首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial transport proteins (MTP) typically are homodimeric with a 30-kDa subunit with six transmembrane helices. The subunit possesses a sequence motif highly similar to Pro X Asp/Glu X X Lys/Arg X Arg within each of its three similar 10-kDa segments. Four (YNL083W, YFR045W, YPR021C, YDR470C) of the 35 yeast (S. cerevisiae) MTP genes were resequenced since the masses of their proteins deviate significantly from the typical 30 kDa. We now find these four proteins to have 545, 285, 902, and 502 residues, respectively. Together with only four other MTPs, the sequences of YPR021C and YDR470C show substitutions of some of the five residues that are absolutely conserved among the 12 MTPs with identified transport function and 17 other MTPs. We do now find these five consensus residues also in the new sequences of YNL083W and YFR045W. Additional analyses of the 35 yeast MTPs show that the location of transmembrane helix sequences do not correlate with the general consensus residues of the MTP family; protein segments connecting the six transmembrane helices and facing the intermembrane space are not uniformly short (about 20 residues) or long (about 40 residues) when facing the matrix; most MTPs have at least one transmembrane helix for which the sum of the negative hydropathy values of all residues yields a very small negative value, suggesting a membrane location bordering polar faces of other transmembrane helices or a non-transmembrane location. The extra residues of the three large MTPs are hydrophilic and at the N-terminal. The 200-residue N-terminal segment of YNL083W has four putative Ca2+-binding sites. The 500-residue N-terminal segment of YPR021C shows sequence similarity to enzymes of nucleic acid metabolism. cDNA microarray data show that YNL083W is expressed solely during sporulation, while the expressions of YFR045W, YPR021C, and YDR470C are induced by various stress situations. These results also show that the 35 MTP genes are expressed under a rather diverse set of metabolic conditions that may help identify the function of the proteins. Interestingly, yeast two-hybrid screens, that will also be useful in identifying the function of MTPs, indicate that MIR1, AAC3, YOR100C, and YPR011C do interact with non-MTPs.  相似文献   

2.
3.
Brucella abortus cyclic glucan synthase (Cgs) is a 316-kDa (2,831-amino-acid) integral inner membrane protein that is responsible for the synthesis of cyclic beta-1,2-glucan by a novel mechanism in which the enzyme itself acts as a protein intermediate. B. abortus Cgs uses UDP-glucose as a sugar donor and has the three enzymatic activities necessary for synthesis of the cyclic polysaccharide (i.e., initiation, elongation, and cyclization). Cyclic glucan is required in B. abortus for effective host interaction and complete expression of virulence. To gain further insight into the structure and mechanism of action of B. abortus Cgs, we studied the membrane topology of the protein using a combination of in silico predictions, a genetic approach involving the construction of fusions between the cgs gene and the genes encoding alkaline phosphatase (phoA) and beta-galactosidase (lacZ), and site-directed chemical labeling of lysine residues. We found that B. abortus Cgs is a polytopic membrane protein with the amino and carboxyl termini located in the cytoplasm and with six transmembrane segments, transmembrane segments I (residues 419 to 441), II (residues 452 to 474), III (residues 819 to 841), IV (residues 847 to 869), V (residues 939 to 961), and VI (residues 968 to 990). The six transmembrane segments determine four large cytoplasmic domains and three very small periplasmic regions.  相似文献   

4.
Citrate-mediated iron transport across the cytoplasmic membrane is catalyzed by an ABC transporter that consists of the periplasmic binding protein FecB, the transmembrane proteins FecC and FecD, and the ATPase FecE. Salt bridges between glutamate residues of the binding protein and arginine residues of the transmembrane proteins are predicted to mediate the positioning of the substrate-loaded binding protein on the transmembrane protein, based on the crystal structures of the ABC transporter for vitamin B(12), consisting of the BtuF binding protein and the BtuCD transmembrane proteins (E. L. Borths et al., Proc. Natl. Acad. Sci. USA 99:16642-16647, 2002). Here, we examined the role of the residues predicted to be involved in salt-bridge formation between FecB and FecCD by substituting these residues with alanine, cysteine, arginine, and glutamate and by analyzing the citrate-mediated iron transport of the mutants. Replacement of E93 in FecB with alanine [FecB(E93A)], cysteine, or arginine nearly abolished citrate-mediated iron transport. Mutation FecB(E222R) nearly eliminated transport, and FecB(E222A) and FecB(E222C) strongly reduced transport. FecD(R54C) and FecD(R51E) abolished transport, whereas other R-to-C mutations in putative interaction sites between FecCD and FecB substantially reduced transport. The introduced cysteine residues in FecB and FecCD also served to examine the formation of disulfide bridges in place of salt bridges between the binding protein and the transmembrane proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis results suggest cross-linking of FecB(E93C) to FecD(R54C) and FecB(E222C) to FecC(R60C). The data are consistent with the proposal that FecB(E93) is contained in the region that binds to FecD and FecB(E222) in the region that binds to FecC.  相似文献   

