首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A signaling pathway that induces programmed necrotic cell death (necroptosis) was reported to be activated in cells by several cytokines and various pathogen components. The major proteins participating in that pathway are the protein kinases RIPK1 and RIPK3 and the pseudokinase mixed lineage kinase domain-like protein (MLKL). Recent studies have suggested that MLKL, once activated, mediates necroptosis by binding to cellular membranes, thereby triggering ion fluxes. However, our knowledge of both the sequence of molecular events leading to MLKL activation and the subcellular sites of these events is fragmentary. Here we report that the association of MLKL with the cell membrane in necroptotic death is preceded by the translocation of phosphorylated MLKL, along with RIPK1 and RIPK3, to the nucleus.Apart from the apoptotic cell death pathway that ligands of the tumor necrosis factor (TNF) family can activate, these ligands and various other inducers, including the interferons and various pathogen components, have in recent years been found also to trigger a signaling cascade that induces programmed necrotic death (necroptosis). This cascade encompasses sequential activation of the protein kinases RIPK1 and RIPK3 and the pseudokinase mixed lineage kinase domain-like protein (MLKL).1, 2, 3, 4, 5 RIPK3-mediated phosphorylation of MLKL triggers its oligomerization, which is necessary and sufficient for the induction of cell death,6, 7, 8 and can also trigger some non-deadly functions.9 MLKL was recently suggested to trigger cell death by binding to cellular membranes and initiating ion fluxes through them.6, 7, 8, 10 However, its exact molecular target in death induction is contentious.6, 8, 10, 11, 12 Current knowledge of the subcellular sites of MLKL action is based mainly on determination of the location of this protein close to the time of cell death. Here we present a detailed assessment of the cellular location of MLKL at different times following its activation. Our findings indicate that before cell death, MLKL translocates to the nucleus along with RIPK1 and RIPK3.  相似文献   

2.
3.
In tobacco plants, wounding induces production of a set of defense-related proteins such as basic pathogenesis-related (PR) proteins and proteinase inhibitors (PIs) via the jasmonate/ethylene pathway. Although class III plant peroxidase (POX) is also wound-inducible, the regulatory mechanism for its wound-induced expression is not fully understood. Here, we describe that a tobacco POX gene (tpoxN1), which is constitutively expressed in roots, is induced locally 30 min after wounding and then systemically in tobacco plants. Infection of necrotizing virus also induced tpoxN1 gene. The wound-induced expression was not enhanced by known wound-signal compounds such as methyl jasmonate (MeJA) and ethephon in contrast to other wound-inducible genes such as basic PR-1 and PI-II genes. And treatment with MeJA and coronatine, biological analogs of jasmonate, rather suppressed the tpoxN1 expression. Salicylic acid, an antagonist of jasmonate-based wound signaling, did not suppress the wound-induced expression of tpoxN1. Only spermine, which is reported as an endogenous inducer for acidic PR genes in tobacco mosaic virus-infected tobacco leaves, could induce tpoxN1 gene expression. These results suggest that wound-induced expression of the tpoxN1 gene is regulated differently from that of the basic PR and PI-II genes.  相似文献   

4.
Heat-shock proteins (hsps) are constitutively induced by the mutant actins in the Drosophila indirect flight muscles (IFM). We compared primary structures of the mutant actin genes (KM75 and HH5) which induce hsps and of the non-inducing alleles (KM129 and KM88). The KM75 actin has lost 20 amino acids at the C-terminus. The HH5 actin has only one amino acid substitution, from Gly-336 to Ser. In KM129, the C-terminal part of actin is replaced by novel amino acids. KM88 is a null allele, with an amber mutation early in the coding region of the mutated actin gene. Although all of the KM75, HH5 and KM129 actins have defects near the C-terminus, only hsp-inducing mutant actins cause enlargement of the IFM nuclei as well as a disruption of myofibrils even in the presence of two copies of the normal genes. We further consider the underlying mechanisms linking these features of the hsp-inducing alleles.  相似文献   

