the axonemes of the cilia and flagella they template, with nine centriolar microtubule doublets growing into nine axonemal microtubule doublets. There are exceptions to the ninefold symmetrical arrangement of axonemal microtubules in some species, with lower or higher fold symmetries. In the few cases where this has been examined, such alterations in axonemal symmetries are grounded in similar alterations in centriolar symmetries. Here, we examine the question of microtubule number continuity between centriole and axoneme in flagellated gametes of the gregarine Lecudina tuzetae, which have been reported to exhibit a sixfold radial symmetry of axonemal microtubules. We used time-lapse differential interference microscopy to identify the stage at which flagellated gametes are present. Thereafter, using electron microscopy and ultrastructure-expansion microscopy coupled to stimulated emission depletion superresolution imaging, we uncover that a six- or fivefold radial symmetry in the axoneme is accompanied by an eightfold radial symmetry in the centriole. We conclude that the transition between centriolar and axonemal microtubules can be characterized by unexpected plasticity.  相似文献   

2.
Centrosome size is controlled by centriolar SAS-4   总被引:1,自引:0,他引:1  
The centrosome consists of a pair of centrioles and a surrounding matrix of pericentriolar material that anchors microtubule nucleation sites and consequently determines the number and organization of microtubules in interphase and mitotic cells. Recent studies utilizing a functional genomics approach in the nematode worm Caenorhabditis elegans and sophisticated light and electron microscopy techniques provide new insight into how centrioles act as centrosomal organizers and use a centriolar structural element to dictate centrosome size by defining their capacity to recruit pericentriolar material.  相似文献   

3.
The structure of the cellular center in polyploid hepatocytes of intact and regenerating liver of adult mice has been studied. It was shown that the structure of the centriolar complex depends on stages of the cellular cycle. No pericentriolar structures (such as satellites, appendages and others) and cytoplasmic microtubules were found in the centriolar complex within G0-period. The satellites and appendages are formed in the half of the centrioles within G1-period. The microtubules can branch off some satellites; the daughter centrioles begin to form within S-period; there are diplosomes in the cells within G2-period, some mother centrioles are surrounded with the fine fibrillar halo. It is concluded that the structure of the centriolar complex within G0-period is distinguished by that within G1-period. The structure of the centriolar complex in polyploid hepatocytes has the same feature of reorganization in certain interphase periods of the cell cycle as in diploid cells of some cultured cells and the thyroid epithelium.  相似文献   

4.
Klp10A is a kinesin-13 of Drosophila melanogaster that depolymerizes cytoplasmic microtubules. In interphase, it promotes microtubule catastrophe; in mitosis, it contributes to anaphase chromosome movement by enabling tubulin flux. Here we show that Klp10A also acts as a microtubule depolymerase on centriolar microtubules to regulate centriole length. Thus, in both cultured cell lines and the testes, absence of Klp10A leads to longer centrioles that show incomplete 9-fold symmetry at their ends. These structures and associated pericentriolar material undergo fragmentation. We also show that in contrast to mammalian cells where depletion of CP110 leads to centriole elongation, in Drosophila cells it results in centriole length diminution that is overcome by codepletion of Klp10A to give longer centrioles than usual. We discuss how loss of centriole capping by CP110 might have different consequences for centriole length in mammalian and insect cells and also relate these findings to the functional interactions between mammalian CP110 and another kinesin-13, Kif24, that in mammalian cells regulates cilium formation.  相似文献   

