首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The putative catalytic domain of an open reading frame from Plasmodium falciparum with similarity to the ispF gene of Escherichia coli specifying 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase was expressed in a recombinant E. coli strain. The recombinant protein was purified to homogeneity and was found to catalyze the formation of 2C-methyl-D-erythritol 2,4-cyclodiphosphate from 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate at a rate of 4.3 micromol x mg(-1) x min(-1). At lower rates, the recombinant protein catalyzes the formation of 2-phospho-2C-methyl-D-erythritol 3,4-cyclophosphate from 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate and the formation of 2C-methyl-D-erythritol 3,4-cyclophosphate from 4-diphosphocytidyl-2C-methyl-D-erythritol. Divalent metal ions such as magnesium or manganese are required for catalytic activity. The enzyme has a pH optimum at pH 7.0. Recombinant expression of the full-length open reading frame afforded insoluble protein that could not be folded in vitro. The enzyme is a potential target for antimalarial drugs directed at the nonmevalonate pathway of isoprenoid biosynthesis.  相似文献   

2.
Gram-negative bacteria, plant chloroplasts, green algae and some Gram-positive bacteria utilize the 2-C-methyl-d-erythritol phosphate (MEP) pathway for the biosynthesis of isoprenoids. IspD, ispE, and ispF encode the enzymes required to convert MEP to 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (cMEDP) during the biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate in the MEP pathway. Upon analysis of the Mesorhizobium loti genome, ORF mll0395 showed homology to both ispD and ispF and appeared to encode a fusion protein. M. loti ispE was located elsewhere on the chromosome. Purified recombinant IspDF protein was mostly a homodimer, MW approximately 46 kDa/subunit. Incubation of IspDF with MEP, CTP, and ATP gave 4-diphosphocytidyl-2-C-methyl-d-erythritol (CDP-ME) as the only product. When Escherichia coli IspE protein was added to the incubation mixture, cMEDP was formed. In addition, M. loti ORF mll0395 complements lethal disruptions in both ispD and ispF in Salmonella typhimurium. These results indicate that IspDF is a bifunctional protein, which catalyzes the first and third steps in the conversion of MEP to cMEDP.  相似文献   

3.
1-Deoxy-D-xylulose 5-phosphate and 2C-methyl-D-erythritol 4-phosphate have been shown as intermediates of the deoxyxylulose phosphate pathway used for terpenoid biosynthesis in plants and many microorganisms. In plants this non-mevalonate pathway is located in plastids. In order to investigate the formation of five carbon intermediates, chromoplasts from Capsicum annuum and Narcissus pseudonarcissus were incubated with isotope-labeled 1-deoxy-D-xylulose 5-phosphate or 2C-methyl-D-erythritol 4-phosphate. The downstream metabolites were detected and separated by reversed-phase ion-pair radio-HPLC and their structures elucidated by mass spectroscopy. Here we report the isolation and structural identification of 4-diphosphocytidyl-2C-methyl-D-erythritol and 2C-methyl-D-erythritol 2,4-cyclodiphosphate from chromoplasts; the genes of the corresponding enzymes had been previously identified from Escherichia coli and Arabidopsis.  相似文献   

4.
The conversion of 2-C-methyl-d-erythritol 4-phosphate (MEP) to 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (cMEDP) in the MEP entry into the isoprenoid biosynthetic pathway occurs in three consecutive steps catalyzed by the IspD, IspE, and IspF enzymes, respectively. In Agrobacterium tumefaciens the ispD and ispF genes are fused to encode a bifunctional enzyme that catalyzes the first (synthesis of 4-diphosphocytidyl-2-C-methyl d-erythritol) and third (synthesis of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate) steps. Sedimentation velocity experiments indicate that the bifunctional IspDF enzyme and the IspE protein associate in solution, raising the possibility of substrate channeling among the active sites in these two proteins. Kinetic evidence for substrate channeling was sought by measuring the time courses for product formation during incubations of MEP, CTP, and ATP with the IspDF and IspE proteins with and without an excess of the inactive IspE(D152A) mutant in the presence or absence of 30% (v/v) glycerol. The time dependencies indicate that the enzyme-generated intermediates are not transferred from the IspD active site in IspDF to the active site of IspE or from the active site in IspE to the active site of the IspF module of IspDF.  相似文献   