5.
R Cavicchioli  K Watson 《FEBS letters》1986,207(1):149-152
Yeast cells when subjected to a primary heat shock, defined as a temperature shift from 23 to 37 degrees C for 30 min, acquired tolerance to heat stress (52 degrees C/5 min). Primary heat shocked cells incubated at 23 degrees C for up to 3 h, progressively lost thermotolerance but retained high levels of the major heat-shock proteins as observed on polyacrylamide gels. On the other hand, a temperature shift back up to 37 degrees C for 30 min fully restored thermotolerance. The major high-molecular-mass heat-shock proteins (hsp) identified were of approximate molecular mass 100 kDa (hsp 100), 80 kDa (hsp 80) and 70 kDa (hsp 70). The results indicate that loss of heat-shock acquisition of thermotolerance is not correlated with loss of heat-shock proteins.  相似文献   

6.
The relationship of heat-induced inhibition of protein synthesis (HIIPS) and thermotolerance, the transient ability to survive otherwise lethal heat treatments, was studied in HA-1 Chinese hamster fibroblasts exposed to various treatments. A mild heatshock or exposure to sodium arsenite induced a refractoriness to HIIPS, while exposure to the amino acid analog of proline, azetidine, did not. The development and decay of refractoriness to HIIPS after exposure to heat or sodium arsenite paralleled in the increase and decrease of the rate of synthesis of the heat-shock proteins (HSP), and was associated with neither the persistence of elevated levels of HSP nor the persistence of the thermotolerant state. Refractoriness to HIIPS was not associated with the elevated synthesis of HSP in the presence of amino acid analogs regardless of the mode of induction, indicating a requirement for functional HSP for the effect. The refractoriness to HIIPS was also found in heat-resistant variants of HA-1 cells that express elevated levels of hsp 70, implicating a role for this protein in this process. Our observation establish an unique biological effect associated with the period of elevated synthesis of the HSP, especially the hsp 70.  相似文献   

7.
We have used mitogenic lectin (PHA) and a monoclonal antibody (OKT3) to stimulate human peripheral blood (G0) lymphocytes, in the presence of monocytes, and have found two major preferentially synthesized proteins, 73 and 95 kD, which are induced by the mitogens. The elevated synthesis of both proteins begins approximately 4-6 h after mitogen addition (early to mid G0/G1) before entry into first S phase. Maximum synthesis of both proteins is reached by 12 h after mitogen addition when P95 synthesis represents approximately 4%, and P73 approximately 2%, of the total protein synthesis, compared with less than 0.5% for each protein in cells cultured without mitogen. Thus, the proteins appear to be major components of activated cells. We find that both P73 and P95 are induced by heat stress as well as mitogenic stimulation. The induction of the proteins is not affected by either deleting glucose from the culture media or, alternatively, by supplementing it. Using polyclonal antibodies prepared to each of the proteins isolated from mitogen activated cells and monoclonal antibodies that were raised to heat shock proteins, we are able to show that P95 is electrophoretically and immunologically identical to the HSP 90 induced by heat stress. P73 is one of the 70 kD HSPs, (termed HSC 70; Pelham, H. R. B. 1986. Cell. 46: 959-961), but is different from the most strongly heat inducible form of HSP 70 (72 kD). The distribution of both proteins in subcellular fractions of mitogen activated lymphocytes is similar to the reported localization of the respective HSP's in other cell types. The results suggest that HSP 90 and HSC 70 may have functional roles in stress response and growth processes of human lymphocytes.  相似文献   

