首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Second litter syndrome (SLS) in sows is when fertility performance is lower in the second parity than in the first parity. The causes of SLS have been associated with lactation weight loss, premature first insemination, short lactation length, short weaning to insemination interval, season, and farm of farrowing. There is little known about the genetic background of SLS or if it is a real biological problem or just a statistical issue. Thus, we aimed to evaluate risk factors, investigate genetic background of SLS, and estimate the probability of SLS existing due to the statistical properties of the trait. The records of 246 799 litters (total number born, TNB) from 46 218 Large White sows were used. A total of 15 398 sows had SLS. Two traits were defined: first a binominal trait if a sow had SLS or not (biSLS) and second a continuous trait (Range) created by subtracting the total number of piglets born in the first parity (TNB1) from the piglets born in the second parity (TNB2). Lactation length, farm, and season of the farrowing had significant effects on SLS traits when tested as fixed effects in the genetic model. These effects are farm management-related factors. The age at first insemination and weaning to insemination interval were significant only for other reproduction traits (e.g., TNB1, TNB2, litter weight in parity 1 and 2). The heritability of biSLS was 0.05 (on observed scale), whereas heritability of Range was 0.03. To verify the existence of SLS data with records of 50 000 sows and 9 parities was simulated. The simulations showed that the average expected frequency of SLS across all the parities was 0.49 (±0.05) while the observed frequency in the actual data was 0.46 (±0.04). We compared this to SLS frequencies in 67 farms and only 2 farms had more piglets born in the first parity compared to the second. Therefore, on the individual sow level SLS is likely due to statistical properties of the trait, whereas on the farm level SLS is likely due to farm management. Thus, SLS should not be considered an abnormality nor a syndrome if on average the herd litter size in parity 2 is larger than in parity 1.  相似文献   

2.
雌激素受体基因和长白猪繁殖性能相关研究   总被引:9,自引:0,他引:9  
通过检测612头长白母猪共2 239窝ESR基因的PvuⅡ酶切多态性,分析了不同ESR基因型和长白母猪繁殖性状的相关,以确定ESR基因在猪育种应用的可能性.头胎母猪、第2胎母猪和3胎以上母猪的资料分开统计.群体中B等位基因的频率很低,但似然比检验结果显示群体的基因频率处于哈代-温伯格连锁平衡状态.第1胎BB基因型母猪的总产仔数显著高于AA型母猪(12.05±0.82 vs 10.19±0.24)(P<0.05),但BB基因型母猪的初生仔猪重显著低于AA型母猪(1.23±0.07vs 1.42±0.02)(P<0.05).第3胎以上资料合并,BB基因型母猪的总产仔数显著多于AA和AB基因型母猪(11.98±0.63 vs10.90±0.48/10.92±0.51)(P<0.05),产活仔数显著高于AA型母猪(10.31±0.58 vs 9.43±0.45)(P<0.05);AB基因型母猪初生仔猪重显著低于AA型母猪(1.44±0.04 vs 1.48±0.04)(P<0.05).所有资料合并,BB基因型母猪的总产仔数极显著高于AB型母猪(11.63±0.52 VS 10.63±0.42)(P<0.01),显著高于AA型母猪(11.63±0.52 vs 10.70±0.40)(P<0.05);BB基因型母猪的产活仔数显著高于AB和AA基因型母猪(10.15±0.50 vs 9.33±0.39/9.41±0.41)(P<0.05).其余情况下各基因型母猪间繁殖性状间差异不显著(P>0.05).总之,BB基因型母猪的总产仔数和产活仔数优于其他基因型母猪,但仔猪初生重较低.ESR基因可以作为遗传标记,用于本群长白猪产仔数的选择.  相似文献   

3.
An investigation was undertaken to study the association between the variable number of tandem repeats polymorphism of the Muc1 gene and the litter size in pigs. Four different alleles were found in three breeds. The sequence analysis shows that the repetitive region of pig Muc1 gene is an array of 108-bp repeats. A total of 2,430 litter records from 897 sows genotyped at Muc1 gene were used to analyze the total number born (TNB) and number born alive (NBA). The study of the effects on litter size suggests that TNB and NBA of genotype AA are the highest in Large White, and the TNB and NBA of the third to ninth parities are 1.61 and 2.29 piglets per litter higher (P < 0.05) than those of the genotype DD, respectively. In Landrace, TNB and NBA of the genotype AA are 1.68 (P < 0.01) and 1.58 (P < 0.05) piglets per litter higher than those of the BB genotype in the third to ninth parities, but for all parities the TNB of genotype AA were 0.76 piglets per litter (P < 0.05) higher than BB. In Duroc, the TNB and NBA of genotype AA are about 1.5 piglets per litter more than those of DD in the third to ninth parities, though not significantly. The research suggests that the smaller allele tends to have higher litter size. The results indicate that Muc1 gene is significantly associated with litter size in pigs.  相似文献   