5.
The bifunctional methylerythritol 4-phosphate cytidylyltransferase methylerythritol 2,4-cyclodiphosphate synthase (IspDF) is unusual in that it catalyzes nonconsecutive reactions in the 1-deoxy-D-xylulose 5-phosphate (DOXP) pathway of isoprenoid precursor biosynthesis. The crystal structure of IspDF from the bacterial pathogen Campylobacter jejuni reveals an elongated hexamer with D3 symmetry compatible with the dimeric 2C-methyl-D-erythritol-4-phosphate cytidylyltransferase and trimeric 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase monofunctional enzymes. Complex formation of IspDF with 4-diphosphocytidyl-2C-methyl-D-erythritol kinase (IspE), the intervening enzyme activity in the pathway, has been observed in solution for the enzymes from C. jejuni and Agrobacterium tumefaciens. The monofunctional enzymes (2C-methyl-D-erythritol-4-phosphate cytidylyltransferase, IspE, and 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase) involved in the DOXP biosynthetic pathway of Escherichia coli also show physical associations. We propose that complex formation of the three enzymes at the core of the DOXP pathway can produce an assembly localizing 18 catalytic centers for the early stages of isoprenoid biosynthesis.  相似文献   

6.
The ispC gene of Arabidopsis thaliana was expressed in pseudomature form without the putative plastid-targeting sequence in a recombinant Escherichia coli strain. The recombinant protein was purified by affinity chromatography and was shown to catalyze the formation of 2C-methyl-D-erythritol 4-phosphate from 1-deoxy-D-xylulose 5-phosphate at a rate of 5.6 micromol x min(-1) x mg(-1) (k(cat) 4.4 s(-1)). The Michaelis constants for 1-deoxy-D-xylulose 5-phosphate and the cosubstrate NADPH are 132 and 30 microm, respectively. The enzyme has an absolute requirement for divalent metal ions, preferably Mn2+ and Mg2+, and is inhibited by fosmidomycin with a Ki of 85 nm. The pH optimum is 8.0. NADH can substitute for NADPH, albeit at a low rate (14% as compared to NADPH). The enzyme catalyzes the reverse reaction at a rate of 2.1 micromol x min(-1) x mg(-1).  相似文献   

7.
8.
1-Deoxy-D-xylulose-5-phosphate is converted into 2-C-methyl-D-erythritol-4-phosphate by the catalytic action of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (Dxr protein) using NADPH as cofactor. The stereochemical features of this reaction were investigated in in vitro experiments with the recombinant Dxr protein of Escherichia coli using (4R)- or (4S)-[4-(2)H(1)]NADPH as coenzyme. The enzymatically formed 2-C-methyl-D-erythritol-4-phosphate was isolated and converted into 1,2:3,4-di-O-isopropylidene-2-C-methyl-D-erythritol; NMR spectroscopic investigation of this derivative indicated that only (4S)-[4-(2)H(1)]NADPH affords 2-C-methyl-D-erythritol-4-phosphate labelled exclusively in the H(Re) position of C-1. Stereospecific transfer of H(Si) from C-4 of the cofactor identifies the Dxr protein of E. coli as a class B dehydrogenase.  相似文献   

9.
2C-Methyl-D-erythritol-4-phosphate synthase, encoded by the ispC gene (also designated dxr), catalyzes the first committed step in the nonmevalonate isoprenoid biosynthetic pathway. The reaction involves the isomerization of 1-deoxy-D-xylulose 5-phosphate, giving a branched-chain aldose derivative that is subsequently reduced to 2C-methyl-D-erythritol 4-phosphate. The isomerization step has been proposed to proceed as an intramolecular rearrangement or a retroaldol-aldol sequence. We report the preparation of (13)C-labeled substrate isotopologs that were designed to optimize the detection of an exchange of putative cleavage products that might occur in the hypothetical retroaldol-aldol reaction sequence. In reaction mixtures containing large amounts of 2C-methyl-D-erythritol-4-phosphate synthase from Escherichia coli, Mycobacterium tuberculosis or Arabidopsis thaliana, and a mixture of [1-(13)C(1)]-2C-methyl-D-erythritol 4-phosphate and [3-(13)C(1)]2C-methyl-D-erythritol 4-phosphate, the reversible reaction could be followed over thousands of reaction cycles. No fragment exchange could be detected by NMR spectroscopy, and the frequency of exchange, if any, is less than 5 p.p.m. per catalytic cycle. Hydroxyacetone, the putative second fragment expected from the retroaldol cleavage, was not incorporated into the enzyme product. In contrast to other reports, IspC did not catalyze the isomerisation of 1-deoxy-D-xylulose 5-phosphate to give 1-deoxy-L-ribulose 5-phosphate under any conditions tested. However, we could show that the isomerization reaction proceeds at room temperature without a requirement for enzyme catalysis. Although a retroaldol-aldol mechanism cannot be ruled out conclusively, the data show that a retroldol-aldol reaction sequence would have to proceed with very stringent fragment containment that would apply to the enzymes from three genetically distant organisms.  相似文献   