8.
Synthesis of heat-shock proteins by cells undergoing myogenesis   总被引:11,自引:0,他引:11       下载免费PDF全文
Subjecting 24-h-old cultures of quail myoblasts to incubation at an elevated temperature causes the pattern of protein synthesis to shift from the production of a broad spectrum of different proteins to the enhanced synthesis of a small number of heat-shock proteins. The synthesis of four major heat-induced polypeptides with Mrs of 88,000, 82,000, 64,000 and 25,000 achieve levels comparable to that of the major structural protein, actin. Two-dimensional electrophoretic separation and fluorographic analysis of these polypeptides establish that those with Mrs of 94,000, 88,000, 82,000, and 64,000 and pIs of 5.1, 5.2, 5.2, and 5.4, respectively, are synthesized by heat-shocked as well as by control (albeit not as intense) cultures. However, the synthesis of polypeptides with Mrs of 94,000, 64,000, and 25,000 and pI's of 5.2, 5.8, and 5.4, respectively, is detectable only in myoblasts shifted to a higher temperature. Recovery of heat-shocked myoblasts, to a normal preinduction pattern of polypeptide synthesis, takes approximately 8 h. Similar studies, completed in older, more differentiated myogenic cells, demonstrated that as cells progress through myogenesis their ability to respond to a similar temperature shift is diminished. The synthesis of some myoblastlike heat-shock proteins by fusing of cells or by myotubes requires that they be maintained at an elevated temperature at least twice as long as myoblasts. This observation and the demonstration that heat-shocked myotubes do not synthesize detectable levels of the 25,000-dalton polypeptide found in heat-shocked myoblasts, suggest that the synthetic response of myogenic cells to heat shock is dependent on the differentiative state of these cells.  相似文献   

9.
The effects of cross-linking of membrane proteins on hemolysis of human erythrocytes under high pressure (2.0 kbar) were examined. The membrane proteins were cross-linked by oxidation of their SH-groups with diamide (0.05-0.5 mM) under different pressures (1-1,000 bar) at which no hemolysis occurs. As the pressure during diamide treatment was raised, the degree of hemolysis under 2.0 kbar and the quantity of cytoskeletal proteins extracted in a low ionic strength medium were gradually decreased. However, both values were increased by reduction with dithiothreitol. From the determination of membrane SH-groups, it was found that cross-linking of membrane proteins by diamide was accelerated under pressure. Only in erythrocytes treated with diamide under pressure were parts of spectrin and ankyrin, in addition to band 3 and band 4.2 proteins, extracted by using Triton X-100. One- and two-dimensional SDS-PAGE of membrane proteins showed that cross-linking of the membrane with cytoskeletal meshwork through linking proteins, in addition to that of membrane proteins themselves, was formed only in the diamide treatment under pressure. These results indicate that pressure-induced hemolysis is greatly suppressed by the supramolecular-weight polymers formed among membrane proteins, and that the high pressure technique is useful for cross-linking membrane proteins with diamide.  相似文献   

10.
A Laszlo 《Radiation research》1988,116(3):427-441
The synthesis of the major heat-shock proteins (hsp) was compared in normal and heat-resistant Chinese hamster fibroblasts which express higher levels of the 70 kDa heat-shock protein (hsp70). Following exposure to a variety of experimental conditions that induce the elevated synthesis of the hsp, higher relative levels of hsp70 and lower relative levels of hsp89 and hsp110 were found in the heat-resistant variants. This effect was observed with all inducers tested. The relatively greater synthesis of hsp70 and relatively lower synthesis of hsp89 occurred at all temperatures tested and was found to be independent of cell culture conditions. The relatively greater increase in the levels of hsp70 in the heat-resistant variants after a mild heat shock was found to be a reflection of elevated levels of messenger RNA coding for this polypeptide. These results indicate that the heat-shock response in mammalian cells displays coordinate regulatory features and that the alteration of the expression of one of the hsp may affect the expression of the others.  相似文献   

