首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to characterize hydrophobic, alanine-rich mutants of the basic region/leucine zipper (bZIP) protein GCN4. These bacterially expressed proteins were generated to probe how small, alpha-helical proteins bind specific DNA sites. Enzymatic digestion mapping combined with MALDI-TOF MS characterization of protein fragments allowed us to resolve mass discrepancies between the expected and observed molecular mass measurements. Changes in mass were attributed to posttranslational modifications (PTMs) by proteolytic cleavage of the initiating methionine residue, carbamylation at the amino terminus, oxidation of histidine side chains, and oxidative addition of beta-mercaptoethanol (BME) at the cysteine side chain. Proteins can undergo a wide variety of co-translational modifications and PTMs during growth, isolation, and purification. Such changes in mass can only be detected by a high-resolution technique such as MALDI, which in conjunction with enzymatic digestion mapping, becomes a powerful methodology for characterization of protein structure.  相似文献   

2.
3.
4.
目的将前期在大肠埃希杆菌中获得表达的A型人呼吸道合胞病毒兰州分离株截短的F1重组蛋白进行纯化和复性,为后期动物免疫制备抗原。方法 37℃诱导重组菌体p ET-42b-F1J/Rossata,诱导完毕后离心收集菌体,高压破碎菌体并收集包涵体后用不同浓度的Triton X-100(细胞裂解液)洗涤包涵体3次。洗涤的包涵体用8 mol/L尿素进行溶解并用镍离子亲和层析方法进行初步纯化,用阳离子交换层析方法对初步纯化蛋白进行最终的纯化。亲和层析纯化蛋白用3种不同的复性液进行了稀释复性。结果 37℃诱导5 000 m L重组菌p ET-42b-F1J/Rossata共收获37 g湿菌体,经过不同浓度Triton X-100洗涤包涵体后纯度可达75%。包涵体用8 mol/L尿素溶解后经镍离子亲和层析纯化纯度约为40%,再用阳离子交换层析介质SP HP进一步纯化样品后纯度可达90%。纯化蛋白以3种不同的复性液都能得到复性,其中复性液3的复性效果相对较好。结论实验中探索了人呼吸道合胞病毒截短F1重组蛋白包涵体的纯化方法及步骤,为后期的蛋白制备及动物免疫奠定了基础。  相似文献   

5.
Plasmid-borne gene expression systems have found wide application in the emerging fields of systems biology and synthetic biology, where plasmids are used to implement simple network architectures, either to test systems biology hypotheses about issues such as gene expression noise or as a means of exerting artificial control over a cell's dynamics. In both these cases, fluorescent proteins are commonly applied as a means of monitoring the expression of genes in the living cell, and efforts have been made to quantify protein expression levels through fluorescence intensity calibration and by monitoring the partitioning of proteins among the two daughter cells after division; such quantification is important in formulating the predictive models desired in systems and synthetic biology research. A potential pitfall of using plasmid-based gene expression systems is that the high protein levels associated with expression from plasmids can lead to the formation of inclusion bodies, insoluble aggregates of misfolded, nonfunctional proteins that will not generate fluorescence output; proteins caught in these inclusion bodies are thus "dark" to fluorescence-based detection methods. If significant numbers of proteins are incorporated into inclusion bodies rather than becoming biologically active, quantitative results obtained by fluorescent measurements will be skewed; we investigate this phenomenon here. We have created two plasmid constructs with differing average copy numbers, both incorporating an unregulated promoter (P(LtetO-1) in the absence of TetR) expressing the GFP derivative enhanced green fluorescent protein (EGFP), and inserted them into Escherichia coli bacterial cells (a common model organism for work on the dynamics of prokaryotic gene expression). We extracted the inclusion bodies, denatured them, and refolded them to render them active, obtaining a measurement of the average number of EGFP per cell locked into these aggregates; at the same time, we used calibrated fluorescent intensity measurements to determine the average number of active EGFP present per cell. Both measurements were carried out as a function of cellular doubling time, over a range of 45-75 min. We found that the ratio of inclusion body EGFP to active EGFP varied strongly as a function of the cellular growth rate, and that the number of "dark" proteins in the aggregates could in fact be substantial, reaching ratios as high as approximately five proteins locked into inclusion bodies for every active protein (at the fastest growth rate), and dropping to ratios well below 1 (for the slowest growth rate). Our results suggest that efforts to compare computational models to protein numbers derived from fluorescence measurements should take inclusion body loss into account, especially when working with rapidly growing cells.  相似文献   