4.
The aim of the present study was to determine any potential association of the BF, RBP4, and ESR2 genes with reproduction traits in an autochthonous Greek pig population. The PCR-RFLP methodology was implemented for genotyping purposes of the examined genes. No deviation from the Hardy-Weinberg equilibrium was observed for the examined loci, while the B allele noted to be the more frequent in all analyzed genes. In addition, sows with the AA genotype of BF gene found to produce significantly lower numbers of the total born piglets (TNB) and number of piglets born alive (TNA), while the respective BB genotype significantly exceeded in TNB and NBA traits compared to the other two genotypes (P?Abbreviations: TNB: Total number of born piglets; NBA: Number of piglets born alive  相似文献   

5.
Data from uterine capacity in rabbits (litter size) were analyzed to determine whether the environmental variance was partly genetically determined. The fit of a classical homogeneous variance mixed linear (HOM) model and that of a genetically structured heterogeneous variance mixed linear (HET) model were compared. Various methods to assess the quality of fit favor the HET model. The posterior mean (95% posterior interval) of the additive genetic variance affecting the environmental variance was 0.16 (0.10; 0.25) and the corresponding number for the coefficient of correlation between genes affecting mean and variance was -0.74 (-0.90;-0.52). It is argued that stronger support for the HET model than that derived from statistical analysis of data would be provided by a successful selection experiment designed to modify the environmental variance. A simple selection criterion is suggested (average squared deviation from the mean of repeated records within individuals) and its predicted response and variance under the HET model are derived. This is used to determine the appropriate size and length of a selection experiment designed to change the environmental variance. Results from the analytical expressions are compared with those obtained using simulation. There is good agreement provided selection intensity is not intense.  相似文献   

6.
K. Li  J. Ren  Y. Xing  Z. Zhang  J. Ma  Y. Guo  L. Huang 《Animal genetics》2009,40(6):963-966
To detect quantitative trait loci (QTL) for litter size related traits, the total number of born piglets (TNB), the number of born alive piglets (NBA), the number of stillborn piglets (NSB) and the number of mummies (NM) at the first parity were recorded in 299 F2 sows in a White Duroc × Chinese Erhualian intercross resource population. A whole genome scan was performed with 183 microsatellites distributed across 19 porcine chromosomes in the resource population, and the QTL analysis was performed with a least-squares method. A 5% genome-wide significant QTL was detected at 88 cM on pig chromosome (SSC) 15 for NBA, which also showed suggestive effect on TNB. In addition, four suggestive QTL were detected on SSC 6, 7, 8 and 15 for TNB, NBA or NSB. Two of the five QTL detected showed accordance with previous reports. No QTL was found for NM.  相似文献   

7.
To evaluate the effect of the PvuII polymorphism of the oestrogen receptor gene on litter size and production traits in Czech Large White swine, data from 1250 sows and 3600 litters were analysed with two four-trait animal models. The traits in the first model were number of piglets born alive in a sow's first litter, number of piglets born alive in second and subsequent litters, lifetime daily gain and lean meat percentage. The second model included number of piglets born, number of piglets born alive, number of piglets weaned and litter weight at weaning from first and subsequent litters. The oestrogen receptor (ESR) locus significantly affected prolicacy in the first parity and averaged over all parities (P < 0.05), with allele A superior to allele B. In the first parity, AA sows produced approximately 0.5 more live piglets per litter than BB sows. Averaged over all parities, this difference was c. 0.25 piglets. Results for total number of piglets born and number of piglets weaned were similar to results for numbers born alive. No significant dominance effect was found for prolificacy traits. For litter weight at weaning, no significant additive effect was observed at the ESR locus, but a significant negative dominance effect (-1.5 kg) was estimated averaged across parities (litters of AB sows were similar to litters of BB sows for this trait). No pleiotropic effect of the ESR polymorphism on average daily gain or lean meat percentage was found.  相似文献   