5.
Clancy EK  Duncan R 《Journal of virology》2011,85(10):4707-4719
The fusogenic reoviruses induce syncytium formation using the fusion-associated small transmembrane (FAST) proteins. A recent study indicated the p14 FAST protein transmembrane domain (TMD) can be functionally replaced by the TMDs of the other FAST proteins but not by heterologous TMDs, suggesting that the FAST protein TMDs are modular fusion units. We now show that the p15 FAST protein is also a modular fusogen, as indicated by the functional replacement of the p15 ectodomain with the corresponding domain from the p14 FAST protein. Paradoxically, the p15 TMD is not interchangeable with the TMDs of the other FAST proteins, implying that unique attributes of the p15 TMD are required when this fusion module is functioning in the context of the p15 ecto- and/or endodomain. A series of point substitutions, truncations, and reextensions were created in the p15 TMD to define features that are specific to the functioning of the p15 TMD. Removal of only one or two residues from the N terminus or four residues from the C terminus of the p15 TMD eliminated membrane fusion activity, and there was a direct correlation between the fusion-promoting function of the p15 TMD and the presence of N-terminal, hydrophobic β-branched residues. Substitution of the glycine residues and triserine motif present in the p15 TMD also impaired or eliminated the fusion-promoting activity of the p15 TMD. The ability of the p15 TMD to function in an ecto- and endodomain-specific context is therefore influenced by stringent sequence requirements that reflect the importance of TMD polar residues and helix-destabilizing residues.  相似文献   

6.
We present BTMX (Beta barrel TransMembrane eXposure), a computational method to predict the exposure status (i.e. exposed to the bilayer or hidden in the protein structure) of transmembrane residues in transmembrane beta barrel proteins (TMBs). BTMX predicts the exposure status of known TM residues with an accuracy of 84.2% over 2,225 residues and provides a confidence score for all predictions. Predictions made are in concert with the fact that hydrophobic residues tend to be more exposed to the bilayer. The biological relevance of the input parameters is also discussed. The highest prediction accuracy is obtained when a sliding window comprising three residues with similar C(α)-C(β) vector orientations is employed. The prediction accuracy of the BTMX method on a separate unseen non-redundant test dataset is 78.1%. By employing out-pointing residues that are exposed to the bilayer, we have identified various physico-chemical properties that show statistically significant differences between the beta strands located at the oligomeric interfaces compared to the non-oligomeric strands. The BTMX web server generates colored, annotated snake-plots as part of the prediction results and is available under the BTMX tab at http://service.bioinformatik.uni-saarland.de/tmx-site/. Exposure status prediction of TMB residues may be useful in 3D structure prediction of TMBs.  相似文献   

7.
The alpha-factor receptor (STE2) stimulates a G protein signaling pathway that promotes mating of the yeast Saccharomyces cerevisiae. Previous random mutagenesis studies implicated residues in the regions near the extracellular ends of the transmembrane domains in ligand activation. In this study, systematic Cys scanning mutagenesis across the ends of transmembrane domains 5 and 6 identified two residues, Phe(204) and Tyr(266), that were important for receptor signaling. These residues play a specific role in responding to alpha-factor since the F204C and Y266C substituted receptors responded to an alternative agonist (novobiocin). To better define the structure of this region, the Cys-substituted mutant receptors were assayed for reactivity with a thiol-specific probe that does not react with membrane-imbedded residues. A drop in reactivity coincided with residues likely to be buried in the membrane. Interestingly, both Phe(204) and Tyr(266) are located very near the interface region. However, these assays predict that Phe(204) is accessible at the surface of the receptor, consistent with the strong defect in binding alpha-factor caused by mutating this residue. In contrast, Tyr(266) was not accessible. This correlates with the ability of Y266C mutant receptors to bind alpha-factor and suggests that this residue is involved in the subsequent triggering of receptor activation. These results highlight the role of aromatic residues near the ends of the transmembrane segments in the alpha-factor receptor, and suggest that similar aromatic residues may play an important role in other G protein-coupled receptors.  相似文献   

