首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we describe an approach for identifying 'pathways' from gene expression and protein interaction data. Our approach is based on the assumption that many pathways exhibit two properties: their genes exhibit a similar gene expression profile, and the protein products of the genes often interact. Our approach is based on a unified probabilistic model, which is learned from the data using the EM algorithm. We present results on two Saccharomyces cerevisiae gene expression data sets, combined with a binary protein interaction data set. Our results show that our approach is much more successful than other approaches at discovering both coherent functional groups and entire protein complexes.  相似文献   

2.
Zhang S  Jin G  Zhang XS  Chen L 《Proteomics》2007,7(16):2856-2869
With the increasingly accumulated data from high-throughput technologies, study on biomolecular networks has become one of key focuses in systems biology and bioinformatics. In particular, various types of molecular networks (e.g., protein-protein interaction (PPI) network; gene regulatory network (GRN); metabolic network (MN); gene coexpression network (GCEN)) have been extensively investigated, and those studies demonstrate great potentials to discover basic functions and to reveal essential mechanisms for various biological phenomena, by understanding biological systems not at individual component level but at a system-wide level. Recent studies on networks have created very prolific researches on many aspects of living organisms. In this paper, we aim to review the recent developments on topics related to molecular networks in a comprehensive manner, with the special emphasis on the computational aspect. The contents of the survey cover global topological properties and local structural characteristics, network motifs, network comparison and query, detection of functional modules and network motifs, function prediction from network analysis, inferring molecular networks from biological data as well as representative databases and software tools.  相似文献   

3.
Discovering statistically significant biclusters in gene expression data   总被引:1,自引:0,他引:1  
In gene expression data, a bicluster is a subset of the genes exhibiting consistent patterns over a subset of the conditions. We propose a new method to detect significant biclusters in large expression datasets. Our approach is graph theoretic coupled with statistical modelling of the data. Under plausible assumptions, our algorithm is polynomial and is guaranteed to find the most significant biclusters. We tested our method on a collection of yeast expression profiles and on a human cancer dataset. Cross validation results show high specificity in assigning function to genes based on their biclusters, and we are able to annotate in this way 196 uncharacterized yeast genes. We also demonstrate how the biclusters lead to detecting new concrete biological associations. In cancer data we are able to detect and relate finer tissue types than was previously possible. We also show that the method outperforms the biclustering algorithm of Cheng and Church (2000).  相似文献   

4.
MOTIVATION: A promising and reliable approach to annotate gene function is clustering genes not only by using gene expression data but also literature information, especially gene networks. RESULTS: We present a systematic method for gene clustering by combining these totally different two types of data, particularly focusing on network modularity, a global feature of gene networks. Our method is based on learning a probabilistic model, which we call a hidden modular random field in which the relation between hidden variables directly represents a given gene network. Our learning algorithm which minimizes an energy function considering the network modularity is practically time-efficient, regardless of using the global network property. We evaluated our method by using a metabolic network and microarray expression data, changing with microarray datasets, parameters of our model and gold standard clusters. Experimental results showed that our method outperformed other four competing methods, including k-means and existing graph partitioning methods, being statistically significant in all cases. Further detailed analysis showed that our method could group a set of genes into a cluster which corresponds to the folate metabolic pathway while other methods could not. From these results, we can say that our method is highly effective for gene clustering and annotating gene function.  相似文献   

5.
6.

Background

With the rapid accumulation of genomic data, it has become a challenge issue to annotate and interpret these data. As a representative, Gene set enrichment analysis has been widely used to interpret large molecular datasets generated by biological experiments. The result of gene set enrichment analysis heavily relies on the quality and integrity of gene set annotations. Although several methods were developed to annotate gene sets, there is still a lack of high quality annotation methods. Here, we propose a novel method to improve the annotation accuracy through combining the GO structure and gene expression data.

