首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type V collagen was first isolated in 1976; there is still controversy as to how many molecular species of type V collagen exist. Although its structural and functional roles remain unclear, reports of changes in the relative amount of type V collagen from that present in normal tissue have been reported in such diverse pathologic conditions as atherosclerotic aortas, prolapsed mitral valves, and fibrotic lungs. Methods for quantitating type V collagen relative to other collagens have consisted of solubilizing the collagen with pepsin and then analyzing the ratios of the intact chains by gel electrophoresis or by column chromatography. In tissues in which only a small percentage of the total collagen can be solubilized by pepsin, such analyses may not accurately reflect changes in the total collagen present. In this report, a method for quantitating type V collagen relative to types I and III collagens based on CNBr peptide mapping is presented. CNBr solubilizes virtually all the collagen present in any tissue. The method is applied to a model of bleomycin-induced pulmonary fibrosis in rats. It was found that type I collagen increased relative to types III and V collagens, which seemed to remain at values comparable to those observed in lungs from control (normal) rats, both in terms of newly synthesized collagen (collagen synthesized by lung minces during 4 h in culture) and total unlabeled lung collagen (collagen synthesized during the life of the animal).  相似文献   

2.
A method specific for identification of collagens irrespective of type, species, or tissue origin, and of their derived fragments of molecular weight more than 10,000, is described. The method is based on the low-temperature affinity between clostridial collagenase and almost all types of collagens as well as on the affinity between collagenase and its antibodies. Various collagens or fragments derived from them by treatment with CNBr were separated by SDS-PAGE and immobilized onto a nitrocellulose membrane by a slot-blot technique or electrotransfer. Following binding of clostridial collagenase to a collagen or its fragments at 0 degrees C, the collagen-collagenase complex was fixed with glutaraldehyde. The complex was then allowed to bind anti-collagenase antibody at room temperature. The new complex was subsequently treated with 125I-labeled donkey anti-rabbit IgG and visualized as an autoradiogram. Under the conditions of low temperature used, the collagenase binds to collagens without causing their digestion. This procedure is specific for detection of soluble collagens as well as of insoluble collagens converted to fragments by treatment with CNBr. The method is uniquely suited for detection of fragments of tissue collagens. Also, it may serve as a prototype for methods for detection of other specific polymeric substances.  相似文献   

3.
Quantification and biosynthesis of type I and type III collagens were determined in skin of control and Fraser mice (CatFraser mutation), which exhibit a genetically determined cataract. Skin organ cultures were labelled with [3H]proline. Pepsin-solubilized collagens were studied using three different approaches: (a) differential salt precipitation at neutral pH, followed by SDS-polyacrylamide gel electrophoresis; (b) differential salt precipitation at acid pH followed by SDS-polyacrylamide gel electrophoresis. (c) CNBr peptide analysis. These methods gave consistent and reproducible results, indicating a selective decrease of type I collagen in Fraser mouse skin as compared to control mouse skin. Metabolic labelling of skin organ cultures showed a decreased specific radioactivity of hydroxy[3H]proline in type I collagen of Fraser mouse skin. The concordant results of these experiments suggest a genetically determined alteration of interstitial collagen metabolism in the Fraser mutation apparently specifically concerning the expression of type I collagen gene(s).  相似文献   

4.
Selective decrease of type I collagen synthesis in Fraser mice skin   总被引:1,自引:0,他引:1  
Quantification and biosynthesis of type I and type III collagens were determined in skin of control and Fraser mice (CatFraser mutation), which exhibit a genetically determined cataract. Skin organ cultures were labelled with [3H]proline. Pepsin-solubilized collagens were studied using three different approaches: (a) differential salt precipitation at neutral pH, followed by SDS-polyacrylamide gel electrophoresis; (b) differential salt precipitation at acid pH followed by SDS-polyacrylamide gel electrophoresis. (c) CNBr peptide analysis. These methods gave consistent and reproducible results, indicating a selective decrease of type I collagen in Fraser mouse skin as compared to control mouse skin. Metabolic labelling of skin organ cultures showed a decreased specific radioactivity of hydroxy[3H]proline in type I collagen of Fraser mouse skin. The concordant results of these experiments suggest a genetically determined alteration of interstitial collagen metabolism in the Fraser mutation apparently specifically concerning the expression of type I collagen gene(s).  相似文献   