5.
The erythrocytes of blood clams (arcidae) are flattened, elliptical, and nucleated. They contain elliptical marginal bands (MBs) of microtubules, each physically associated with a pair of centrioles marginal bands (MBs) of microtubles, each physically associated with a pair of centrioles (Cohen, W., and I. Nemhauser, 1980, J. Cell Biol., 86:286-291). The MBs were found to be cold labile in living cells, disappearing within 1-2 h at 0 degrees C. After the cells had been rewarmed for 1-2 h, continuous MBs with associated centrioles were once again present. Time-course studies utilizing phase contrast, antitubulin immunofluorescence, and electron microscopy of cytoskeletons prepared during rewarming revealed structural evidence of centriole participation in MB reassembly. At the earliest stage of reassembly, a continuous MB was not present. Instead, relatively short and straight microtubules focused on a pointed centriolar “pole,” and none were present elsewhere in the cytoskeleton. Thin continuous MBs then formed, still pointed in the centriolar region. Subsequently, the MBs regained ellipticity, with their thickness gradually increasing but not reaching that of controls even after several hours of rewarming. At these later time points, microtubules still radiated from the centrioles and joined the MBs some distance away. In the presence of 0.1 mM colchicines, MB reassembly was arrested at the pointed stage. Electron microscopic observations indicate that pericentriolar material is involved in microtubule nucleation in this system, rather than the centriolar triplets directly. The results suggest a model in which the centrioles and associated material nucleate assembly and growth of microtubules in diverging directions around the cell periphery. Microtubules of opposite polarity would then pass each other at the end of the cell distal to the centrioles, with continued elongation eventually closing the MB ellipse behind the centriole pair.  相似文献   

6.
The effects of a single dose of vinblastine sulphate on the ultrastructure of the centrioles and the microtubular system has been studied in mitotic spermatogonia and in spermatocytes at meiotic division. With this dose the alkaloid induces a decrease in the number of cytoplasmic microtubules, inhibits centriolar migration and produces characteristic changes in the morphology of the centrioles and kinetochores. Centriolar changes consist of the appearance of dense bodies attached to the outer surface of the centriolar wall, the outgrowth of the microtubules found in the centriolar wall and a less regular array of these microtubules as compared with normal centrioles. A delay in the appearance of these effects was observed in the meiotic spermatocytes as compared with spermatogonia in the same seminiferous tubules. These effects on the morphology of the centriole are discussed in relation with current hypothesis on the relationships between centrioles and microtubules.  相似文献   

7.
Background: The microtubule network, upon which transport occurs in higher cells, is formed by the polymerization of α and β tubulin. The third major tubulin isoform, γ tubulin, is believed to serve a role in organizing this network by nucleating microtubule growth on microtubule-organizing centers, such as the centrosome. Research in vitro has shown that γ tubulin must be restored to stripped centrioles to regenerate the centrosomal functions of duplication and microtubule nucleation.Results We have re-examined the localization of γ tubulin in isolated and in situ mammalian centrosomes using a novel immunocytochemical technique that preserves antigenicity and morphology while allowing increased accessibility. As expected, α tubulin was localized in cytoplasmic and centriolar barrel microtubules and in the associated pericentriolar material. Foci of γ tubulin were observed at the periphery of the organized pericentriolar material, as reported previously, often near the termini of microtubules. A further and major location of γ tubulin was a structure within the proximal end of the centriolar barrel. The distributions were complementary, in that α tubulin was excluded from the core of the centriole, and γ tubulin was excluded from the microtubule barrel.Conclusion We have shown that γ tubulin is localized both in the pericentriolar material and in the core of the mammalian centriole. This result suggests that γ tubulin has a role in the centriolar duplication process, perhaps as a template for growth of the centriolar microtubules, in addition to its established role in the nucleation of astral microtubules.  相似文献   

8.
9.
A microtubule-dependent polar ejection force that pushes chromosomes away from spindle poles during prometaphase is observed in animal cells but not in the cells of higher plants. Elongating microtubules and kinesin-like motor molecules have been proposed as possible causes, but neither accounts for all the data. In the hypothesis proposed here a polar ejection force is generated by centrioles, which are found in animals but not in higher plants. Centrioles consist of nine microtubule triplets arranged like the blades of a tiny turbine. Instead of viewing centrioles through the spectacles of molecular reductionism and neo-Darwinism, this hypothesis assumes that they are holistically designed to be turbines. Orthogonally oriented centriolar turbines could generate oscillations in spindle microtubules that resemble the motion produced by a laboratory vortexer. The result would be a microtubule-mediated ejection force tending to move chromosomes away from the spindle axis and the poles. A rise in intracellular calcium at the onset of anaphase could regulate the polar ejection force by shutting down the centriolar turbines, but defective regulation could result in an excessive force that contributes to the chromosomal instability characteristic of most cancer cells.  相似文献   