Results

We propose a novel approach for optimizing gene set annotations to get more accurate annotation results. The proposed method filters the inconsistent annotations using GO structure information and probabilistic gene set clusters calculated by a range of cluster sizes over multiple bootstrap resampled datasets. The proposed method is employed to analyze p53 cell lines, colon cancer and breast cancer gene expression data. The experimental results show that the proposed method can filter a number of annotations unrelated to experimental data and increase gene set enrichment power and decrease the inconsistent of annotations.

Conclusions

A novel gene set annotation optimization approach is proposed to improve the quality of gene annotations. Experimental results indicate that the proposed method effectively improves gene set annotation quality based on the GO structure and gene expression data.
  相似文献   

7.
8.
Tu K  Yu H  Li YX 《Journal of biotechnology》2006,124(3):475-485
The ever-increasing flow of gene expression profiles and protein-protein interactions has catalyzed many computational approaches for inference of gene functions. Despite all the efforts, there is still room for improvement, for the information enriched in each biological data source has not been exploited to its fullness. A composite method is proposed for classifying unannotated genes based on expression data and protein-protein interaction (PPI) data, which extracts information from both data sources in novel ways. With the noise nature of expression data taken into consideration, importance is attached to the consensus expression patterns of gene classes instead of the actual expression profiles of individual genes, thus characterizing the composite method with enhanced robustness against microarray data variation. With regard to the PPI network, the traditional clear-cut binary attitude towards inter- and intra-functional interactions is abandoned, whereas a more objective perspective into the PPI network structure is formed through incorporating the varied function-function interaction probabilities into the algorithm. The composite method was implemented in two numerical experiments, where its improvement over single-data-source based methods was observed and the superiority of the novel data handling operations was discussed.  相似文献   

9.
10.
MOTIVATION: Large scale gene expression data are often analysed by clustering genes based on gene expression data alone, though a priori knowledge in the form of biological networks is available. The use of this additional information promises to improve exploratory analysis considerably. RESULTS: We propose constructing a distance function which combines information from expression data and biological networks. Based on this function, we compute a joint clustering of genes and vertices of the network. This general approach is elaborated for metabolic networks. We define a graph distance function on such networks and combine it with a correlation-based distance function for gene expression measurements. A hierarchical clustering and an associated statistical measure is computed to arrive at a reasonable number of clusters. Our method is validated using expression data of the yeast diauxic shift. The resulting clusters are easily interpretable in terms of the biochemical network and the gene expression data and suggest that our method is able to automatically identify processes that are relevant under the measured conditions.  相似文献   

11.
12.
MOTIVATION: Recently, a new type of expression data is being collected which aims to measure the effect of genetic variation on gene expression in pathways. In these datasets, expression profiles are constructed for multiple strains of the same model organism under the same condition. The goal of analyses of these data is to find differences in regulatory patterns due to genetic variation between strains, often without a phenotype of interest in mind. We present a new method based on notions of tight regulation and differential expression to look for sets of genes which appear to be significantly affected by genetic variation. RESULTS: When we use categorical phenotype information, as in the Alzheimer's and diabetes datasets, our method finds many of the same gene sets as gene set enrichment analysis. In addition, our notion of correlated gene sets allows us to focus our efforts on biological processes subjected to tight regulation. In murine hematopoietic stem cells, we are able to discover significant gene sets independent of a phenotype of interest. Some of these gene sets are associated with several blood-related phenotypes. AVAILABILITY: The programs are available by request from the authors.  相似文献   

13.
The biclustering method can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse in gene expression measurement. This is because the biclustering approach, in contrast to the conventional clustering techniques, focuses on finding a subset of the genes and a subset of the experimental conditions that together exhibit coherent behavior. However, the biclustering problem is inherently intractable, and it is often computationally costly to find biclusters with high levels of coherence. In this work, we propose a novel biclustering algorithm that exploits the zero-suppressed binary decision diagrams (ZBDDs) data structure to cope with the computational challenges. Our method can find all biclusters that satisfy specific input conditions, and it is scalable to practical gene expression data. We also present experimental results confirming the effectiveness of our approach.  相似文献   