8.
EmrE is a 12-kDa Escherichia coli multidrug transporter that confers resistance to a wide variety of toxic reagents by actively removing them in exchange for hydrogen ions. The three native Cys residues in EmrE are inaccessible to N-ethylmaleimide (NEM) and a series of other sulfhydryls. In addition, each of the three residues can be replaced with Ser without significant loss of activity. A protein without all the three Cys residues (Cys-less) has been generated and shown to be functional. Using this Cys-less protein, we have now generated a series of 48 single Cys replacements throughout the protein. The majority of them (43) show transport activity as judged from the ability of the mutant proteins to confer resistance against toxic compounds and from in vitro analysis of their activity in proteoliposomes. Here we describe the use of these mutants to study the accessibility to NEM, a membrane permeant sulfhydryl reagent. The study has been done systematically so that in one transmembrane segment (TMS2) each single residue was replaced. In each of the other three transmembrane segments, at least four residues covering one turn of the helix were replaced. The results show that although the residues in putative hydrophilic loops readily react with NEM, none of the residues in putative transmembrane domains are accessible to the reagent. The results imply very tight packing of the protein without any continuous aqueous domain. Based on the findings described in this work, we conclude that in EmrE the substrates are translocated through a hydrophobic pathway.  相似文献   

9.
Chiang WC  Knowles AF 《Biochemistry》2008,47(33):8775-8785
Human NTPDase 2 is a cell surface integral membrane glycoprotein that is anchored to the membranes by two transmembrane domains while the bulk of the protein containing the active site faces the extracellular milieu. It contains 10 conserved cysteine residues in the extracellular domain that are involved in disulfide bond formation and one free cysteine residue, C26, which is located in the N-terminal transmembrane domain. The human NTPDase 2 activity is inactivated by membrane perturbation that disrupts interaction of the transmembrane domains and is inhibited by p-chloromercuriphenylsulfonate (pCMPS), a sulfhydryl reagent. In this report, we show that C26 is the target of pCMPS modification, since a mutant in which C26 was replaced with a serine was no longer inhibited by pCMPS. Mutants in which cysteine residues are placed in the C-terminal transmembrane domain near the extracellular surface were still modified by pCMPS, but the degree of inhibition of their ATPase activity was lower than that of the wild-type enzyme. Thus, loss of the ATPase activity of human NTPDase 2 in the presence of pCMPS probably results from the disturbance of both transmembrane domain interaction and its active site. Inhibition of human NTPDase 2 activity by pCMPS and membrane perturbation is attenuated when the enzyme is cross-linked by glutaraldehyde. On the other hand, NTPDase 2 dimers formed from oxidative cross-linking of the wild-type enzyme and mutants containing a single cysteine residue in the C-terminal transmembrane domain displayed reduced ATPase activity. A similar reduction in activity was also obtained upon intramolecular disulfide formation in mutants that contain a cysteine residue in each of the two transmembrane domains. These results indicate that the mobility of the transmembrane helices is necessary for maximal catalysis.  相似文献   

10.
P-glycoprotein (P-gp) is an ATP binding cassette transporter that effluxes a variety of structurally diverse compounds including anticancer drugs. Computational models of human P-gp in the apo- and nucleotide-bound conformation show that the adenine group of ATP forms hydrogen bonds with the conserved Asp-164 and Asp-805 in intracellular loops 1 and 3, respectively, which are located at the interface between the nucleotide binding domains and transmembrane domains. We investigated the role of Asp-164 and Asp-805 residues by substituting them with cysteine in a cysteine-less background. It was observed that the D164C/D805C mutant, when expressed in HeLa cells, led to misprocessing of P-gp, which thus failed to transport the drug substrates. The misfolded protein could be rescued to the cell surface by growing the cells at a lower temperature (27 °C) or by treatment with substrates (cyclosporine A, FK506), modulators (tariquidar), or small corrector molecules. We also show that short term (4–6 h) treatment with 15 μm cyclosporine A or FK506 rescues the pre-formed immature protein trapped in the endoplasmic reticulum in an immunophilin-independent pathway. The intracellularly trapped misprocessed protein associates more with chaperone Hsp70, and the treatment with cyclosporine A reduces the association of mutant P-gp, thus allowing it to be trafficked to the cell surface. The function of rescued cell surface mutant P-gp is similar to that of wild-type protein. These data demonstrate that the Asp-164 and Asp-805 residues are not important for ATP binding, as proposed earlier, but are critical for proper folding and maturation of a functional transporter.  相似文献   

