首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Myrica gale L. plants the assimilation of ammonia released by symbiotic Frankia was observed by 15N2 labelling and subsequent analysis of the isotopic enrichment of nodule amino acids over time by single ion monitoring gas chromatography-mass spectrometry. In detached nodules of Myrica , glutamine was the first amino acid labelled at 30 s and subsequently the amino acids glutamate, aspartate, alanine and γ-amino butyric acid (GABA) became labelled. This pattern of labelling is consistent with the incorporation of ammonium via glutamine synthetase [GS; EC 6.3.1.2]. No evidence for the ammonium assimilation via glutamate dehydrogenase [GDH; EC 1.4.1.2] was observed as glutamate became labelled only after glutamine. Using attached nodules and pulse-chase labelling, we observed synthesis of glutamine, glutamate, aspartate, alanine, GABA and asparagine, and followed the transport of fixed nitrogen in the xylem largely as glutamine and asparagine. Estimation of the cost of nitrogen fixation and asparagine synthesis in Myrica nodules suggests a minimum of one sucrose required per asparagine produced. Rapid translocation of recently fixed nitrogen was observed in Myrica gale nodules as 80% of the nitrogen fixed during a 1-h period was translocated out of the nodules within 9 h. The large pool of asparagine that is present in nodules may buffer the transport of nitrogen and thus act to regulate nitrogen fixation via a feedback mechanism.  相似文献   

2.
1H/15N and 13C NMR were used to investigate metabolism in Spodoptera frugiperda (Sf9) cells. Labelled substrates ([2-15N]glutamine, [5-15N]glutamine, [2-15N]glutamate, 15NH4Cl, [2-15N]alanine, and [1-13C]glucose) were added to batch cultures and the concentration of labelled excreted metabolites (alanine, NH4+, glutamine, glycerol, and lactate) were quantified. Cultures with excess glucose and glutamine produce alanine as the main metabolic by-product while no ammonium ions are released. 1H/15N NMR data showed that both the amide and amine-nitrogen of glutamine was incorporated into alanine in these cultures. The amide-nitrogen of glutamine was not transferred to the amine-position in glutamate (for further transamination to alanine) via free NH4+ but directly via an azaserine inhibitable amido-transfer reaction. In glutamine-free media 15NH4+ was consumed and incorporated into alanine. 15NH4+ was also incorporated into the amide-position of glutamine synthesised by the cells. These data suggest that the nitrogen assimilation system, glutamine synthetase/glutamate synthase (NADH-GOGAT), is active in glutamine-deprived cells. In cultures devoid of glucose, ammonium is the main metabolic by-product while no alanine is formed. The ammonium ions stem both from the amide and amine-nitrogen of glutamine, most likely via glutaminase and glutamate dehydrogenase. 13C NMR revealed that the [1-13C] label from glucose appeared in glycerol, alanine, lactate, and in extracellular glutamine. Labelling data also showed that intermediates of the tricarboxylic acid cycle were recycled to glycolysis and that carbon sources, other than glucose-derived acetylCoA, entered the cycle. Furthermore, Sf9 cell cultures excreted significant amounts glycerol (1.9-3.2 mM) and ethanol (6 mM), thus highlighting the importance of sinks for reducing equivalents in maintaining the cytosolic redox balance.  相似文献   