6.
We have examined the dynamics of cAMP-response element-binding protein (CREB) binding to chromatin in live cells using fluorescence recovery after photobleaching (FRAP). CREB was found to bind to target sites with a residence time of 100 s, and exposure to a cAMP agonist had no effect on these kinetics. In addition to the basic region/leucine zipper (bZIP) domain, a glutamine-rich trans-activation domain in CREB called Q2 also appeared to be critical for promoter occupancy. Indeed, mutations in Q2 that reduced residence time by FRAP assay disrupted target gene activation via CREB in cells exposed to a cAMP agonist. Notably, insertion of the glutamine-rich B trans-activation domain of SP1 into a mutant CREB polypeptide lacking Q2 stabilized CREB occupancy and rescued target gene activation. These results suggest a novel mechanism by which the family of glutamine-rich activators promotes cellular gene expression.  相似文献   

7.
8.
To discover causes of infertility and potential contraceptive targets, we used in silico subtraction and genomic database mining to identify conserved genes with germ cell-specific expression. In silico subtraction identified an expressed sequence tag (EST) present exclusively in a newborn mouse ovary library. The full-length cDNA sequence corresponding to this EST encodes a novel protein containing four ankyrin (ANK) repeats, a sterile-alpha motif (SAM), and a putative basic leucine zipper (bZIP) domain. Northern blot and semiquantitative RT-PCR analyses demonstrated that the mRNA is exclusively expressed in the mouse testis and ovary. The expression sites were localized by in situ hybridization to pachytene spermatocytes in the testis and oocytes in the ovary. Immunohistochemistry showed that the novel protein is localized to the cytoplasm in pachytene spermatocytes and early spermatids, oocytes at all stages of oogenesis, and in early preimplantation embryos. Based on its germ cell-specific expression and the presence of ANK, SAM, and basic leucine zipper domains, we have termed this novel protein GASZ. The mouse Gasz gene, which consists of 13 exons and spans 60 kb, is located on chromosome 6 between the Wnt2 and cystic fibrosis transmembrane conductance regulator (Cftr) genes. Using genomic database mining, orthologous genes encoding GASZ were identified in the rat, cow, baboon, chimpanzee, and human. Phylogenetic analyses reveal that the GASZ proteins are highly conserved among these species. Human and mouse GASZ proteins share 85.3% amino acid identity, and human and chimpanzee GASZ proteins differ by only 3 out of 475 amino acids. In humans, the GASZ gene resides on chromosome 7 and is similarly composed of 13 exons. Because both ANK repeats and the SAM domain function as protein-protein interaction modules that mediate signal transduction cascades in some systems, GASZ may represent an important cytoplasmic signal transducer that mediates protein-protein interactions during germ cell maturation in both males and females and during preimplantation embryogenesis.  相似文献   

9.
10.
11.
12.
Genetic alterations of RING finger genes, encoding an ubiquitin-protein ligase, are implicated in several types of human cancer through dysregulation of growth regulators. Here, a novel RING finger gene, RNF26, was cloned and characterized. The RNF26 gene on human chromosome 11q23 region was found to encode a polypeptide of 433 amino acids with the N-terminal leucine zipper domain and the C-terminal RING finger domain. Among the RING finger protein family, RING finger domains of RNF26, CGR19, NEURL, KIAA0554, and AK022937 were found to constitute a novel C3HC5 subfamily, which is distinct from C3H2C3 or C3HC4 subfamilies. RING finger domain of RNF26 was most homologous to that of CGR19 (49% amino-acid identity). The 3.2-kb RNF26 mRNA was expressed ubiquitously in normal human tissues, but was upregulated in several human cancer cell lines, including HL-60 (promyelocytic leukemia), HeLa S3 (cervical uterus cancer), SW480 (colorectal cancer), and MKN7 (gastric cancer). In addition, RNF26 was upregulated in 50% of primary gastric cancer examined in this study. Although substrates of ubiquitination mediated by RNF26 remain to be elucidated, RNF26 upregulation in several types of human cancer might be implicated in carcinogenesis through dysregulation of its substrates.  相似文献   