11.
In eukaryotic cellular proteins, protein N-myristoylation has been recognized as a protein modification that occurs mainly on cytoplasmic or nucleoplasmic proteins. In this study, to search for a eukaryotic N-myristoylated transmembrane protein, the susceptibility of the N-terminus of several G-protein-coupled receptors (GPCRs) to protein N-myristoylation was evaluated by in vitro and in vivo metabolic labeling. It was found that the N-terminal 10 residues of B96Bom, a Bombyx mori GPCR, efficiently directed the protein N-myristoylation. Analysis of a tumor necrosis factor (TNF) fusion protein with the N-terminal 90 residues of B96Bom at its N-terminus revealed that (a) transmembrane domain 1 of B96Bom functioned as a type I signal anchor sequence, (b) the N-myristoylated N-terminal domain (58 residues) was translocated across the membrane, and (c) two N-glycosylation motifs located in this domain were efficiently N-glycosylated. In addition, when Ala4 in the N-myristoylation motif of B96Bom90-TNF, Met-Gly-Gln-Ala-Ala-Thr(1-6), was replaced with Asn to generate a new N-glycosylation motif, Asn-Ala-Thr(4-6), efficient N-glycosylation was observed on this newly introduced N-glycosylation site in the expressed protein. These results indicate that the N-myristoylated N-terminus of B96Bom is translocated across the membrane and exposed to the extracellular surface. To our knowledge, this is the first report showing that a eukaryotic transmembrane protein can be N-myristoylated and that the N-myristoylated N-terminus of the protein can be translocated across the membrane.  相似文献   

12.
Li G  Yan Q  Oen HO  Lennarz WJ 《Biochemistry》2003,42(37):11032-11039
Wbp1p, a type I transmembrane protein, is an essential component of oligosaccharyl transferase (OT), which consists of nine different subunits in yeast. It has been proposed that three subunits, Wbp1p, Ost2p, and Swp1p, physically interact with each other, but the mechanism of these interactions is unknown. To explore the mode of interaction, we have focused on the single-transmembrane protein, Wbp1p, and made several deletions and mutations within the short cytosolic domain and the transmembrane domain. Our results show that the deletion of the cytosolic domain has no effect on cell growth, but mutation of all 17 amino acids in the transmembrane domain to 17 Leu residues or replacement of the transmembrane and cytosolic domains with the counterparts of Ost1p results in lethality. Immunoprecipitation experiments show that Wbp1p mutated in these two ways is not incorporated into the OT complex. This finding suggests that the transmembrane domain of Wbplp may mediate its association with the other subunits. A series of mutations of the transmembrane domain have revealed that block alterations in the half of the transmembrane domain facing the lumen of the endoplasmic reticulum (ER) impaired cell viability. Seven single-Lys mutants in the same domain were temperature sensitive for growth at 37 degrees C. In contrast, block mutations in the other half of the transmembrane domain facing the cytosol did not result in lethality and indicated that this portion of the transmembrane domain was not involved in stable incorporation of Wbp1p into the OT complex.  相似文献   

13.
The coronavirus responsible for the severe acute respiratory syndrome (SARS-CoV) contains a small envelope protein, E, with putative involvement in host cell apoptosis and virus morphogenesis. It has been suggested that E protein can form a membrane destabilizing transmembrane (TM) hairpin, or homooligomerize to form a regular TM alpha-helical bundle. We have shown previously that the topology of the alpha-helical putative TM domain of E protein (ETM), flanked by two lysine residues at C and N termini to improve solubility, is consistent with a regular TM alpha-helix, with orientational parameters in lipid bilayers that are consistent with a homopentameric model. Herein, we show that this peptide, reconstituted in lipid bilayers, shows sodium conductance. Channel activity is inhibited by the anti-influenza drug amantadine, which was found to bind our preparation with moderate affinity. Results obtained from single or double mutants indicate that the organization of the transmembrane pore is consistent with our previously reported pentameric alpha-helical bundle model.  相似文献   