8.
This work presents a model for the joint analysis of a binomial and a Gaussian trait using a recursive parametrization that leads to a computationally efficient implementation. The model is illustrated in an analysis of mortality and litter size in two breeds of Danish pigs, Landrace and Yorkshire. Available evidence suggests that mortality of piglets increased partly as a result of successful selection for total number of piglets born. In recent years there has been a need to decrease the incidence of mortality in pig-breeding programs. We report estimates of genetic variation at the level of the logit of the probability of mortality and quantify how it is affected by the size of the litter. Several models for mortality are considered and the best fits are obtained by postulating linear and cubic relationships between the logit of the probability of mortality and litter size, for Landrace and Yorkshire, respectively. An interpretation of how the presence of genetic variation affects the probability of mortality in the population is provided and we discuss and quantify the prospects of selecting for reduced mortality, without affecting litter size.  相似文献   

9.
Wang G  Kong L  Hu P  Fu J  Wang A 《Molecular biology reports》2011,38(3):1807-1812
The association of polymorphisms in peroxisome proliferator-activated receptor γ (PPARγ) gene with litter size was studied in Large White and Landrace pig. Three SNP loci (P1, P2 and P7) on PPARγ2 gene were determined by PCR–SSCP and the results showed that there were A → G mutations at 220 and 324 bp in 5′-regulator region and at 147 bp in exon 6, respectively. Allele frequencies were analysed in two breeds. Information on 2341 litter records from 564 sows was used to analyse the trait total number born (TNB) and number born alive (NBA). In Large White, TNB and NBA of genotype BB for P2 locus were the lowest, and the TNB and NBA of third and following parities and all parities were 0.74 and 0.51 piglets per litter less (P < 0.001) than those of the highest genotype AB, respectively, but for P1 and P7 locus the beneficial genotype AA were more 0.4–0.8 piglets per litter (P < 0.05) than the inferior genotype AB. In landrace, TNB and NBA of the first parity of genotype BB for P1 locus were 2.0 piglets per litter higher than AA (P < 0.05), but for all parities the TNB and NBA of genotype BB were 0.66 and 0.97 piglets per litter (P < 0.05) higher than AA, respectively. At P2 locus, the TNB and NBA of the second parity of genotype AA were obviously higher than those of AB (P < 0.05). And at P7 locus, the TNB and NBA of each parity of genotype AA were both about 2 piglets per litter more than those of BB (P < 0.05). The results indicated that PPARγ gene was significantly associated with litter size in pigs.  相似文献   

10.
Seventy-seven Large White x Meishan F2 crossbred gilts with prolactin receptor (PRLR) genotype AA (n = 26), AB (n = 36) and BB (n = 15) were compared for teat number (FTm), age at first estrus, gestation length (GL), litter size, and litter means of functional teat number (FTp), birthweight (BW), and pre-weaning growth rate (GR). Own placental information was available for 88% of 620 live-born piglets (62 gilts), since placentae were labeled during farrowing. The effect of PRLR genotype of the mother on average placenta weight (PLW) and placenta efficiency (EFF = BW/PLW), was therefore, also analyzed, PRLR genotype significantly (P < 0.05) affected age at first estrus and, as a result (since the gilts were inseminated at a fixed estrus number), age and bodyweight at insemination. Furthermore, PRLR genotype affected total number of piglets born (TNB, P = 0.056) and number of piglets born alive (NBA, P = 0.072), but it did not affect (P > 0.3) GL, BW or GR, neither before nor after correction for litter size. BB gilts were significantly younger at first estrus and younger and lighter at insemination than AA gilts (P < 0.05). AA gilts had larger TNB (P = 0.047) and tended to have a larger NBA (P = 0.062) than BB gilts. TNB was 11.4 +/- 0.7, 10.8 +/- 0.6, and 8.8 +/- 0.9; NBA was 11.1 +/- 0.6, 10.5 +/- 0.6, and 8.7 +/- 0.9; BW was 1309 +/- 40, 1277 +/- 34, and 1290 +/- 53 g; and GL was 113.6 +/- 0.3, 113.8 +/- 0.3, and 113.5 +/- 0.4 days for AA, AB and BB gilts, respectively. The effects on litter size and age at first estrus are independent effects. PRLR affected PLW (P = 0.050) and EFF (P = 0.066), resulting in a difference between AA and BB gilts. PLW was 160 +/- 9, 181 +/- 7 and 196 +/- 11 g and EFF was 7.6 +/- 0.2, 7.3 +/- 0.2 and 6.7 +/- 0.3 for AA (n = 19), AB (n = 29) and BB (n = 14) gilts, respectively. After correction for TNB, the differences disappeared. Functional teat number of the AA. AB and BB gilts was 15.35 +/- 0.22, 15.53 +/- 0.18, and 15.60 +/- 0.29, respectively, and was not affected by PRLR genotype (P = 0.7). Functional teat number of piglets from AA, AB and BB mothers was 14.20 +/- 0.10, 14.37 +/- 0.08, and 14.63 +/- 0.13, respectively. Piglets from BB mothers had on average larger numbers of functional teats compared to piglets from AA mothers (P = 0.028). In conclusion, PRLR gene is a major gene or marker for age at first estrus, litter size, and litter average of number of functional teats in the Large White x Meishan F2 crossbred gilts studied. The favorable allele for litter size (A allele) is the unfavorable allele for age at first estrus and for litter mean of functional teat number.  相似文献   