5.
Characterization of pepsin-solubilized bovine heart-valve collagen.   总被引:2,自引:0,他引:2       下载免费PDF全文
Collagens extracted from heart valves by using limited pepsin digestion were fractionated by differential salt precipitation. Collagen types were identified by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, amino acid analysis and cleavage with CNBr. Heart-valve collagen was heterogeneous in nature, consisting of a mixture of type-I and type-III collagens. The identity of type-III collagen was established on the basis of (a) insolubility in 1.7 M-NaC1 at neutral pH, (b) behaviour of this collagen fraction on gel electrophoresis under reducing and non-reducing conditions, (c) amino acid analysis showing a hydroxyproline/proline ratio greater than 1, and (d) profile of CNBr peptides on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis showing a peak characteristic for type-III collagen containing peptides alpha1(III)CB8 and alpha1(III)CB3. In addition to types-I and -III collagen, a collagen polypeptide not previously described in heart valves was identified. This polypeptide represented approx. 30% of the collagen fraction precipitated at 4.0 M-NaCl, it migrated between beta- and alpha1-collagen chains on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and its electrophoretic behaviour was not affected by disulphide-bond reduction. All collagen fractions from the heart valves contained increased amounts of hydroxylysine when compared with type-I and -III collagens from other tissues. The presence of beta- and gamma-chains and higher aggregates in pepsin-solubilized collagen indicated that these collagens were highly cross-linked and suggested that some of these cross-links involved the triple-helical regions of the molecule. It is likely that the higher hydroxylysine content of heart-valve collagen is responsible for the high degree of intermolecular cross-linking and may be the result of an adaptive mechanism for the specialized function of these tissues.  相似文献   

6.
Two highly efficient methods of CNBr-peptide mapping of polypeptides divided by polyacrylamide gel electrophoresis are described. The first is elaborated on the basis of peptide mapping of collagen proposed by G. Barsh et al. The following three modifications diminish wasting the material essential for the method. 1. CNBr treatment takes place in the absence of CNBr solution outside the gel, excluding the peptides elution from the gel fragments in the process of mapping. 2. After CNBr treatment the solution of CNBr is substituted by the samples buffer before electrophoresis by means of drying and subsequent addition of minimal volumes of the buffer. The latter procedures substitute the gel washing out by the buffer solution. 3. The step of washing the gel fragments by the 70% strong solution of formic acid before CNBr treatment is excluded. The second method of CNBr-peptide mapping is notable for extracting peptides from the gel fragments in the process of CNBr-treatment and permits obtaining of the high quality peptide electrophoregrams.  相似文献   

7.
Human dermal fibroblasts were seeded into collagen lattices (tridimensional meshwork) of two preparations: (1) acid-extracted, (2) pepsin-digested-calf skin collagens. Lattices prepared with pepsin-digested collagen retracted faster during the first 2 days, then the two preparations gave the same contraction pattern. Lattices of both preparations were contracted for up to 23 days and their collagens submitted to CNBr treatment. The patterns of CB-peptides were found identical for all the incubation periods tested. There is no formation of cross-links during the contraction process.  相似文献   

8.
Preparations have been made of acid-soluble collagens whose telopeptides have suffered different levels of proteolytic attack. The collagens with more intact telopeptides form fibrils more rapidly than those with degraded telopeptides. In addition, we have shown that a high molecular weight aggregate rich in the carboxyterminal CNBr peptide, α1CB6, can be found in cyanogen bromide digests of fibrils formed from intact collagen. A similar aggregate is found in CNBr digests of native tendons. The aggregate formed in fibrils assembled in vitro can be stabilized by reduction, and its generation is strongly dependent on the presence of intact telopeptides. The latter point is the most objective evidence that to reproduce the characteristics of native fibrils in vitro, the collagen telopeptides must be preserved from proteolysis.  相似文献   