14.
In mammals, ceramides are synthesized by a family of six ceramide synthases (CerS), transmembrane proteins located in the endoplasmic reticulum, where each use fatty acyl-CoAs of defined chain length for ceramide synthesis. Little is known about the molecular features of the CerS that determine acyl-CoA selectivity. We now explore CerS structure-function relationships by constructing chimeric proteins combining sequences from CerS2, which uses C22-CoA for ceramide synthesis, and CerS5, which uses C16-CoA. CerS2 and -5 are 41% identical and 63% similar. Chimeras containing approximately half of CerS5 (from the N terminus) and half of CerS2 (from the C terminus) were catalytically inactive. However, the first 158 residues of CerS5 could be replaced with the equivalent region of CerS2 without affecting specificity of CerS5 toward C16-CoA; likewise, the putative sixth transmembrane domain (at the C terminus) of CerS5 could be replaced with the corresponding sequence of CerS2 without affecting CerS5 specificity. Remarkably, a chimeric CerS5/2 protein containing the first 158 residues and the last 83 residues of CerS2 displayed specificity toward C16-CoA, and a chimeric CerS2/5 protein containing the first 150 residues and the last 79 residues of CerS5 displayed specificity toward C22-CoA, demonstrating that a minimal region of 150 residues is sufficient for retaining CerS specificity.  相似文献   

15.
Vitamin K epoxide reductase (VKOR) catalyzes the conversion of vitamin K 2,3-epoxide into vitamin K in the vitamin K redox cycle. Recently, the gene encoding the catalytic subunit of VKOR was identified as a 163-amino acid integral membrane protein. In this study we report the experimentally derived membrane topology of VKOR. Our results show that four hydrophobic regions predicted as the potential transmembrane domains in VKOR can individually insert across the endoplasmic reticulum membrane in vitro. However, in the intact enzyme there are only three transmembrane domains, residues 10-29, 101-123, and 127-149, and membrane-integration of residues 75-97 appears to be suppressed by the surrounding sequence. Results of N-linked glycosylation-tagged full-length VKOR shows that the N terminus of VKOR is located in the endoplasmic reticulum lumen, and the C terminus is located in the cytoplasm. Further evidence for this topological model of VKOR was obtained with freshly prepared intact microsomes from insect cells expressing HPC4-tagged full-length VKOR. In these experiments an HPC4 tag at the N terminus was protected from proteinase K digestion, whereas an HPC4 tag at the C terminus was susceptible. Altogether, our results suggest that VKOR is a type III membrane protein with three transmembrane domains, which agrees well with the prediction by the topology prediction program TMHMM.  相似文献   

16.
Akiyama Y  Kanehara K  Ito K 《The EMBO journal》2004,23(22):4434-4442
Escherichia coli RseP (formerly YaeL) is believed to function as a 'regulated intramembrane proteolysis' (RIP) protease that introduces the second cleavage into anti-sigma(E) protein RseA at a position within or close to the transmembrane segment. However, neither its enzymatic activity nor the substrate cleavage position has been established. Here, we show that RseP-dependent cleavage indeed occurs within predicted transmembrane sequences of membrane proteins in vivo. Moreover, RseP catalyzed the same specificity proteolysis in an in vitro reaction system using purified components. Our in vivo and in vitro results show that RseP can cleave transmembrane sequences of some model membrane proteins that are unrelated to RseA, provided that the transmembrane region contains residues of low helical propensity. These results show that RseP has potential ability to cut a broad range of membrane protein sequences. Intriguingly, it is nevertheless recruited to the sigma(E) stress-response cascade as a specific player of RIP.  相似文献   

17.
Phospholamban is a 52 amino acid calcium regulatory protein found as pentamers in cardiac SR membranes. The pentamers form through interactions between its transmembrane domains, and are stable in SDS. We have employed a saturation mutagenesis approach to study the detailed interactions between the transmembrane segments, using a chimeric protein construct in which staphylococcal nuclease (a monomeric soluble protein) is fused to the N-terminus of phospholamban. The chimera forms pentamers observable in SDS-PAGE, allowing the effects of mutations upon the oligomeric association to be determined by electrophoresis. The disruptive effects of amino acid substitutions in the transmembrane domain were classified as sensitive, moderately sensitive or insensitive. Residues of the same class lined up on faces of a 3.5 amino acids/turn helical projection, allowing the construction of a model of the interacting surfaces in which the helices are associated in a left-handed pentameric coiled-coil configuration. Molecular modeling simulations (to be described elsewhere in detail) confirm that the helices readily form a left-handed coiled-coil helical bundle and have yielded molecular models for the interacting surfaces, the best of which is identical to that predicted by the mutagenesis. Residues lining the pore show considerable structural sensitivity to mutation, indicating that care must be taken in interpreting the results of mutagenesis studies of channels. The cylindrical ion pore (minimal diameter of 2 A) appears to be defined largely by hydrophobic residues (I40, L43 and I47) with only two mildly polar elements contributed by sulfurs in residues C36 and M50.  相似文献   