13.
The effect of changes in substrate feed rate during fedbatch cultivation was investigated with respect to soluble protein formation and transport of product to the periplasm in Escherichia coli. Production was transcribed from the PmalK promoter; and the cytoplasmic part of the production was compared with production from the PlacUV5 promoter. The fusion protein product, Zb-MalE, was at all times accumulated in the soluble protein fraction except during high-feed-rate production in the cytoplasm. This was due to a substantial degree of proteolysis in all production systems, as shown by the degradation pattern of the product. The product was also further subjected to inclusion body formation. Production in the periplasm resulted in accumulation of the full-length protein; and this production system led to a cellular physiology where the stringent response could be avoided. Furthermore, the secretion could be used to abort the diauxic growth phase resulting from use of the PmalK promoter. At high feed rate, the accumulation of acetic acid, due to overflow metabolism, could furthermore be completely avoided.  相似文献   

14.
15.
16.
In addition to virion formation, the coat protein (CP) of Alfalfa mosaic virus (AMV) is involved in the regulation of replication and translation of viral RNAs, and in cell-to-cell and systemic movement of the virus. An intriguing feature of the AMV CP is its nuclear and nucleolar accumulation. Here, we identify an N-terminal lysine-rich nucleolar localization signal (NoLS) in the AMV CP required to both enter the nucleus and accumulate in the nucleolus of infected cells, and a C-terminal leucine-rich domain which might function as a nuclear export signal. Moreover, we demonstrate that AMV CP interacts with importin-α, a component of the classical nuclear import pathway. A mutant AMV RNA 3 unable to target the nucleolus exhibited reduced plus-strand RNA synthesis and cell-to-cell spread. Moreover, virion formation and systemic movement were completely abolished in plants infected with this mutant. In vitro analysis demonstrated that specific lysine residues within the NoLS are also involved in modulating CP-RNA binding and CP dimerization, suggesting that the NoLS represents a multifunctional domain within the AMV CP. The observation that nuclear and nucleolar import signals mask RNA-binding properties of AMV CP, essential for viral replication and translation, supports a model in which viral expression is carefully modulated by a cytoplasmic/nuclear balance of CP accumulation.  相似文献   

17.
Matrix/scaffold attachment regions (MARs/SARs) partition chromatin into functional loop domains. Here we have identified a chicken protein that selectively binds to MARs from the chicken lysozyme locus and to MARs from Drosophila, mouse, and human genes. This protein, named ARBP (for attachment region binding protein), was purified to homogeneity and shown to bind to MARs in a cooperative fashion. ARBP is an abundant nuclear protein and a component of the internal nuclear network. Deletion mutants indicate that multiple AT-rich sequences, if contained in a minimal approximately 350 bp MAR fragment, can lead to efficient binding of ARBP. Furthermore, dimerization mutants show that, to bind ARBP efficiently, MAR sequences can act synergistically over large distances, apparently with the intervening DNA looping out. The binding characteristics of ARBP to MARs reproduce those of unfractionated matrix preparations, suggesting that ARBP is an important nuclear element for the generation of functional chromatin loops.  相似文献   

18.
The aim of this study was to examine the differences between hydrophobicity and packing effects in specifying the three-dimensional structure and stability of proteins when mutating hydrophobes in the hydrophobic core. In DNA-binding proteins (leucine zippers), Leu residues are conserved at positions "d," and beta-branched amino acids, Ile and Val, often occur at positions "a" in the hydrophobic core. In order to discern what effect this selective distribution of hydrophobes has on the formation and stability of two-stranded alpha-helical coiled coils/leucine zippers, three Val or three Ile residues were simultaneously substituted for Leu at either positions "a" (9, 16, and 23) or "d" (12, 19, and 26) in both chains of a model coiled coil. The stability of the resulting coiled coils was monitored by CD in the presence of Gdn.HCl. The results of the mutations of Ile to Val at either positions "a" or "d" in the reduced or oxidized coiled coils showed a significant hydrophobic effect with the additional methylene group in Ile stabilizing the coiled coil (delta delta G values range from 0.45 to 0.88 kcal/mol/mutation). The results of mutations of Leu to Ile or Val at positions "a" in the reduced or oxidized coiled coils showed a significant packing effect in stabilizing the coiled coil (delta delta G values range from 0.59 to 1.03 kcal/mol/mutation). Our results also indicate the subtle control hydrophobic packing can have not only on protein stability but on the conformation adopted by the amphipathic alpha-helices. These structural findings correlate with the observation that in DNA-binding proteins, the conserved Leu residues at positions "d" are generally less tolerant of amino acid substitutions than the hydrophobic residues at positions "a."  相似文献   