3.
Ammonia assimilation in Bacillus polymyxa. 15N NMR and enzymatic studies   总被引:4,自引:0,他引:4  
Pathways of ammonia assimilation into glutamic acid and alanine in Bacillus polymyxa were investigated by 15N NMR spectroscopy in combination with measurements of the specific activities of glutamate dehydrogenase, glutamine synthetase, glutamate synthetase, alanine dehydrogenase, and glutamic-alanine transaminase. Ammonia was found to be assimilated into glutamic acid predominantly by NADPH-dependent glutamate dehydrogenase with a Km of 2.9 mM for NH4+ not only in ammonia-grown cells but also in nitrate-grown and nitrogen-fixing cells in which the intracellular NH4+ concentrations were 11.2, 1.04, and 1.5 mM, respectively. In ammonia-grown cells, the specific activity of alanine dehydrogenase was higher than that of glutamic-alanine transaminase, but the glutamate dehydrogenase/glutamic-alanine transaminase pathway was found to be the major pathway of 15NH4+ assimilation into [15N]alanine. The in vitro specific activities of glutamate dehydrogenase and glutamine synthetase, which represent the rates of synthesis of glutamic acid and glutamine, respectively, in the presence of enzyme-saturating concentrations of substrates and coenzymes are compared with the in vivo rates of biosynthesis of [15N]glutamic acid and [alpha,gamma-15N]glutamine observed by NMR, and implications of the results for factors limiting the rates of their biosynthesis in ammonia- and nitrate-grown cells are discussed.  相似文献   

4.
15N kinetic labeling studies were performed on seedlings of Hordeum vulgare L. var. Golden Promise growing under steady state conditions. Patterns of label incorporation in the pools of nitrogen compounds of roots fed [15N]ammonium were compared with computer-simulated labeling curves. The data were found to be quantitatively consistent with a three-compartment model in which ammonium is assimilated solely into the amide-N of glutamine. Labeling data from roots fed [15N]nitrate were also found to be at least qualitatively consistent with the assimilation of ammonia into glutamine. Methionine sulfoximine almost completely blocked the incorporation of 15N label into the amino acid pools of barley roots fed [15N]nitrate. These observations suggest that ammonia assimilation occurs solely via the glutamine synthetase/glutamate synthase pathway in both nitrate- and ammonia-grown barley roots.  相似文献   

5.
To investigate nitrogen assimilation and translocation in Zea mays L. colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thax. sensu Gerd.), we measured key enzyme activities, 15N incorporation into free amino acids, and 15N translocation from roots to shoots. Glutamine synthetase and nitrate reductase activities were increased in both roots and shoots compared with control plants, and glutamate dehydrogenase activity increased in roots only. In the presence of [15N]ammonium, glutamine amide was the most heavily labeled product. More label was incorporated into amino acids in VAM plants. The kinetics of 15N labeling and effects of methionine sulfoximine on distribution of 15N-labeled products were entirely consistent with the operation of the glutamate synthase cycle. No evidence was found for ammonium assimilation via glutamate dehydrogenase. 15N translocation from roots to shoots through the xylem was higher in VAM plants compared with control plants. These results establish that, in maize, VAM fungi increase ammonium assimilation, glutamine production, and xylem nitrogen translocation. Unlike some ectomycorrhizal fungi, VAM fungi do not appear to alter the pathway of ammonium assimilation in roots of their hosts.  相似文献   

6.
Nitrogen-starved cells of Frankia strain HFPArl3 incorporated [13N]-labeled ammonium into glutamine serine (glutamate, alanine, aspartate), after five-minute radioisotope exposures. High initial endogenous pools of glutamate were reduced, while total glutamine increased, during short term NH inf4 sup+ incubation. Preincubation of cells in methionine sulfoximine (MSX) resulted in [13N]glutamine reduced by more than 80%, while [13N]glutamate and [13N]alanine levels increased. The results suggest that glutamine synthetase is the primary enzyme of ammonium assimilation, and that glutamate dehydrogenase and alanine dehydrogenase may also function in ammonium assimilation at low levels. Efflux of [13N]serine and lesser amounts of [13N]glutamine was detected from the Frankia cells. The identity of both Ser and Gln in the extracellular compartment was confirmed with gas chromatography/mass spectrometry. Serine efflux may be of significance in nitrogen transfer in Frankia.Abbreviations Pthr phosphothreonine - Aad -amino-adipate - MSX methionine sulfoximine  相似文献   