9.
The spondyloepiphyseal dysplasias (SEDs) and spondyloepimetaphyseal dysplasias (SEMDs) are a heterogeneous group of skeletal dysplasias (dwarfing disorders) characterized by abnormal epiphyses, with and without varying degrees of metaphyseal irregularities, flattened vertebral bodies, and myopia. To better define the underlying cause of these disorders, we have analyzed the collagens from costal cartilage from several of these patients, using SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and high-performance liquid chromatography (HPLC) of intact chains and cyanogen bromide (CNBr) peptides and amino acid analysis. In almost all of the patients in this study group, the type II collagen exhibited a slower electrophoretic mobility when compared with that in normal controls. The mobility of many, but not all, of the CNBr peptides was also retarded. Peptides near the amino terminus were almost always altered, while the mobility of peptides close to the carboxyl terminus were normal in all but the severely affected cases. Analysis of the CNBr peptides on an HPLC sieving column confirmed that the electrophoretically abnormal peptides were of a higher molecular weight than were control peptides. Amino acid analysis indicated that the abnormal collagens have a higher ratio of hydroxylysine to lysine than does control collagen, suggesting that overmodification may be involved in the altered mobility. Our results are consistent with a defect in the collagen helix that results in overmodification of the molecule from that point toward the amino terminus. We propose that some forms of SED and SEMD are associated with abnormalities in type II collagen that results in delayed helix formation and consequent overmodification of the collagen. Cases of SED fit onto a continuous spectrum of clinical severity that correlates positively with both the extent of alteration and the proximity of the defect to the carboxyl terminus.  相似文献   

10.
Hydrophobic membrane proteins often have complex functions and are thus of great interest. However, their analysis presents a challenge because they are not readily soluble in polar solvents and often undergo aggregation. We present a sequential CNBr and trypsin in-gel digestion method combined with mass spectrometry for membrane protein analysis. CNBr selectively cleaves methionine residues. But due to the low number of methionines in proteins, CNBr cleavage produces a small number of large peptide fragments with MWs typically >2000, which are difficult to extract from gel pieces. To produce a larger number of smaller peptides than that obtained by using CNBr alone, we demonstrate that trypsin can be used to further digest the sample in gel. The use of n-octyl glucoside (n-OG) to enhance the digestion efficiency and peptide recovery was also studied. We demonstrate that the sensitivity of this membrane protein identification method is in the tens of picomole regime, which is compatible to the Coomassie staining gel-spot visualization method, and is more sensitive than other techniques reported in the literature. This CNBr/trypsin in-gel digestion method is also found to be very reproducible and has been successfully applied for the analysis of complex protein mixtures extracted from biological samples. The results are presented from a study of the analysis of bacteriorhodopsin, nitrate reductase 1 gamma chain, and a complex protein mixture extracted from the endoplasmic recticulum membrane of mouse liver.  相似文献   

11.
Chemical activation of agarose with cyanogen bromide is a routine method when preparing gels for affinity chromatography and for immobilization of macromolecules. Two activation methods are in common use; the titration (1) and the buffer (2) methods.Manipulation of the gels during CNBr activation is complicated due to many steps, some of which have to be carried out as quickly as possible (1,2). In addition, handling the gel is harmful due to the poisonous vapors. In spite of these facts, little effort has been paid to facilitate the practical performance of the activation. We describe here a useful device to eliminate some of the practical troubles in the activation. The main advantages of the device are straight-forward working, speed, and the avoidance of CNBr vapors to a considerable extent. The device is also suitable for handling quantitative gel batches since the loss of gel is minimal.  相似文献   

12.
Collagen cross-links: location of pyridinoline in type I collagen   总被引:1,自引:0,他引:1  
N Light  A J Bailey 《FEBS letters》1985,182(2):503-508
Collagen from bone, dentine and tendon (type I), all of which contain the pyridinoline cross-link at varying levels, were each digested with CNBr. The resulting peptide mixtures were resolved by gel filtration on A1.5m agarose and assayed for pyridinoline. The polymeric cross-linked peptide complex, poly alpha 1CB6 [(1980) Biochem. J. 189, 111] isolated from each of these tissues did not contain pyridinoline. Only one peptide fraction contained the pyridinoline cross-link; that identified as alpha 2CB3,5. However, this peptide showed only a small increase in Mr in its cross-linked form (approx. 2000-5000) demonstrating that pyridinoline is not involved in the formation of polymeric structures like poly alpha 1CB6. These data, considered in the light of the recent finding that pyridinoline is present in type I collagens from different sources in widely varying amounts, cast doubt on its role in collagen maturation.  相似文献   