18.
Choi Y  Konopka JB 《Biochemistry》2006,45(51):15310-15317
The yeast alpha-factor pheromone receptor (Ste2) belongs to the family of G protein-coupled receptors (GPCRs) that contain seven transmembrane domains. To define the residues that are accessible to the cytoplasmic G protein, Cys scanning mutagenesis was carried out in which each of the residues that span the intracellular loops and the cytoplasmic end of transmembrane domain 7 was substituted with Cys. The 90 different Cys-substituted residues were then assayed for reactivity with MTSEA-biotin [[2-[(biotinoyl)amino]ethyl]methanethiosulfonate], which reacts with solvent-accessible sulfhydryl groups. As part of these studies we show that adding free Cys to stop the MTSEA-biotin reactions has potential pitfalls in that Cys can rapidly undergo disulfide exchange with the biotinylated receptor proteins at pH >or=7. The central regions of the intracellular loops of Ste2 were all highly accessible to MTSEA-biotin. Residues near the ends of the loops typically exhibited a drop in the level of reactivity over a consecutive series of residues that was inferred to be the membrane boundary. Interestingly, these boundary residues were enriched in hydrophobic residues, suggesting that they may form a hydrophobic pocket for interaction with the G protein. Comparison with accessibility data from a previous study of the extracellular side of Ste2 indicates that the transmembrane domains vary in length, consistent with some transmembrane domains being tilted relative to the plane of the membrane as they are in rhodopsin. Altogether, these results define the residues that are accessible to the G protein and provide an important structural framework for the interpretation of the role of Ste2 residues that function in G protein activation.  相似文献   

19.
KdpD is a sensor kinase protein in the inner membrane of Escherichia coli containing four transmembrane regions. The periplasmic loops connecting the transmembrane regions are intriguingly short and protease mapping allowed us to only follow the translocation of the second periplasmic loop. The results show that neither the Sec translocase nor the YidC protein are required for membrane insertion of the second loop of KdpD. To study the translocation of the first periplasmic loop a short HA epitope tag was genetically introduced into this region. The results show that also the first loop was translocated independently of YidC and the Sec translocase. We conclude that KdpD resembles a new class of membrane proteins that insert into the membrane without enzymatic assistance by the known translocases. When the second periplasmic loop was extended by an epitope tag to 27 amino acid residues, the membrane insertion of this loop of KdpD depended on SecE and YidC. To test whether the two periplasmic regions are translocated independently of each other, the KdpD protein was split between helix 2 and 3 into two approximately equal-sized fragments. Both constructed fragments, which contained KdpD-N (residues 1-448 of KdpD) and the KdpD-C (residues 444-894 of KdpD), readily inserted into the membrane. Similar to the epitope-tagged KdpD protein, only KdpD-C depended on the presence of the Sec translocase and YidC. This confirms that the four transmembrane helices of KdpD are inserted pairwise, each translocation event involving two transmembrane helices and a periplasmic loop.  相似文献   

20.
Alanine-scanning mutagenesis has been applied to residues 100-121 in transmembrane domain 3 of the M1 muscarinic acetylcholine receptor. This study complements a previous investigation of the triad Asp122-Arg123-Tyr124 (Lu, Z-L., Curtis, C. A., Jones, P. G., Pavia, J., and Hulme, E. C. (1997) Mol. Pharmacol. 51, 234-241). The results demonstrate the alpha-helical secondary structure of the domain and suggest its orientation with respect to the other transmembrane domains. The C-terminal part of the helix appears to be largely buried within the receptor structure. On its surface, there is a patch of three residues, Val113, Leu116, and Ser120, which may form intramolecular contacts that help to stabilize the inactive ground state of the receptor. Mutagenic disruption of these increased agonist affinity and signaling efficacy. In two cases (L116A and S120A), this led to constitutive activation of the receptor. Parallel to the helix axis and spanning the whole transmembrane region, a distinct strip of residues on one face of transmembrane domain 3 forms intermolecular (acetylcholine-receptor, receptor-G protein) or intrareceptor bonds that contribute to the activated state. The binding of acetylcholine may destabilize the first set of contacts while favoring the formation of the second.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号