10.
4-Diphosphocytidyl-2C-methyl-D-erythritol kinase (IspE) catalyses the ATP-dependent conversion of 4-diphosphocytidyl-2C-methyl-D-erythritol (CDPME) to 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate with the release of ADP. This reaction occurs in the non-mevalonate pathway of isoprenoid precursor biosynthesis and because it is essential in important microbial pathogens and absent from mammals it represents a potential target for anti-infective drugs. We set out to characterize the biochemical properties, determinants of molecular recognition and reactivity of IspE and report the cloning and purification of recombinant Aquifex aeolicus IspE (AaIspE), kinetic data, metal ion, temperature and pH dependence, crystallization and structure determination of the enzyme in complex with CDP, CDPME and ADP. In addition, 4-fluoro-3,5-dihydroxy-4-methylpent-1-enylphosphonic acid (compound 1) was designed to mimic a fragment of the substrate, a synthetic route to 1 was elucidated and the complex structure determined. Surprisingly, this ligand occupies the binding site for the ATP alpha-phosphate not the binding site for the methyl-D-erythritol moiety of CDPME. Gel filtration and analytical ultracentrifugation indicate that AaIspE is a monomer in solution. The enzyme displays the characteristic alpha/beta galacto-homoserine-mevalonate-phosphomevalonate kinase fold, with the catalytic centre positioned in a deep cleft between the ATP- and CDPME-binding domains. Comparisons indicate a high degree of sequence conservation on the IspE active site across bacterial species, similarities in structure, specificity of substrate recognition and mechanism. The biochemical characterization, attainment of well-ordered and reproducible crystals and the models resulting from the analyses provide reagents and templates to support the structure-based design of broad-spectrum antimicrobial agents.  相似文献   

11.
Mycobacterium tuberculosis utilizes the methylerythritol phosphate (MEP) pathway for biosynthesis of isopentenyl diphosphate and its isomer, dimethylallyl diphosphate, precursors of all isoprenoid compounds. This pathway is of interest as a source of new drug targets, as it is absent from humans and disruption of the responsible genes has shown a lethal phenotype for Escherichia coli. In the MEP pathway, 4-diphosphocytidyl-2-C-methyl-D-erythritol is formed from 2-C-methyl-D-erythritol 4-phosphate (MEP) and CTP in a reaction catalyzed by a 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD). In the present work, we demonstrate that Rv3582c is essential for M. tuberculosis: Rv3582c has been cloned and expressed, and the encoded protein has been purified. The purified M. tuberculosis IspD protein was capable of catalyzing the formation of 4-diphosphocytidyl-2-C-methyl-D-erythritol in the presence of MEP and CTP. The enzyme was active over a broad pH range (pH 6.0 to 9.0), with peak activity at pH 8.0. The activity was absolutely dependent upon divalent cations, with 20 mM Mg2+ being optimal, and replacement of CTP with other nucleotide 5'-triphosphates did not support activity. Under the conditions tested, M. tuberculosis IspD had Km values of 58.5 microM for MEP and 53.2 microM for CTP. Calculated kcat and kcat/Km values were 0.72 min(-1) and 12.3 mM(-1) min(-1) for MEP and 1.0 min(-1) and 18.8 mM(-1) min(-1) for CTP, respectively.  相似文献   