10.
Multiple asters can be artificially induced in sea urchin fertilized eggs by the microinjection of the centriolar fraction of sperm homogenate. Investigation was continued by the electron microscopy to determine whether the multi-aster formation was due to the centrioles or the contaminants in the injected sperm fraction. Thirty three asters in 3 operated eggs were thoroughly examined, and we confirmed that the presence of centrioles in the central region of 26 asters. We considered that the rest of them might contained the centrioles in the sections lost during the preparation procedures. Fragmented axoneme, the plug of electron dense material, and the centriolar fossa, which were usually accompanied with the isolated centrioles, disappeared from the centrioles in these multiple asters. However, electron dense, amorphous materials were formed associating with the triplet blades and distributed around the centrioles. Many astral microtubules were terminated in these pericentriolar materials. Results obtained suggest that, although the pericentriolar material is acting as the microtubule organizing center, all multiple asters, except those derived from fertilization (2 asters per egg), are most likely induced by the injected centrioles and not by the contaminants.  相似文献   

11.
Serial ultrathin sections were used to study the formation of the primary cilium and the centriolar apparatus, basal body, and centriole in the neuroepithelial primordial cell of the embryonic nervous system in the mouse. At the end of mitosis, the centrioles seem to migrate toward the ventricular process of the neuroepithelial cell, near the ventricular surface. One of these centrioles, the nearest to the ventricular surface, begins to mature to form a basal body, since its tip is capped by a vesicle probably originating in the cytoplasm. This vesicle fuses with the plasmalemma and the cilium growth by the centrifugal extension of the 9 sets of microtubule doublets. These 9 sets invade the thick base of the cilium which is initially capped by a ball-shaped tip with the appearance of a mushroom cilium. The secondary extension of 7, then 5, and finally 2 sets of microtubule doublets contribute to form the tip of the mature cilium, which is associated with a mature centriolar apparatus formed by a basal body and a centriole. Centriologenesis occurs before mitosis and is concomitant with the progressive resorption of the cilium. The daughter centriole, or procentriole, begins to take form near the tips of fibrils that extend perpendicularly and at a short distance from the wall of the parent centriole. Osmiophilic material accumulates around these fibrils, and gives rise to the microtubules of the mature daughter centriole. These centrioles formed by a centriolar process are further engaged in mitosis, after the total resorption of the cilium. This pattern of development suggests that in the primordial cells of the embryonic nervous system, centriologenesis and ciliogenesis are 2 independent phenomena.  相似文献   

12.
Three types of microtubule-organizing centers are present in the interphase L-cells: centriolar matrix, pericentriolar satellites, and electron-dense bodies that are not attached to the centrioles. Different types of microtubule-organizing centers may be present simultaneously in the same centrosome. In most of the cells some microtubules have their proximal ends free, rather than attached to the microtubule-organizing center. A network of intermediate filaments is condensed around the centrosome. The intermediate filaments run from the centrosome parallel to the microtubules. Although the filaments are often in close proximity to the centrioles and microtubules, direct contacts between them are rare. The intermediate filaments have convergence foci of their own in the centrosome.  相似文献   