7.
Summary The relative sizes of the macro amino acid pools inRhodospirillum rubrum, as measured by the incorporation of [14C]-carbon dioxide, were approximately the same in the four different cultures examined; mid-exponential phase and initial stationary phase batch culture organisms and two steady state turbidostat continuous cultures. Glutamate was the dominant amino acid labelled with lower levels of labelling in glutamine, aspartate, alanine and threonine to complete the major amino acid pools. Glutamine synthesis was a light-dependent process in the four cultures examined whereas the synthesis of glutamate was light-dependent only in the stationary phase batch culture organisms and in low cell density turbidostat organisms. These results are presented as physiological evidence for the activity of the ATP-requiring GS-GOGAT system for ammonia assimilation under certain growth conditions inRhodospirillum rubrum.  相似文献   

8.
Suspension cultured cells of tomato (Lycopersicon esculentum Mill. cv VFNT Cherry) adapted to water stress induced with polyethylene glycol 6000 (PEG), exhibit marked alterations in free amino acid pools (Handa et al. 1983 Plant Physiol 73: 834-843). Using computer simulation models the in vivo rates of synthesis and utilization and compartmentation of free amino acid pools were determined from 15N labeling kinetics after substituting [15N]ammonium and [15N]nitrate for the 14N salts in the culture medium of cell lines adapted to 0% and 25% PEG. The 300-fold elevated proline pool in 25% PEG adapted cells is primarily the consequence of a 10-fold elevated rate of proline synthesis via the glutamate pathway. Ornithine was insufficiently labeled to serve as a major precursor for proline. Our calculations suggest that the rate of proline synthesis only slightly exceeds the rate required to sustain both protein synthesis and proline pool maintenance with growth. Mechanisms must operate to restrict proline oxidation in adapted cells. The kinetics of labeling of proline in 25% PEG adapted cells are consistent with a single, greatly enlarged metabolic pool of proline. The depletion of glutamine in adapted cells appears to be a consequence of a selective depletion of a large, metabolically inactive storage pool present in unadapted cultures. The labeling kinetics of the amino nitrogen groups of glutamine and glutamate are consistent with the operation of the glutamine synthetase-glutamate synthase cycle in both cell lines. However, we could not conclusively discriminate between the exclusive operation of the glutamine synthetase-glutamate synthase cycle and a 10 to 20% contribution of the glutamate dehydrogenase pathway of ammonia assimilation. Adaptation to water stress leads to increased nitrogen flux from glutamate into alanine and γ-aminobutyrate, suggesting increased pyruvate availability and increased rates of glutamate decarboxylation. Both alanine and γ-aminobutyrate are synthesized at rates greatly in excess of those simply required to maintain the free pools with growth, indicating that these amino acids are rapidly turned over. Thus, both synthesis and utilization rates for alanine and γ-aminobutyrate are increased in adapted cells. Adaptation to stress leads to increased rates of synthesis of valine and leucine apparently at the expense of isoleucine. Remarkably low 15N flux via the aspartate family amino acids was observed in these experiments. The rate of synthesis of threonine appeared too low to account for threonine utilization in protein synthesis, pool maintenance, and isoleucine biosynthesis. It is possible that isoleucine may be deriving carbon skeletons from sources other than threonine. Tentative models of the nitrogen flux of these two contrasting cell lines are discussed in relation to carbon metabolism, osmoregulation, and nitrogenous solute compartmentation.  相似文献   