12.
The ispF gene product in Escherichia coli has been shown to catalyze the formation of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MEC) in the deoxyxylulose (DOXP) pathway for isoprenoid biosynthesis. In this work, the E. coli gene ispF and its Bacillus subtilis orthologue, yacN, were deleted and conditionally complemented by expression of these genes from distant loci in the respective organisms. In E. coli, complementation was achieved through integration of ispF at the araBAD locus with control from the arabinose-inducible araBAD promoter, while in B. subtilis, yacN was placed at amyE under control of the xylose-inducible xylA promoter. In both cases, growth was severely retarded in the absence of inducer, consistent with these genes being essential for survival. E. coli cells depleted of MEC synthase revealed a filamentous phenotype. This was in contrast to the depletion of MEC synthase in B. subtilis, which resulted in a loss of rod shape, irregular septation, multicompartmentalized cells, and thickened cell walls. To probe the nature of the predominant deficiency of MEC synthase-depleted cells, we investigated the sensitivity of these conditionally complemented mutants, grown with various concentrations of inducer, to a wide variety antibiotics. Synthetic lethal behavior in MEC synthase-depleted cells was prevalent for cell wall-active antibiotics.  相似文献   

13.
Howe DL  Sundaram AK  Wu J  Gatti DL  Woodard RW 《Biochemistry》2003,42(17):4843-4854
Escherichia coli 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8-P) synthase is able to utilize the five-carbon phosphorylated monosaccharide, 2-deoxyribose 5-phosphate (2dR5P), as an alternate substrate, but not D-ribose 5-phosphate (R5P) nor the four carbon analogue D-erythrose 4-phosphate (E4P). However, E. coli KDO8-P synthase in the presence of either R5P or E4P catalyzes the rapid consumption of approximately 1 mol of PEP per active site, after which consumption of PEP slows to a negligible but measurable rate. The mechanism of this abortive utilization of PEP was investigated using [2,3-(13)C(2)]-PEP and [3-F]-PEP, and the reaction products were determined by (13)C, (31)P, and (19)F NMR to be pyruvate, phosphate, and 2-phosphoglyceric acid (2-PGA). The formation of pyruvate and 2-PGA suggests that the reaction catalyzed by KDO8-P synthase may be initiated via a nucleophilic attack to PEP by a water molecule. In experiments in which the homologous enzyme, 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7-P) synthase was incubated with D,L-glyceraldehyde 3-phosphate (G3P) and [2,3-(13)C(2)]-PEP, pyruvate and phosphate were the predominant species formed, suggesting that the reaction catalyzed by DAH7-P synthase starts with a nucleophilic attack by water onto PEP as observed in E. coli KDO8-P synthase.  相似文献   

14.
D-Sorbitol-6-phosphate 2-dehydrogenase catalyzes the NADH-dependent conversion of D-fructose 6-phosphate to D-sorbitol 6-phosphate and improved production and purification of the enzyme from Escherichia coli is reported. Preliminary inhibition studies of the enzyme revealed 5-phospho-D-arabinonohydroxamic acid and 5-phospho-D-arabinonate as new substrate analogue inhibitors of the F6P catalyzed reduction with IC50 values of (40 +/- 1) microM and (48 +/- 3) microM and corresponding Km/IC50 ratio values of 14 and 12, respectively. Furthermore, we report here the phosphomannose isomerase substrate D-mannose 6-phosphate as the best inhibitor of E. coli D-sorbitol-6-phosphate 2-dehydrogenase yet reported with an IC50 = 7.5 +/- 0.4 microM and corresponding Km/IC50 ratio = about 76.  相似文献   