11.
DNA polymorphism of the porcine leukemia inhibitory factory (LIF) was investigated and used to study the effects on litter size in Large White pigs. A total of 2,167 litter records from 420 sows genotyped at two SNP loci (LIF1 and LIF2) within LIF gene were analyzed to determine whether LIF influenced total number born (TNB) and number born alive (NBA). The results indicated that B allele at LIF1 locus and A allele at LIF2 locus seem to have advantageous effects on litter size. However, the combined analyzed results demonstrated that genotype AAAA, ABBB, and BBBB are better than genotype AAAB, AABB, and ABAB for TNB and NBA in either third to eighth parity or all parities. In all parities, the sows with AAAA genotype had an advantage of 1.76 piglets (P < 0.001) for TNB and 1.44 piglets (P < 0.01) for NBA per litter over the AAAB sows, respectively. The results in this study demonstrated that LIF gene was significantly associated with litter size in pigs. H. C. Lin and G. F. Liu contributed equally to this work.  相似文献   

12.
In spite of the improvement in management and the breeding goal of increasing the number of piglets born alive, piglet mortality is still a substantial problem in pig breeding. The objective of the first part of the study was to estimate genetic parameters for different causes of piglet losses and to investigate the relationship to litter-size traits. Data were collected on a nucleus herd from January till December 2004. Records from 943 German Landrace sows with 1538 pure-bred litters and 13 971 individually weighted piglets were included. Four different causes of piglet losses (LOSS) were evaluated. Additional analysed traits were underweight and runting. Furthermore, the fertility traits number of piglets born alive, born in total and stillborn piglets as well as the individual birth and weaning weights were analysed. The different LOSS were treated as a binary trait and subsequently the heritabilities were estimated using a threshold model. The most important LOSS was crushing under the sow (12.4%). The survival rate and crushing had a heritability of h2 = 0.03. The fertility traits piglets born alive, born in total and stillborn piglets were analysed with a linear model and heritabilities rank from h2 = 0.05 (stillborn) to h2 = 0.10 (born alive). The estimated heritabilities for birth- and weaning weight were both h2 = 0.10. The genetic correlations between number of piglets born alive and each LOSS trait were analysed bivariately. Of all piglets born alive 84.3% survive the lactation period. Survival decreased with increasing litter size (rg = -0.54 up to -0.78) and the probability of being crushed under the sow increased.  相似文献   

13.
Reversible-jump Markov chain Monte Carlo (RJ-MCMC) is a technique for simultaneously evaluating multiple related (but not necessarily nested) statistical models that has recently been applied to the problem of phylogenetic model selection. Here we use a simulation approach to assess the performance of this method and compare it to Akaike weights, a measure of model uncertainty that is based on the Akaike information criterion. Under conditions where the assumptions of the candidate models matched the generating conditions, both Bayesian and AIC-based methods perform well. The 95% credible interval contained the generating model close to 95% of the time. However, the size of the credible interval differed with the Bayesian credible set containing approximately 25% to 50% fewer models than an AIC-based credible interval. The posterior probability was a better indicator of the correct model than the Akaike weight when all assumptions were met but both measures performed similarly when some model assumptions were violated. Models in the Bayesian posterior distribution were also more similar to the generating model in their number of parameters and were less biased in their complexity. In contrast, Akaike-weighted models were more distant from the generating model and biased towards slightly greater complexity. The AIC-based credible interval appeared to be more robust to the violation of the rate homogeneity assumption. Both AIC and Bayesian approaches suggest that substantial uncertainty can accompany the choice of model for phylogenetic analyses, suggesting that alternative candidate models should be examined in analysis of phylogenetic data. [AIC; Akaike weights; Bayesian phylogenetics; model averaging; model selection; model uncertainty; posterior probability; reversible jump.].  相似文献   