11.
12.
13.
Artemisinin (ART) is a sesquiterpene lactone natural product that is widely used to treat multi-drug resistant strains of malaria. Artemisinin and its derivatives are also selectively cytotoxic to cancer cells, which can be modulated by altering heme synthesis. Cytotoxicity to cancer cells is thought to involve generation of oxidative stress, although conflicting data exist. We have analyzed reactive oxygen species (ROS) generation using the fluorescent probes 2′,7′-dichlorodihydrofluorescein diacetate (DCF) and dihydroethidine (HET) upon exposure to dihydroartemisinin (DHA) in Molt-4 leukemia cells. HET fluorescence correlated with dose-dependent DHA-induced cytotoxicity, increased within 30 min of DHA exposure, and was significantly enhanced by increasing heme synthesis. Protein levels of copper,zinc-superoxide dismutase (CuZnSOD), manganese-superoxide dismutase (MnSOD), catalase, and glutathione peroxidases 1/2 were also found to increase with DHA exposure. 4-hydroxy-tempol (TEMPOL) and DF-Mn, MnSOD mimetics, could significantly inhibit ROS generation and reduce cell death. Production of superoxide appears to be a central mediator of cytotoxicity from DHA.  相似文献   

14.
Cultured rat embryo cells were stimulated to rapidly release a small group of proteins that included several heat-shock proteins (hsp110, hsp71, hscp73) and nonmuscle actin. The extracellular proteins were analyzed by two-dimensional polyacrylamide gel electrophoresis. Heat-shocked cells released the same set of proteins as control cells with the addition of the stress-inducible hsp110 and hsp71. Release of these proteins was not blocked by either monensin or colchicine, inhibitors of the common secretory pathway. A small amount of the glucose-regulated protein grp78 was externalized by this pathway. The extracellular accumulation of these proteins was inhibited after they were synthesized in the presence of the lysine analogue aminoethyl cysteine. It is likely that the analogue-substituted proteins were misfolded and could not be released from cells, supporting our conclusion that a selective release mechanism is involved. Remarkably, actin and the squid heat-shock proteins homologous to rat hsp71 and hsp110 are also among a select group of proteins transferred from glial cells to the squid giant axon, where they have been implicated in neuronal stress responses (Tytell et al.: Brain Res., 363:161-164, 1986). Based in part on the similarities between these two sets of proteins, we hypothesized that these proteins were released from labile cortical regions of animal cells in response to perturbations of homeostasis in cells as evolutionarily distinct as cultured rat embryo cells and squid glial cells.  相似文献   

15.
16.
In the ubiquitin pathway for intracellular protein breakdown, proteins ligated to ubiquitin are degraded by a large (26 S) ATP-dependent protease complex. It was found previously that the 26 S complex is assembled from three different enzyme components by a process that requires MgATP. In addition, MgATP is also required for the continued action of the 26 S complex in the breakdown of ubiquitin-protein conjugates. In the present study we have tried to gain some insight into the mode of action of ATP by following ATP hydrolysis by the 26 S complex and its three components. It was found that none of the three unassembled components had significant ATPase activity, but such activity appeared following their entry into the 26 S complex. The presence of all three components and of MgATP was required for the formation of complex-associated ATPase activity. GTP and UTP cannot replace ATP for complex assembly, but these nucleotides can substitute for ATP in the stimulation of the conjugate-degrading activity of the 26 S complex. Unlabeled GTP and UTP inhibit the hydrolysis of [gamma-32P] ATP by complex-associated ATPase, indicating that this activity is related to the latter site of ATP action in this system.  相似文献   

17.
Lee SH  McCormick F 《The EMBO journal》2006,25(17):4008-4019
p97 (also referred to as DAP5, NAT1 or eIF4G2) has been proposed to act as a repressor of protein synthesis. However, we found that p97 is abundantly expressed in proliferating cells and p97 is recruited to ribosomes following growth factor stimulation. We also report that p97 binds eIF2beta through its C-terminal domain and localizes to ribosome through its N-terminal MIF4G domain. When overexpressed, p97 increases reporter luciferase activity. In contrast, overexpression of the C-terminal two-thirds of eukaryotic initiation factor 4GI (eIF4GI), a region that shares significant homology with p97, or the N-terminal MIF4G domain of p97 markedly inhibits reporter activity, the rate of global translation and cell proliferation. Conversely, downregulation of p97 levels by RNA interference also decreases the rate of global translation and inhibits cell proliferation. This coincides with an increase in p27/Kip1 protein levels and a marked decrease in CDK2 kinase activity. Taken together, our results demonstrate that p97 is functionally different from the closely related C-terminal two-thirds of eIF4GI and it can positively promote protein synthesis and cell proliferation.  相似文献   