19.
The stability of the human erythrocyte membrane skeletal network is reported to be dependent on the state of aggregation of spectrin and decreased or increased by polyphosphate anions or the polyamine, spermine, respectively. We have employed polyacrylamide gel electrophoresis and electron spin resonance (ESR) utilizing spin labels specific for membrane proteins, bilayer lipids, or cell-surface sialic acid in order to gain insight into these observations and into the reliability of the ESR spectra of the protein-specific spin label used to correctly report the interactions of the skeletal protein network. The major findings are: (1) We confirm previous reports that the preferred state of spectrin aggregation in the skeletal network is tetrameric and that spectrin can be reversibly transformed to dimeric spectrin and back to tetrameric spectrin on the membrane. (2) The ESR spectra of the protein specific maleimide spin label employed accurately reflect the state of aggregation of spectrin. (3) As dimeric spectrin is increased on the membrane or when 2,3-bis-phosphoglycerate was added to spin-labeled membranes, increased segmental motion of protein spin label binding sites reflecting decreased protein-protein interactions in the skeletal network is observed (P < 0.002 and P < 0.005, respectively). (4) Conversely, as protein-protein interactions between skeletal proteins or between skeletal proteins and the bilayer are increased by spermine (reflected in the total inability to extract spectrin from the membrane in contrast to control membranes), highly decreased segmental motion of the protein specific spin label binding sites is observed (P < 0.005). (5) The dimeric-tetrameric state of spectrin aggregation on the membrane does not have influence on the order or motion of bilayer lipids nor on the rotational rate of spin-labeled, cell-surface sialic acid, a result also observed when protein-protein interactions were decreased by 2,3-bisphosphoglycerate. In contrast, increased protein-protein interactions by addition of spermine produced a small, but significant, increase in order and decrease in motion of bilayer lipids near the membrane surface as well as a nearly 40% decrease in the apparent rotational correlation time of spin labeled, cell surface sialic acid (P < 0.002). These latter observations are discussed with reference to possible associations of phospholipids and the major, transmembrane sialoglycoprotein with the skeletal protein network.  相似文献   

20.
The stability of the human erythrocyte membrane skeletal network is reported to be dependent on the state of aggregation of spectrin and decreased or increased by polyphosphate anions or the polyamine, spermine, respectively. We have employed polyacrylamide gel electrophoresis and electron spin resonance (ESR) utilizing spin labels specific for membrane proteins, bilayer lipids, or cell-surface sialic acid in order to gain insight into these observations and into the reliability of the ESR spectra of the protein-specific spin label used to correctly report the interactions of the skeletal protein network. The major findings are: (1) We confirm previous reports that the preferred state of spectrin aggregation in the skeletal network is tetrameric and that spectrin can be reversibly transformed to dimeric spectrin and back to tetrameric spectrin on the membrane. (2) The ESR spectra of the protein specific maleimide spin label employed accurately reflect the state of aggregation of spectrin. (3) As dimeric spectrin is increased on the membrane or when 2,3-bisphosphoglycerate was added to spin-labeled membranes, increased segmental motion of protein spin label binding sites reflecting decreased protein-protein interactions in the skeletal network is observed (P less than 0.002 and P less than 0.005, respectively). (4) Conversely, as protein-protein interactions between skeletal proteins or between skeletal proteins and the bilayer are increased by spermine (reflected in the total inability to extract spectrin from the membrane in contrast to control membranes), highly decreased segmental motion of the protein specific spin label binding site is observed (P less than 0.005). (5) The dimeric-tetrameric state of spectrin aggregation on the membrane does not have influence on the order or motion of bilayer lipids nor on the rotational rate of spin-labeled, cell-surface sialic acid, a result also observed when protein-protein interactions were decreased by 2,3-bisphosphoglycerate. In contrast, increased protein-protein interactions by addition of spermine produced a small, but significant, increase in order and decrease in motion of bilayer lipids near the membrane surface as well as a nearly 40% decrease in the apparent rotational correlation time of spin labeled, cell surface sialic acid (P less than 0.002). These latter observations are discussed with reference to possible associations of phospholipids and the major, transmembrane sialoglycoprotein with the skeletal protein network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号