14.
To study the potential use of estrogen receptor gene (ESR) as a genetic marker to improve the reproductive traits of pigs, the genotypes of the ESR PCR product digested by Pvu II were determined in 2 239 litters from 612 Landrace sows. The data of the first, second, and later parities were separately evaluated. Although the frequency of the B allele was much lower than that of the A allele, likelihood ratio test showed that the gene frequencies were in Hardy-Weinberg equilibrium. The effects of ESR of different parities were not equal. In summary, the sows with the BB genotype showed better performance for total number of piglets born (TNB) and number of piglets born alive (NBA), but had a lower average piglet weight at birth (AWB). It was concluded that ESR could be used as a marker for the selection of litter size in the Landrace population.  相似文献   

15.
The litter size in Suffolk and Texel-sheep was analysed using REML and Bayesian methods. Litters born after hormonal induced oestrus and after natural oestrus were treated as different traits in order to estimate the genetic correlation between the traits. Explanatory variables were the age of the ewe at lambing, period of lambing, a year*flock-effect, a permanent environmental effect associated with the ewe, and the additive genetic effect. The heritability estimates for litter size ranged from 0.06 to 0.13 using REML in bi-variate linear models. Transformation of the estimates to the underlying scale resulted in heritability estimates from 0.12 to 0.17. Posterior means of the heritability of litter size in the Bayesian approach with bi-variate threshold models varied from 0.05 to 0.18. REML estimates of the genetic correlations between the two types of litter size ranged from 0.57 to 0.64 in the Suffolk and from 0.75 to 0.81 in the Texel. The posterior means of the genetic correlation (Bayesian analysis) were 0.40 and 0.44 for the Suffolk and 0.56 and 0.75 for the Texel in the sire and animal model respectively. A bivariate threshold model seems appropriate for the genetic evaluation of prolificacy in the breeds concerned.  相似文献   

16.
H2A histone family, member Z (H2A.Z) is required for early mammalian development. In the present study, the 932 bp of full-length cDNA encoding a 128 amino-acid protein and the sequences of intron 2 to 4 of the porcine H2A histone family, member Z (pH2AFZ) gene were obtained. By comparative sequencing of pH2AFZ gene in Large White and Meishan pigs, a 4 bp deletion/insertion in intron 2 was detected and a PCR-Bsu15I-RFLP was established to detect this variation. In DIV (4th Dam line of Chinese lean-type new lines) pigs, the first-parity females with AA genotype had fewer piglets born alive (-2.64 and -1.83 piglets per litter) than those with AB (P < 0.01) and BB (P < 0.05) genotype. The additive allelic and dominance effect were estimated to be 0.92 (P < 0.05) and -0.87 piglets per litter (P < 0.01) for number of piglets born alive, respectively. This result suggests that the pH2AFZ gene might be a good candidate gene of litter-size trait and provides some marker information for marker-assisted selection.  相似文献   

17.
17beta-Hydroxysteroid dehydrogenase type 1 (HSD17B1) is a key enzyme of 17beta-estradiol biosynthesis, which might play an important role in follicular development of the ovary. In this study, we isolated the complete coding sequence of porcine HSD17B1 gene and its unique intron sequences of porcine HSD17B1 gene, identified a single nucleotide polymorphism (SNP: A/C) in intron 4, and developed a PCR-MvaI-RFLP genotyping assay. Association of the SNP and litter size was assessed in two populations (purebred Large White and a experimental synthetic Line (DIV) sows). Statistical analysis demonstrated that, in the first parity, AC animals in experimental synthetic Line (DIV) sows had 0.52 more piglets born compared to the CC animals (P<0.05). In the all parities, pigs with the AA genotype had an additional 1.11 and 0.96 piglets born alive compared to the CC animals (P<0.05) in both experimental synthetic Line (DIV) and purebred Large White, respectively. Experimental synthetic Line (DIV) sows inheriting the AC genotype had additional 0.84 piglets born alive compared to the CC animals (P<0.01) in all parities. In addition, significant additive effect of -0.55+/-0.24 piglets/litter and -0.48+/-0.22 piglets/litter on piglet born alive was detected in both experimental synthetic Line (DIV) sows and purebred Large White lines (P<0.05), respectively. Therefore, HSD17B1 gene was significantly associated with litter size in two populations and could be a useful molecular marker in selection for increasing litter size in pigs.  相似文献   