14.
15.
This paper concerns the discovery of patterns in gene expression matrices, in which each element gives the expression level of a given gene in a given experiment. Most existing methods for pattern discovery in such matrices are based on clustering genes by comparing their expression levels in all experiments, or clustering experiments by comparing their expression levels for all genes. Our work goes beyond such global approaches by looking for local patterns that manifest themselves when we focus simultaneously on a subset G of the genes and a subset T of the experiments. Specifically, we look for order-preserving submatrices (OPSMs), in which the expression levels of all genes induce the same linear ordering of the experiments (we show that the OPSM search problem is NP-hard in the worst case). Such a pattern might arise, for example, if the experiments in T represent distinct stages in the progress of a disease or in a cellular process and the expression levels of all genes in G vary across the stages in the same way. We define a probabilistic model in which an OPSM is hidden within an otherwise random matrix. Guided by this model, we develop an efficient algorithm for finding the hidden OPSM in the random matrix. In data generated according to the model, the algorithm recovers the hidden OPSM with a very high success rate. Application of the methods to breast cancer data seem to reveal significant local patterns.  相似文献   

16.
Nam H  Ryu T  Lee K  Kim S  Lee D 《BMB reports》2008,41(8):609-614
The concentrations and catalytic activities of enzymes control metabolic rates. Previous studies have focused on enzyme concentrations because there are no genome-wide techniques used for the measurement of enzyme activity. We propose a method for evaluating the significance of enzyme activity by integrating metabolic network topologies and genome-wide microarray gene expression profiles. We quantified the enzymatic activity of reactions and report the 388 significant reactions in five perturbation datasets. For the 388 enzymatic reactions, we identified 70 that were significantly regulated (P-value < 0.001). Thirty-one of these reactions were part of anaerobic metabolism, 23 were part of low-pH aerobic metabolism, 8 were part of high-pH anaerobic metabolism, 3 were part of low-pH aerobic reactions, and 5 were part of high-pH anaerobic metabolism.  相似文献   

17.
Integration of biological networks and gene expression data using Cytoscape   总被引:1,自引:0,他引:1  
Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape.  相似文献   

18.
MOTIVATION: The expression of genes during the cell division process has now been studied in many different species. An important goal of these studies is to identify the set of cycling genes. To date, this was done independently for each of the species studied. Due to noise and other data analysis problems, accurately deriving a set of cycling genes from expression data is a hard problem. This is especially true for some of the multicellular organisms, including humans. RESULTS: Here we present the first algorithm that combines microarray expression data from multiple species for identifying cycling genes. Our algorithm represents genes from multiple species as nodes in a graph. Edges between genes represent sequence similarity. Starting with the measured expression values for each species we use Belief Propagation to determine a posterior score for genes. This posterior is used to determine a new set of cycling genes for each species. We applied our algorithm to improve the identification of the set of cell cycle genes in budding yeast and humans. As we show, by incorporating sequence similarity information we were able to obtain a more accurate set of genes compared to methods that rely on expression data alone. Our method was especially successful for the human dataset indicating that it can use a high quality dataset from one species to overcome noise problems in another. AVAILABILITY: C implementation is available from the supporting website: http://www.cs.cmu.edu/~lyongu/pub/cellcycle/.  相似文献   

19.
MOTIVATION: Identifying candidate genes associated with a given phenotype or trait is an important problem in biological and biomedical studies. Prioritizing genes based on the accumulated information from several data sources is of fundamental importance. Several integrative methods have been developed when a set of candidate genes for the phenotype is available. However, how to prioritize genes for phenotypes when no candidates are available is still a challenging problem. RESULTS: We develop a new method for prioritizing genes associated with a phenotype by Combining Gene expression and protein Interaction data (CGI). The method is applied to yeast gene expression data sets in combination with protein interaction data sets of varying reliability. We found that our method outperforms the intuitive prioritizing method of using either gene expression data or protein interaction data only and a recent gene ranking algorithm GeneRank. We then apply our method to prioritize genes for Alzheimer's disease. AVAILABILITY: The code in this paper is available upon request.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号