18.
Cotton (Gossypium hirsutum L. cv. Deltapine 50) seedlings grown under light-dark cycles of 12:12 h at 33 degrees C showed rhythmic changes in their resistance to heat shock of 53 degrees C for 40 min. The resistance was maximal at the middle of the light period and declined toward the end of the light period. One more peak of resistance developed in the middle of the dark period and declined toward the end of the dark period. Rhythmic changes in heat resistance persisted under continuous light for 3 cycles, indicating a circadian control. Under continuous light only one phase of resistance developed, lasting from the middle of the subjective night to the middle of the subjective day. The major heat shock proteins (HSPs) synthesized upon 30-min exposure to 40 degrees C, 49 degrees C or 53 degrees C were of 115, 89, 73, and 19 kDa. Their rate of synthesis depended on the inducing temperature, on previous exposure to high temperature and on the time in the light-dark cycle. The time dependency of the induction of certain HSPs persisted under continuous light, indicating a circadian control. No positive correlations was found between the rhythmic changes in heat resistance and the rhythmic changes in the synthesis of any HSP.  相似文献   

19.
Human basic fibroblast growth factor (hFGF-2) was produced in high-cell density cultures of recombinant Escherichia coli using a temperature-inducible expression system. The synthesis rates of proteins were followed by two-dimensional gel electrophoresis of the (35)S-methionine-labeled proteom. After temperature induction of hFGF-2 synthesis, the rate of total protein synthesis per biomass increased by a factor of three, mainly as a result of the additional synthesis of hFGF-2 and heat-shock proteins. The synthesis rates of heat-shock proteins and constitutive plasmid-encoded proteins increased after the temperature upshift also in the control strain without hFGF-2 gene but followed time profiles different from the producing strain. The energy demand for the extra synthesis of plasmid-encoded and heat-shock proteins resulted in an elevated respiratory activity and, consequently, in a reduction of the growth rate and the biomass yield. A procedure was developed to relate the energy demand for the additional synthesis of these proteins to the generation of energy in the respiratory pathway. Specific energy production was estimated based on on-line measurable rates of oxygen consumption, or carbondioxide evolution and growth, respectively. In this way, the metabolic burden resulting from the synthesis of plasmid-encoded and heat-shock proteins was quantified from on-line accessible data.  相似文献   

20.
DNA damage response (DDR) is vital for genomic stability, and its deficiency is linked to tumorigenesis. Extensive studies in interphase (G(1)-S-G(2)) mammalian cells have revealed the mechanisms of DDR in great detail; however, how mitotic cells respond to DNA damage remains less defined. We report here that a full DDR is suppressed in mitotic mammalian cells until telophase/cytokinesis. Although early DDR markers such as the phosphorylations of ataxia telangiectasia mutated (ATM) and histone H2A.x (H2AX) can be readily detected, the ionizing radiation-induced foci (IRIF) formation of late DDR markers such as breast cancer type 1 susceptibility protein (BRCA1) and p53-binding protein 1 (53BP1) are absent until the telophase/cytokinesis stage. We further showed that the IR-induced ubiquitination cascade around DNA damage sites did not occur in mitotic cells, which explains, at least in part, why BRCA1 and 53BP1 cannot be recruited to the damaged sites. These observations indicate that DDR is suppressed in mitotic cells after the step of γH2AX formation. Not surprisingly, we found that the absence of a full DDR in mitotic cells was associated with the high cyclin-dependent kinase 1 (CDK1) activities. More 53BP1 IRIF could be detected when the irradiated mitotic cells were treated with a CDK1 inhibitor. Further, the activation of CDK5 in interphase cells impedes the formation of 53BP1 IRIF. Together, these results suggest that the DDR is suppressed by the high CDK1 activity in mitotic mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号