15.
2-Deoxy-scyllo-inosose (DOI) is a six-membered carbocycle formed from d-glucose-6-phosphate catalyzed by 2-deoxy-scyllo-inosose synthase (DOIS), a key enzyme in the biosynthesis of 2-deoxystreptamine-containing aminocyclitol antibiotics. DOI is valuable as a starting material for the benzene-free synthesis of catechol and other benzenoids. We constructed a series of metabolically engineered Escherichia coli strains by introducing a DOIS gene (btrC) from Bacillus circulans and disrupting genes for phosphoglucose isomerase, d-glucose-6-phosphate dehydrogenase, and phosphoglucomutase (pgi, zwf and pgm, respectively). It was found that deletion of the pgi gene, pgi and zwf genes, pgi and pgm genes, or all pgi, zwf and pgm genes significantly improved DOI production by recombinant E. coli in 2YTG medium (3% glucose) up to 7.4, 6.1, 11.6, and 8.4 g l(-1), respectively, compared with that achieved by wild-type recombinant E. coli (1.5 g l(-1)). Moreover, E. coli mutants with disrupted pgi, zwf and pgm genes showed strongly enhanced DOI productivity of up to 29.5 g l(-1) (99% yield) in the presence of mannitol as a supplemental carbon source. These results demonstrated that DOI production by metabolically engineered recombinant E. coli may provide a novel, efficient approach to the production of benzenoids from renewable d-glucose.  相似文献   

16.
Escherichia coli 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (YgbP or IspD) catalyzes the conversion of 2-C-methyl-D-erythritol 4-phosphate (MEP) and cytidine triphosphate (CTP) to 4-diphosphocytidyl-2-C-methylerythritol (CDPME). Pulse chase experiments established that the reaction involves an ordered sequential mechanism with mandatory initial binding of CTP. On the basis of analysis of the previously reported crystal structures of apo-YgbP as well as YgbP complexed with both CTP.Mg(2+) and CDPME.Mg(2+) [Richard, S. B., Bowman, M. E., Kwiatkowski, W., Kang, I., Chow, C., Lillo, A. M., Cane, D. E., and Noel, J. P. (2001) Nat. Struct. Biol. 8, 641-648], a group of active site residues were selected for site-directed mutagenesis and steady-state kinetic analysis. Both Lys27 and Lys213 were shown to be essential to catalytic activity, consistent with their proposed role in stabilization of a pentacoordinate phosphate transition state resulting from in-line attack of the MEP phosphate on the alpha-phosphate of CTP. In addition, Thr140, Arg109, Asp106, and Thr165 were all shown to play critical roles in the binding and proper orientation of the MEP substrate.  相似文献   

17.
2C-methyl-D-erythritol 2,4-cyclodiphosphate was recently shown to be formed from 2C-methyl-D-erythritol 4-phosphate by the consecutive action of IspD, IspE, and IspF proteins in the nonmevalonate pathway of terpenoid biosynthesis. To complement previous work with radiolabelled precursors, we have now demonstrated that [U-13C5]2C-methyl-D-erythritol 4-phosphate affords [U-13C5]2C-methyl-D-erythritol 2,4-cyclodiphosphate in isolated chromoplasts of Capsicum annuum and Narcissus pseudonarcissus. Moreover, chromoplasts are shown to efficiently convert 2C-methyl-D-erythritol 4-phosphate as well as 2C-methyl-D-erythritol 2,4-cyclodiphosphate into the carotene precursor phytoene. The bulk of the kinetic data collected in competition experiments with radiolabeled substrates is consistent with the notion that the cyclodiphosphate is an obligatory intermediate in the nonmevalonate pathway to terpenes. Studies with [2,2'-13C2]2C-methyl-D-erythritol 2,4-cyclodiphosphate afforded phytoene characterized by pairs of jointly transferred 13C atoms in the positions 17/1, 18/5, 19/9, and 20/13 and, at a lower abundance, in positions 16/1, 4/5, 8/9, and 12/13. A detailed scheme is presented for correlating the observed partial scrambling of label with the known lack of fidelity of the isopentenyl diphosphate/dimethylethyl diphosphate isomerase.  相似文献   