13.
In brown algal fertilization, a pair of centrioles is derived from the male gamete, irrespective of the sexual reproduction pattern, i.e., isogamy, anisogamy, or oogamy. In this study, the manner in which the maternal centriole structure is destroyed in early zygotes of the isogamous brown alga Scytosiphon lomentaria was examined by electron microscopy. At fertilization, the zygote had two pairs of centrioles (flagellar basal bodies) derived from motile male and female gametes, and there was no morphological difference between the two pairs. The flagellar basal plate and the axonemal microtubules were still connected with the distal end of centrioles. Ultrastructural observations showed that the integrity of maternal-derived centrioles began to degenerate even in the 1-h-old zygote. At that time, the cylinder of triplet microtubules of the maternal centrioles became shorter from the distal end, and a section passing through the centrioles indicated that a part of the nine triplets of microtubules changed into doublet or singlet microtubules by degeneration of B and/or C tubules. In 2-h-old zygote, there was no trace of maternal centrioles ultrastructurally, and only the paternal centrioles remained. Further, reduction of centrin accompanying destruction of the maternal centrioles was examined in immunofluorescence microscopy. Centrin localized at the paternal and the maternal centrioles had the same fluorescence intensity in the early zygotes. At 4-6 h after fertilization, two spots indicating centrin localization showed different fluorescence intensity. Later, the weaker spot disappeared completely. These results showed that there is a difference in time between the destruction of the centriolar cylinders and the reduction of centrin molecules around them.  相似文献   

14.
The different steps of ciliogenesis occurring in quail oviduct were compared to the ciliogenesis pattern described in other metazoan species. Centrioles are generated according to pathways that are found within the same cell: the centriolar and the acentriolar pathways. In the acentriolar pathway, centrioles are generated in the Golgi area, without contact with the preexisting centrioles of the centrosomes, and they migrate toward the apical membrane. The control of this polarized migration was studied by means of several drugs (colchicine, nocodazol, taxol, cytochalasin D, benzodiazepines) and immunocytochemistry. It was suggested that an actin-myosin system was involved in the migration of centrioles, whereas labile microtubules were not necessary. Basal bodies must dock with plasma membrane or cytoplasmic vesicles for the initiation of axonemal microtubule polymerization. This signal is necessary even in the presence of taxol.  相似文献   

15.
The action of carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and ouabain results in significant increase of the quantity of microtubules with attached and free proximal end around the centrosome. The majority of free microtubules are oriented with their proximal ends towards the heads of pericentriolar satellites or towards the walls of centriolar cylinders. The increasing of total number of microtubules is the result of the increasing of microtubules attached to or oriented towards the pericentriolar satellites. Comparing the action of FCCP and ouabain from one side and taxol from the other side it is possible to conclude that FCCP and ouabain promote the initiation of microtubule growth in the centrosome of they have an influence on the frequency of separation of the microtubules from microtubule nucleating centers.  相似文献   

16.
The distribution of tubulin and centrin in vegetative cells and during gametogenesis of Ectocarpus siliculosus was studied by immunofluorescence. In interphase cells bundles of microtubules are focused on the centriolar region near the nuclear surface. Some of the bundles ensheath the nucleus while others traverse the cytoplasm in various directions, sometimes reaching the cell cortex. Evaluation of serial optical sections by confocal laser scanning microscopy (CLSM) revealed that the perinuclear and “cytoplasmic” microtubule bundles presumably constitute a single complex. In interphase cells centrin is localized as a single bright spot in the centriolar region. In dividing cells duplication and separation of the microtubular complex and the centrin spot takes place. In post-mitotic cells with two nuclei, the centrioles are located at opposite cell poles, short microtubule bundles emanate from them and partially encompass the nucleus. During gametogenesis a gradual transformation of the vegetative cytoskeleton to the gametic flagellar apparatus occurs.  相似文献   