9.
Glutamate (Glu) metabolism and amino acid translocation were investigated in the young and old leaves of tobacco (Nicotiana tabacum L. cv Xanthi) using [15N]ammonium and [2-15N]Glu tracers. Regardless of leaf age, [15N]ammonium assimilation occurred via glutamine synthetase (GS; EC 6.1.1.3) and Glu synthase (ferredoxin [Fd]-GOGAT; EC 1.4.7.1; NADH-GOGAT; EC 1.4.1.14), both in the light and darkness, and it did not depend on Glu dehydrogenase (GDH; EC 1.4.1.2). The [15N]ammonium and ammonium accumulation patterns support the role of GDH in the deamination of [2-15N]Glu to provide 2-oxoglutarate and [15N]ammonium. In the dark, excess [15N]ammonium was incorporated into asparagine that served as an additional detoxification molecule. The constant Glu levels in the phloem sap suggested that Glu was continuously synthesized and supplied into the phloem regardless of leaf age. Further study using transgenic tobacco lines, harboring the promoter of the GLU1 gene (encoding Arabidopsis [Arabidopsis thaliana] Fd-GOGAT) fused to a GUS reporter gene, revealed that the expression of Fd-GOGAT remained higher in young leaves compared to old leaves, and higher in the veins compared to the mesophyll. Confocal laser-scanning microscopy localized the Fd-GOGAT protein to the phloem companion cells-sieve element complex in the leaf veins. The results are consistent with a role of Fd-GOGAT in supplying Glu for the synthesis and transport of amino acids. Taken together, the data provide evidence that the GS-GOGAT pathway and GDH play distinct roles in the source-sink nitrogen cycle of tobacco leaves.  相似文献   

10.
15N kinetic labelling studies were done on liquid cultures of wild-type Aspergillus nidulans. The labelling pattern of major amino acids under 'steady state' conditions suggests that glutamate and glutamine-amide are the early products of ammonia assimilation in A. nidulans. In the presence of phosphinothricin, an inhibitor or glutamine synthetase, 15N labelling of glutamate, alanine and aspartate was maintained whereas the labelling of glutamine was low. This pattern of labelling is consistent with ammonia assimilation into glutamate via the glutamate dehydrogenase pathway. In the presence of azaserine, an inhibitor of glutamate synthase, glutamate was initially more highly labelled than any other amino acid, whereas its concentration declined. Isotope also accumulated in glutamine. Observations with these two inhibitors suggest that ammonia assimilation can occur concurrently via the glutamine synthetase/glutamate synthase and the glutamate dehydrogenase pathways in low-ammonia-grown A. nidulans. From a simple model it was estimated that about half of the glutamate was synthesized via the glutamate dehydrogenase pathway; the other half was formed from glutamine via the glutamate synthase pathway. The transfer coefficients of nine other amino acids were also determined.  相似文献   

11.
The derivation of alanine in fibroin was investigated using NMR and selective isotopic labelling. 2H2O infused orally into 5th instar larvae was incorporated into the proton of the methyl group of alanine in fibroin. Proton exchange among alanine, glycine and serine was also found. Incorporation of 13C from [2-(13)C]acetate into alanine C2 and C3 and glycine C2 in fibroin, and also C4 of free glutamine plus glutamate was observed in vivo. Hemolymph contained a peak for C4 of glutamate plus glutamine, and an alanine C3 peak appeared transiently. Thus, it is suggested that the C-skeleton of alanine formed was derived from L-malate via the TCA-cycle, and that this alanine is utilized in part for fibroin synthesis. Spectra of the hemolymph extract of larvae infused orally with [15N2]urea showed no 15N-compounds, whereas those of larvae injected subcutaneously showed only one peak of urea, whose intensity decreased with time, as shown in the in vivo spectra of a living larva infused with [15N2]urea. The solution NMR spectrum of fibroin showed no 15N-labelled compounds. Temporal changes in the peak intensities of six compounds in the spectra of a living larva infused with [15N]ammonium demonstrated a process in which 15N was incorporated into fibroin containing 15N-alanine through the amide group of glutamine and the amino group of glutamate. Thus, alanine biosynthesis from the TCA-cycle originates mainly from water, L-malate and ammonium. The fact that no 15N-urea was detected in the hemolymph extract of larvae infused with [15N]ammonium suggests that 15N-urea found in the above in vivo spectra may be that accumulated in the hindgut. Thus, excess ammonium in the body causes the production of urea by the urea-cycle. In Samia larvae, urea was not reutilized but excreted. The metabolic relationships between the assimilation of ammonium and the function of the urea-cycle are discussed.  相似文献   