18.
O-antigen variation due to the presence of different types of sugars and sugar linkages is important for the survival of bacteria threatened by host immune systems. The O antigens of Shigella dysenteriae type 7 and Escherichia coli O7 contain 4-(N-acetylglycyl)amino-4,6-dideoxy-d-glucose (d-Qui4NGlyAc) and 4-acetamido-4,6-dideoxy-d-glucose (d-Qui4NAc), respectively, which are sugars not often found in studied polysaccharides. In this study, we characterized the biosynthetic pathways for dTDP-d-Qui4N and dTDP-d-Qui4NAc (the nucleotide-activated precursors of d-Qui4NGlyAc and d-Qui4NAc in O antigens). Predicted genes involved in the synthesis of the two sugars were cloned, and the gene products were overexpressed and purified as His-tagged fusion proteins. In vitro enzymatic reactions were carried out using the purified proteins, and the reaction products were analyzed by capillary electrophoresis, electrospray ionization-mass spectrometry, and nuclear magnetic resonance spectroscopy. It is shown that in S. dysenteriae type 7 and E. coli O7, dTDP-d-Qui4N is synthesized from alpha-d-glucose-1-phosphate in three reaction steps catalyzed by glucose-1-phosphate thymidyltransferase (RmlA), dTDP-d-glucose 4,6-dehydratase (RmlB), and dTDP-4-keto-6-deoxy-d-glucose aminotransferase (VioA). An additional acetyltransferase (VioB) catalyzes the conversion of dTDP-d-Qui4N into dTDP-d-Qui4NAc in E. coli O7. Kinetic parameters and some other properties of VioA and VioB are described and differences between VioA proteins from S. dysenteriae type 7 (VioA(D7)) and E. coli O7 (VioA(O7)) discussed. To our knowledge, this is the first time that functions of VioA and VioB have been biochemically characterized. This study provides valuable enzyme sources for the production of dTDP-d-Qui4N and dTDP-d-Qui4NAc, which are potentially useful in the pharmaceutical industry for drug development.  相似文献   

19.
Escherichia coli was found to grow on fructoselysine as an energetic substrate at a rate of about one-third of that observed with glucose. Extracts of cells grown on fructoselysine catalyzed in the presence of ATP the phosphorylation of fructoselysine and a delayed formation of glucose 6-phosphate from this substrate. Data base searches allowed us to identify an operon containing a putative kinase (YhfQ) belonging to the PfkB/ ribokinase family, a putative deglycase (YhfN), homologous to the isomerase domain of glucosamine-6-phosphate synthase, and a putative cationic amino acid transporter (YhfM). The proteins encoded by YhfQ and YhfN were overexpressed in E. coli, purified, and shown to catalyze the ATP-dependent phosphorylation of fructoselysine to a product identified as fructoselysine 6-phosphate by 31P NMR (YhfQ), and the reversible conversion of fructoselysine 6-phosphate and water to lysine and glucose 6-phosphate (YhfN). The K(m) of the kinase for fructoselysine amounted to 18 microm, and the K(m) of the deglycase for fructoselysine 6-phosphate, to 0.4 mm. A value of 0.15 m was found for the equilibrium constant of the deglycase reaction. The kinase and the deglycase were both induced when E. coli was grown on fructoselysine and then reached activities sufficient to account for the rate of fructoselysine utilization.  相似文献   

20.
1-Deoxy-d-xylulose 5-phosphate (DXP) reductoisomerase, which simultaneously catalyzes the intramolecular rearrangement and reduction of DXP to form 2-C-methyl-d-erythritol 4-phosphate, constitutes a key enzyme of an alternative mevalonate-independent pathway for isopentenyl diphosphate biosynthesis. The dxr gene encoding this enzyme from Escherichia coli was overexpressed as a histidine-tagged protein and characterized in detail. DNA sequencing analysis of the dxr genes from 10 E. coli dxr-deficient mutants revealed base substitution mutations at four points: two nonsense mutations and two amino acid substitutions (Gly(14) to Asp(14) and Glu(231) to Lys(231)). Diethyl pyrocarbonate treatment inactivated DXP reductoisomerase, and subsequent hydroxylamine treatment restored the activity of the diethyl pyrocarbonate-treated enzyme. To characterize these defects, we overexpressed the mutant enzymes G14D, E231K, H153Q, H209Q, and H257Q. All of these mutant enzymes except for G14D were obtained as soluble proteins. Although the purified enzyme E231K had wild-type K(m) values for DXP and NADPH, the mutant enzyme had less than a 0.24% wild-type k(cat) value. K(m) values of H153Q, H209Q, and H257Q for DXP increased to 3.5-, 7.6-, and 19-fold the wild-type value, respectively. These results indicate that Glu(231) of E. coli DXP reductoisomerase plays an important role(s) in the conversion of DXP to 2-C-methyl-d-erythritol 4-phosphate, and that His(153), His(209), and His(257), in part, associate with DXP binding in the enzyme molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号