13.
Insoluble collagen was prepared from bovine periodontal ligament. Isolation and characterization of CNBr peptides originating from the alpha1(I), alpha2, and alpha1(III) chains showed that the tissue contained both type I and type III collagens. Further evidence for the presence of type III collagen was obtained by the isolation of alpha1(III) chains from pepsin-treated ligament collagen, with properties similar to those of human alpha1(III) chains. Estimates based on the amounts of certain CNBr peptides indicated that about one-fifth of the collagen of periodontal ligament is type III, the remainder being type I collagen.  相似文献   

14.
A new method was developed for generating peptide fragments for amino acid sequence analysis from polyacrylamide-gel separated proteins. This method involves in situ CNBr treatment of proteins in the polyacrylamide gel after their separation by electrophoresis. Pure CNBr peptides were recovered either by solvent extraction followed by microbore column reversed-phase HPLC or, alternatively, by a second electrophoretic separation step (SDS-PAGE) followed by electrotransfer of the peptides onto polyvinylidene difluoride (PVDF) membranes. These approaches yielded sequence data at subnanomole levels for a wide range of CNBr fragments recovered from gel-separated proteins.  相似文献   

15.
A procedure is described for obtaining peptide maps from microgram quantities of protein in gel bands, after cleavage at the methionyl peptide bonds with vapors of acidic cyanogen bromide (CNBr). Absence of direct contact of the gel pieces with CNBr eliminates the need for extensive equilibration of the gel piece to remove CNBr prior to electrophoresis. The milder conditions lead to partial cleavage of the proteins, yielding larger peptides and thereby reducing the risk of peptide loss during the postelectrophoresis procedures. The "fingerprints" obtained are reproducible and independent of an eightfold change in CNBr concentration.  相似文献   

16.
Cross-linked peptides were isolated from chicken bone collagen that had been digested with CNBr or with bacterial collagenase. Analyses of (3)H radioactivity in disc electrophoretic profiles of the CNBr peptides from bone collagens that had been treated with NaB(3)H indicated that a major site of intermolecular cross-linking in chicken bone collagen is located between the carboxy-terminal region of an alpha1 chain and a small CNBr peptide, probably situated near the amino-terminus of an alpha1 or alpha2 chain in an adjacent collagen molecule. A small amount of this cross-linked CNBr peptide was isolated from a CNBr digest of chicken bone collagen by column chromatography. Amino acid analysis showed that the CNBr peptide, alpha1CB6B, the carboxy-terminal peptide of the alpha1 chain, was the major CNBr peptide in the preparation, and the reduced cross-linking components were identified as hydroxylysinohydroxynorleucine (HylOHNle), with a smaller amount of hydroxylysinonorleucine (HylNle). However, the composition and the low recovery of the cross-linking amino acids suggested that the preparation was a mixture of CNBr peptides alpha1CB6B and alpha1CB6B cross-linked to a small CNBr peptide whose identity could not be determined. A small cross-linked peptide was isolated from chicken bone collagen that had been reduced with NaB(3)H(4) and digested with bacterial collagenase. This peptide was the major cross-linked peptide in the digest and contained a stoicheiometric amount of the reduced cross-linking compounds. A peptide which had the same amino acid composition, but contained the cross-linking compounds in their reducible forms, was isolated from a collagenase digest of chicken bone collagen that had not been treated with NaBH(4). The absence of the reduced cross-links from this peptide indicates that, at least for the cross-linking site from which the peptide derives, natural reduction is not a significant pathway for biosynthesis of stable cross-links. However, most of the reducible cross-linking component in the peptide appeared to stabilize in the bone collagen by rearrangement from aldimine to ketoamine form.  相似文献   

17.
Structurally abnormal type I collagen was identified in the dermis, bone, and cultured fibroblasts obtained from a baby with lethal perinatal osteogenesis imperfecta. Two-dimensional gel electrophoresis of the CNBr peptides demonstrated that the alpha 1(I)CB7 peptide from the alpha 1(I)-chain of type I collagen existed in a normal form and a mutant form with a more basic charge distribution. This heterozygous peptide defect was not detected in the collagens from either parent. The defect was localized to a 224-residue region at the NH2 terminus of the alpha 1(I)CB7 peptide by mammalian collagenase digestion. Analysis of unhydroxylated collagens produced in cell culture indicated that the mutant alpha 1(I)CB7 migrated faster on electrophoresis suggesting that the abnormality may be a small deletion or a mutation that alters sodium dodecyl sulfate binding. The post-translational hydroxylation of lysine residues was increased in the CB7 peptide and also in peptides CB3 and CB8 which are toward the NH2 terminus of the alpha 1(I)-chain. The COOH-terminal CB6 peptide was normally hydroxylated. These findings support the proposal that the lysine overhydroxylation resulted from a perturbation of helix propagation from the COOH to NH2 terminus of the collagen trimer caused by the structural defect in alpha 1(I)CB7.  相似文献   