12.
The metabolism of [1-13C]glucose in the vegetative mycelium of the ectomycorrhizal ascomycete Tuber borchii was studied in order to characterize the biochemical pathways for the assimilation of glucose and amino acid biosynthesis. The pathways were characterized using nuclear magnetic resonance spectroscopy in conjunction with [1-13C]glucose labeling. The enzymes of mannitol cycle and ammonium assimilation were also evaluated. The majority of the 13C label was incorporated into mannitol and this polyol was formed via a direct route from absorbed glucose. Amino acid biosynthesis was also an important sink of assimilated carbon and 13C was mainly incorporated into alanine and glutamate. From this intramolecular 13C enrichment, it is concluded that pyruvate, arising from [1-13C]glucose catabolism, was used by alanine aminotransferase, pyruvate dehydrogenase and pyruvate carboxylase before entering the Krebs cycle. The transfer of 13C-labeled mycelium on [12C]glucose showed that mannitol, alanine, and glutamate carbon were used to synthesize glutamine and arginine that likely play a storage role.  相似文献   

13.
When Lemna minor L. is supplied with the potent inhibitor of glutamine synthetase, methionine sulfoximine, rapid changes in free amino acid levels occur. Glutamine, glutamate, asparagine, aspartate, alanine, and serine levels decline concomitantly with ammonia accumulation. However, not all free amino acid pools deplete in response to this inhibitor. Several free amino acids including proline, valine, leucine, isoleucine, threonine, lysine, phenylalanine, tyrosine, histidine, and methionine exhibit severalfold accumulations within 24 hours of methionine sulfoximine treatment. To investigate whether these latter amino acid accumulations result from de novo synthesis via a methionine sulfoximine insensitive pathway of ammonia assimilation (e.g. glutamate dehydrogenase) or from protein turnover, fronds of Lemna minor were prelabeled with [15N]H4+ prior to supplying the inhibitor. Analyses of the 15N abundance of free amino acids suggest that protein turnover is the major source of these methionine sulfoximine induced amino acid accumulations. Thus, the pools of valine, leucine, isoleucine, proline, and threonine accumulated in response to the inhibitor in the presence of [15N]H4+, are 14N enriched and are not apparently derived from 15N-labeled precursors. To account for the selective accumulation of amino acids, such as valine, leucine, isoleucine, proline, and threonine, it is necessary to envisage that these free amino acids are relatively poorly catabolized in vivo. The amino acids which deplete in response to methionine sulfoximine (i.e. glutamate, glutamine, alanine, aspartate, asparagine, and serine) are all presumably rapidly catabolized to ammonia, either in the photorespiratory pathway or by alternative routes.  相似文献   

14.
Mitochondrial metabolism in developing embryos of Brassica napus   总被引:1,自引:0,他引:1  
The metabolism of developing plant seeds is directed toward transforming primary assimilatory products (sugars and amino acids) into seed storage compounds. To understand the role of mitochondria in this metabolism, metabolic fluxes were determined in developing embryos of Brassica napus. After labeling with [1,2-(13)C2]glucose + [U-(13)C6]glucose, [U-(13)C3]alanine, [U-(13)C5]glutamine, [(15)N]alanine, (amino)-[(15)N]glutamine, or (amide)-[(15)N]glutamine, the resulting labeling patterns in protein amino acids and in fatty acids were analyzed by gas chromatography-mass spectrometry. Fluxes through mitochondrial metabolism were quantified using a steady state flux model. Labeling information from experiments using different labeled substrates was essential for model validation and reliable flux estimation. The resulting flux map shows that mitochondrial metabolism in these developing seeds is very different from that in either heterotrophic or autotrophic plant tissues or in most other organisms: (i) flux around the tricarboxylic acid cycle is absent and the small fluxes through oxidative reactions in the mitochondrion can generate (via oxidative phosphorylation) at most 22% of the ATP needed for biosynthesis; (ii) isocitrate dehydrogenase is reversible in vivo; (iii) about 40% of mitochondrial pyruvate is produced by malic enzyme rather than being imported from the cytosol; (iv) mitochondrial flux is largely devoted to providing precursors for cytosolic fatty acid elongation; and (v) the uptake of amino acids rather than anaplerosis via PEP carboxylase determines carbon flow into storage proteins.  相似文献   