18.
The objective of this study was to search for polymorphisms in the coding region of the estrogen receptors 1 and 2 (ESR1 and ESR2 )and to analyze the effects of these variants and the well known intronic ESR1 Pvu II polymorphism on litter size in a Chinese-European pig line. We identified five silent single nucleotide polymorphisms (SNP) in the ESR1 cDNA: c.669T > C (exon 3), c.1227C > T (exon 5), c.1452C > T (exon 7), c.1665T > C and c.1755A > G (exon 8). One pair of these SNP (c.1665T > C and c.1755A > G) co-segregated in the analyzed line, and the SNP c.669T > C showed the same segregation pattern as the Pvu II polymorphism. These polymorphisms were tested in this study, although the c.1452C > T SNP within exon 7 was not analyzed due to its low informativeness. In the ESR2 cDNA, one missense SNP was found within exon 5, which caused an amino acid substitution in the coded protein: "c.949G > A (p.Val317Met)" and was tested on sow litter size. Information on 1622 litter records from 408 genotyped sows was analyzed to determine whether these SNP influenced the total number of piglets born (TNB) or the number of born alive (NBA). The polymorphisms ESR1: [Pvu II; c.669T > C], ESR1: [c.1665T > C; c.1755A > G] and ESR2: c.949G > A showed no statistically significant association with litter size. However, the ESR1: c.1227T allele was significantly associated with TNB. The additive substitution effect was estimated to be 0.40 piglets born per litter (P < 0.03), and no dominance effects were observed. This SNP could be useful in assisted selection for litter size in some pig lines, as a new genetic marker in linkage disequilibrium with the causative mutation.  相似文献   

19.
5个与猪产仔数相关基因的效应分析   总被引:41,自引:0,他引:41  
为了比较不同基因对猪产仔数效应大小,在相同的大白 (158头)、长白 (224头)猪群中采用PCR-RFLP法进行了ESR、FSHβ、PRL、PRLR、NCOA1 5种与产仔数相关基因的基因型频率检测及不同基因型的总产仔数和产活仔数效应分析,结果表明,对相同母猪群产仔数影响效应最大的是PRLR和NCOA1基因,AA型比BB型母猪总产仔数高2.28~3.33头(P<0.01),产活仔数高1.57~3.30头(P<0.01),其次为ESR和FSHβ基因,BB型比AA型母猪总产仔数高0.55~1.18头(P<0.05,长白例外),产活仔数高0.37~1.20头(P<0.05)。PRL基因对产仔数效应不显著。  相似文献   

20.
A replicated selection experiment aimed at increasing litter size (total number of pigs born per litter) in Danish Landrace pigs was conducted from 1984 to 1991. The experiment included two selection and two control lines. In each generation, 30 and 14 first litters were produced in selection and control lines, respectively, and dams produced two litters. Each replicate, consisting of one selection and one control line, was founded from 60 families chosen randomly from the population at large. Family selection was practiced, and the criterion was the predicted breeding value for litter size computed using a repeatability animal model, and taking into account all available information. The data consisted of 947 records from 523 dams (424 dams had two litters) representing five cycles of selection of increased litter size. Data were analyzed from a Bayesian perspective, based on marginal posterior distributions of genetic parameters of interest. Marginalization was achieved using Gibbs sampling, with a single chain length of 1 205 000. After discarding the first 5 000 iterations, a sample was drawn every ten iterations, so 120 000 samples in total were saved. Densities were estimated and plotted, and summary statistics were computed from the estimated densities. The posterior means (± standard error) of heritability and repeatability were 0.22 ± 0.06 and 0.32 ± 0.05, respectively. These point estimates of genetic parameters were within the range of literature values, although on the high side. The posterior mean (± standard error) of genetic response to selection, defined as the difference between the mean breeding values of the selected lines and that of the base population, was 1.37 ± 0.43 pigs after five cycles of selection. The regression (through the origin) of breeding values in the selected lines on generation was 0.25 ± 0.08 pigs. Several informative priors constructed from information obtained with field data in this population were used to examine their influence on inferences. The priors were influential because of the relatively small scale of the experiment. An analysis excluding data from one of the control lines gave smaller genetic variance and heritability, and a smaller response to selection. However, it appears that selection for litter size is effective, but that the true rate of response is probably smaller than data from this experiment suggest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号