17.
A centriolar complex comprising a pair of centrioles and a cloud of pericentriolar materials is located at the point of covergence of the microtubules of the mitotic apparatus. The in vitro assembly of microtubules was observed onto these complexes in the 1,400 g supernatant fraction of colcemid-blocked, mitotic HeLa cells lysed into solutions containing tubulin and Triton X-100. Dark-field microscopy provided a convenient means by which this process could be visualized directly. When this 1,400 g supernate was incubated at 30 degrees C and centrifuged into a discontinuous sucrose gradient, a band containing centriolar complexes and assembled microtubles was obtained at 50-60% sucrose interface. Ultrastructual analysis indicated that the majority of the microtubules assembled predominantly from the pericentriolar material but also onto the centrioles. When cells were synchronized by a double thymide block, the assembly of microtubules onto centriolar complexes was observed only in lysates of mitotic cells; no assembly was seen in lysed material of interphase cells. Microtubule assembly occured onto centriolar complexes in solutions of either 100,000 g brain supernate, 2 X cycled tubulin, or purified tubulin dimers. This study demonstrates that the pericentriolar material becomes competent as a microtubule-organizing center (MTOC) at the time of mitosis. With use of the techniques described, a method for the isolation of centriolar complexes may be developed.  相似文献   

18.
Treatment of HeLa cells with Colcemid at concentrations of 0.06-0.10 mug/ml leads to irreversible arrest in mitosis. Colcemid-arrested cells contained few microtubules, and many kinetochores and centrioles were free of microtubule association. When these cells were exposed to microtubule reassembly buffer containing Triton X-100 and bovine brain tubulin at 37 degrees C, numerous microtubules were reassembled at all kinetochores of metaphase chromosomes and in association with centriole pairs. When bovine brain tubulin was eliminated from the reassembly system, microtubules failed to assemble at these sites. Similarly, when EGTA was eliminated from the reassembly system, microtubules failed to polymerize. These results are consistent with other investigations of in vitro microtubule assembly and indicate that HeLa chromosomes and centrioles can serve as nucleating sites for the assembly of microtubules from brain tubulin. Both chromosomes and centrioles became displaced from their C-metaphase configurations during tubulin reassembly, indicating that their movements were a direct result of microtubule formation. Although both kinetochore- and centriole- associated microtubules were assembled and movement occurred, we did not observe direct extension of microtubules from kinetochores to centrioles. This system should prove useful for experimental studies of spindle microtubule formation and chromosome movement in mammalian cells.  相似文献   

19.
Plant microtubule studies: past and present   总被引:1,自引:0,他引:1  
Here, I briefly review historical and morphological aspects of plant microtubule studies in land plants. Microtubules are formed from tubulins, and the polymeric configurations appear as singlet, doublet, and triplet microtubules. Doublet microtubules occur in the axoneme of cilia and flagella, and triplet microtubules occur in the basal bodies and centrosomes. Doublet and triplet microtubules are lost in all angiosperms and some gymnosperms that do not possess flagellated sperm. In land plants with flagellated sperm, centriolar centrosomes transform into basal bodies during spermatogenesis. In flowering plants, however, most male gametes (sperm) are conveyed to eggs without the benefit of cilia or flagella; thus, higher plants lack centriolar centrosome and doublet and triplet microtubules. The loss of centriolar centrosomes from the life cycle of flowering plants may have influenced the evolution of the plant microtubule system. Comparison of mitotic apparatuses in basal land plants and flowering plants illuminates the evolutionary transition from the centriolar microtubule system to the acentriolar microtubule system.  相似文献   

20.
Formation of a new centriole adjacent to a pre-existing centriole occurs only once per cell cycle. Despite being crucial for genome integrity, the mechanisms controlling centriole biogenesis remain elusive. Here, we identify RBM14 as a novel suppressor of assembly of centriolar protein complexes. Depletion of RBM14 in human cells induces ectopic formation of centriolar protein complexes through function of the STIL/CPAP complex. Intriguingly, the formation of such structures seems not to require the cartwheel structure that normally acts as a scaffold for centriole formation, whereas they can retain pericentriolar material and microtubule nucleation activity. Moreover, we find that, upon RBM14 depletion, a part of the ectopic centriolar protein complexes in turn assemble into structures more akin to centrioles, presumably by incorporating HsSAS-6, a cartwheel component, and cause multipolar spindle formation. We further demonstrate that such structures assemble in the cytoplasm even in the presence of pre-existing centrioles. This study sheds light on the possibility that ectopic formation of aberrant structures related to centrioles may contribute to genome instability and tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号