15.
We studied the effect of the antihyperglycemic glitazones, ciglitazone, troglitazone, and rosiglitazone, on glutamine metabolism in renal tubule-derived Madin-Darby canine kidney (MDCK) cells. Troglitazone (25 microM) enhanced glucose uptake and lactate production by 108 and 92% (both P < 0.001). Glutamine utilization was not inhibited, but alanine formation decreased and ammonium formation increased (both P < 0.005). The decrease in net alanine formation occurred with a change in alanine aminotransferase (ALT) reactants, from close to equilibrium to away from equilibrium, consistent with inhibition of ALT activity. A shift of glutamine's amino nitrogen from alanine into ammonium was confirmed by using L-[2-(15)N]glutamine and measuring the [(15)N]alanine and [(15)N]ammonium production. The glitazone-induced shift from alanine to ammonium in glutamate metabolism was dose dependent, with troglitazone being twofold more potent than rosiglitazone and ciglitazone. All three glitazones induced a spontaneous cellular acidosis, reflecting impaired acid extrusion in responding to both an exogenous (NH) and an endogenous (lactic acid) load. Our findings are consistent with glitazones inducing a spontaneous cellular acidosis associated with a shift in glutamine amino nitrogen metabolism from predominantly anabolic into a catabolic pathway.  相似文献   

16.
Ammonium assimilation was followed in N-starved mycelia from the ectomycorrhizal Ascomycete Cenococcum graniforme. The evaluation of free amino acid pool levels after the addition of 5 millimolar NH4+ indicated that the absorbed ammonium was assimilated rapidly. Post-feeding nitrogen content of amino acids was very different from the initial values. After 8 hours of NH4+ feeding, glutamine accounted for the largest percentage of free amino acid nitrogen (43%). The addition of 5 millimolar methionine sulfoximine (MSX) to NH4+-fed mycelia caused an inhibition of glutamine accumulation with a corresponding increase in glutamate and alanine levels.

Using 15N as a tracer, it was found that the greatest initial labeling was into glutamine and glutamate followed by aspartate, alanine, and ornithine. On inhibiting glutamine synthetase using MSX, 15N enrichment of glutamate, alanine, aspartate, and ornithine continued although labeling of glutamine was quite low. Moreover, the incorporation of 15N label in insoluble nitrogenous compounds was lower in the presence of MSX. From the composition of free amino acid pools, the 15N labeling pattern and effects of MSX, NH4+ assimilation in C. graniforme mycelia appears to proceed via glutamate dehydrogenase pathway. This study also demonstrates that glutamine synthesis is an important reaction of ammonia utilization.

  相似文献   

17.

Plasma glutamate concentrations are constant despite dynamic changes in diets. Most likely, virtually all the dietary glutamate is metabolized in the gut. The present study investigated permeability and metabolism of dietary glutamate in a Caco-2 intestinal epithelial cell layer model by tracing the fate of [U-13C] or [15N]glutamate added to the apical medium. For comparison, several other labelled essential and non-essential amino acids were tested as well. Almost all the labelled glutamate in the apical medium (98% and 96% at 24 h of the culture, respectively) was incorporated in the cell layer, while it barely appeared at the basolateral side, indicating an almost complete utilization of glutamate. Indeed, the 13C was incorporated into alanine, proline, ornithine, and glutamine, and the 15N was incorporated into alanine, glutamine, ornithine, proline, branched chain amino acids and also found as ammonia indicative of oxidation. In contrast, substantial apical-to-basolateral transport of amino acids (8–85% of uptake) other than glutamate and aspartate was evident in studies using amino acid tracers labelled with 13C, 15N or D. These results suggest that the intestinal epithelial cell monolayer utilizes dietary glutamate which adds to maintaining glutamate homeostasis in the body.