18.
The collagens were studied in 13 normal and 19 myxomatous human mitral valves. The collagens of the valve were completely solubilized by using a method consisting of guanidinium chloride extraction, limited pepsin digestions and CNBr cleavage of the residue. The normal valves contained 74% type I, 24% type III and 2% type V collagen. The type I and type III collagens had similar solubility patterns, although only type I collagen was detected in the guanidinium chloride extract. Type V collagen was only detected in the first pepsin extract. The type I and III collagens had higher contents of hydroxylysine than did the same collagens from age-matched dermis. The two-dimensional electrophoretic 'maps' of CNBr-cleavage peptides showed low recoveries of the C-terminal alpha 1(I) CB6 and alpha 1(III) CB9 peptides, which are involved in forming intermolecular cross-linkages. Most of the reducible cross-linkages were present in large-Mr peptide complexes, and these complexes were shown by labelling with 125I to include the tyrosine-containing alpha 1(I) CB6 peptide. The myxomatous valves contained 67% type I, 31% type III and 2% type V collagens. There was a significant increase in the concentration of each type of collagen, which consisted of a 9% increase of type I collagen, a 53% increase of type III collagen and a 25% increase of type V collagen. The contents of hydroxylysine in type I and III collagens and the electrophoretic 'maps' of the CNBr-cleavage peptides involved in cross-linkages did not differ significantly from the results obtained from the normal valves. The biochemical findings suggest that there is an increased production of collagen, in particular type III collagen, and glycosaminoglycan as well as a proliferation of cells as part of a repair process in the myxomatous valves.  相似文献   

19.
H Sage  P Bornstein 《Biochemistry》1979,18(17):3815-3822
A novel collagen chain, termed alpha C, has been isolated from human placenta by limited pepsin digestion. The collagen containing the alpha C chain copurifies with placental AB collagen during selective salt precipitation but is virtually absent from fetal birth membranes, which contain relatively larger amounts of AB. Both native AB and alpha C-containing collagens are resistant to human skin collagenase under conditions that support cleavage of type I by greater than 90%. The alpha C chain was separated from alpha B by phosphocellulose chromatography and subsequently from alpha P by chromatography on CM-cellulose. Its amino acid composition is distinct from alpha A and alha B although all three chains posses compositional features in common; the carbohydrate content of the alpha C chain was intermediate between those of alpha A and alpha B. Analysis by NaDodSO4-polyacrylamide gel electrophoresis of peptides produced by CNBr cleavage and by limited digestion with the enzyme mast cell protease indicated different and unique products for the alpha A, alpha B, and alpha C chains. The data support the existence of another collagen chain which is related to the alpha A and alpha B chains but which is structurally unique. The proteins containing these chains may in turn comprise a subfamily of collagen isotypes which represents a divergence from and/or specialization of the type IV basement membrane collagens.  相似文献   

20.
A few well-characterized protein assemblies aside, little is known about the topology and interfaces of multiconstituent protein complexes. Here we report on a novel indirect strategy for low-resolution topology mapping of protein complexes. Following crosslinking, purified protein complexes are subjected to chemical cleavage with cyanogen bromide (CNBr) and the resulting fragments are resolved by 2-D electrophoresis. The side-by-side comparison of a thus generated and a 2-D CNBr fragment map obtained from uncrosslinked material reveals candidate gel spots harboring crosslinked CNBr fragments. In-gel trypsinization and MALDI MS analysis of these informative spots identify the underlying crosslinked CNBr fragments based on unmodified tryptic peptides. Matching the cumulative theoretical molecular mass and predicted pI of these crosslinked CNBr fragments with original gel spot coordinates is required for confident crosslink assignment. The above strategy was successfully validated with the Escherichia coli RNA polymerase (RNAP) core complex and subsequently applied to query the quaternary structure of components of the yeast Skp1-Cdc53/Cullin-F box (SCF) ubiquitin ligase complex. This protocol requires low picomole sample quantities, can be applied to multisubunit protein complexes, and does not rely on specialized data mining software.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号