  相似文献   

18.
The pathway of ammonium nitrogen assimilation, its incorporationinto amino acids and synthesis of protein was studied with theaid of nitrogen-15. The analysis of 15N involves the use ofoptical emission spectrometry. Kinetic analysis of nitrogen assimilation by the roots indicatesthat glutamine and glutamic acid were the primary products ofammonium assimilation. Possibly some of the amino acids, suchas aspartic acid and alanine received their amino nitrogen directlyfrom free ammonia in the roots. Amino groups were transformedinto other amino acids from these primary products, especiallyfrom glutamic acid through transamination. (Received April 1, 1974; )  相似文献   

19.
Nuclear magnetic resonance spectra of cultures of Candida albicans incubated in the presence of 15N-labelled ammonium demonstrated that glutamine and glutamate were the only initial products of ammonium assimilation. The nature of the route of assimilation in the yeasts Candida albicans, Saccharomyces cerevisiae, and Candida tropicalis was further examined by the use of the short-lived isotope 13N. [13N]ammonium was generated in the reaction 16O(p,alpha)13N, induced by proton bombardment of water in tandem accelerator. High-pressure liquid chromatography was used to separate and identify the products of assimilation, and radioactivity was detected and corrected for decay, using a computer-linked NaI scintillation detector. In the three yeasts studied, the labelled ammonium was assimilated into the acid-extractable fraction of cell suspensions within 1 min, and over 75% was converted to glutamine and glutamate. Subsequent to exhaustion of the labelled ammonium, the stoichiometry of the distribution of radiolabel was consistent with a net transfer of radiolabel from glutamine to glutamate, confirming the operation of glutamate synthase (EC 1.4.1.14) in these yeasts. Initial assimilation of label was mostly into glutamine (at a maximal rate within 10 s in C. albicans), whereas accumulation in glutamate did not occur at maximal rate until more than 70% of the labelled ammonium had been assimilated (between 30 and 60 s in C. albicans). We conclude that the glutamine synthetase-glutamate synthase pathway is the major route of ammonium assimilation in C. albicans and also in nitrogen-starved cultures of S. cerevisiae and C. tropicalis.  相似文献   

20.
We utilized gas chromatography-mass spectrometry to study the transfer of15N from [2-15N]glutamine, [15N]leucine, [15N]alanine, or15NH4Cl to [15N]glutamate and [15N]aspartate in cultured cerebrocortical GABA-ergic neurons from the mouse. Initial rates of15N appearance (atom % excess) were somewhat higher with 2mM [2-15N]glutamine as a precursor than with 1mM [15N]leucine or 1mM [15N]alanine, but initial net formation (nmol [15N]glutamate/mg protein.min–1) was roughly comparable with all precursors. At steady-state15N labeling was about two times greater with 2mM [2-15N]glutamine as precursor. The subsequent transfer of15N from glutamate to aspartate was extremely rapid, the labelling pattern of these two amino acid pools being virtually indistinguishable. We observed little reductive amination of 2-oxo-glutarate to yield [15N]glutamate in the presence of 0.3mM15NH4Cl. Reductive amination through glutamate dehydrogenase was much more prominent at a concentration of 3.0mM15NH4Cl. Glutamate formation via reductive amination was unaffected by inclusion of 1 mM 2-oxo-glutarate in the incubation medium. These results indicate that glutamate synthesis in cultured GABA-ergic neurons is derived not only from the glutaminase reaction, but also from transamination reactions in which both leucine and alamine are efficient N donors. Reductive amination of 2-oxo-glutarate in the glutamate dehydrogenase pathway plays a relatively minor role at lower concentrations of extracellular ammonia but becomes quite active at 3mM ammonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号