首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Osmotic adjustment in the filamentous fungus Aspergillus nidulans.   总被引:5,自引:0,他引:5       下载免费PDF全文
Aspergillus nidulans was shown to be xerotolerant, with optimal radial growth on basal medium amended with 0.5 M NaCl (osmotic potential [psi s] of medium, -3 MPa), 50% optimal growth on medium amended with 1.6 M NaCl (psi s of medium, -8.7 MPa), and little growth on medium amended with 3.4 M NaCl (psi s of medium, -21 MPa). The intracellular content of soluble carbohydrates and of selected cations was measured after growth on basal medium, on this medium osmotically amended with NaCl, KCl, glucose, or glycerol, and also after hyperosmotic and hypoosmotic transfer. The results implicate glycerol and erythritol as the major osmoregulatory solutes. They both accumulated during growth on osmotically amended media, as well as after hyperosmotic transfer, except on glycerol-amended media, in which erythritol did not accumulate. Furthermore, they both decreased in amount after hypoosmotic transfer. With the exception of glycerol, the extracellular osmotic solute did not accumulate intracellularly when mycelium was grown in osmotically amended media, but it accumulated after hyperosmotic transfer. It was concluded that the extracellular solute usually plays only a transient role in osmotic adaptation. The intracellular content of soluble carbohydrates and cations measured could reasonably account for the intracellular osmotic potential of mycelium growing on osmotically amended media.  相似文献   

2.
FOH (farnesol), a non-sterol isoprenoid produced by dephosphorylation of farnesyl pyrophosphate, has been shown to inhibit proliferation and induce apoptosis. We have been using Aspergillus nidulans and FOH as a model system and cell death stimulus, respectively, aiming to understand by which means filamentous fungi are driven towards cell death. Here, we review some of our findings about FOH-induced cell death in A. nidulans.  相似文献   

3.
4.
The disaccharide lactose is a byproduct of cheese production accumulating to amounts of 800,000 tons per year worldwide, of which 15% is used as a carbon source for various microbial fermentations. Nevertheless, little is known about the regulation of its metabolism in filamentous fungi. Lactose is metabolized slowly, and some important fungi such as A. niger cannot use it at all. A more detailed knowledge on the rate-limiting steps would be helpful to improve its industrial application. We have chosen A. nidulans as an object for investigating how lactose and galactose metabolism are regulated because it has long become a model system for biochemical and genetic research on fungi, and mutants in the lactose-metabolizing pathway of A. nidulans are available. In this paper, we will review the contributions of our research group achieved on this field.  相似文献   

5.
6.
A rapid method for nuclease digestion of Aspergillus nidulans chromatin is described. It overcomes the need for nuclear purification or protoplast preparation. The method is valid for the analysis of the nucleosomal repeat length in bulk chromatin, and allows the analysis of nucleosome phasing at a specific locus.  相似文献   

7.
Development of physical genomic maps is facilitated by identification of overlapping recombinant DNA clones containing long chromosomal DNA inserts. To simplify the analysis required to determine which clones in a genomic library overlap one another, we partitioned Aspergillus nidulans cosmid libraries into chromosome-specific subcollections. The eight A. nidulans chromosomes were resolved by pulsed field gel electrophoresis and hybridized to filter replicas of cosmid libraries. The subcollections obtained appeared to be representative of the chromosomes based on the correspondence between subcollection size and chromosome length. A sufficient number of clones was obtained in each chromosome-specific subcollection to predict the overlap and assembly of individual clones into a limited number of contiguous regions. This approach should be applicable to many organisms whose genomes can be resolved by pulsed field gel electrophoresis.  相似文献   

8.
In filamentous fungi, the stabilization of a polarity axis is likely to be a pivotal event underlying the emergence of a germ tube from a germinating spore. Recent results implicate the polarisome in this process and also suggest that it requires localized membrane organization. Here, we employ a chemical genetic approach to demonstrate that ceramide synthesis is necessary for the formation of a stable polarity axis in the model fungus Aspergillus nidulans. We demonstrate that a novel compound (HSAF) produced by a bacterial biocontrol agent disrupts polarized growth and leads to loss of membrane organization and formin localization at hyphal tips. We show that BarA, a putative acyl-CoA-dependent ceramide synthase that is unique to filamentous fungi mediates the effects of HSAF. Moreover, A. nidulans possesses a second likely ceramide synthase that is essential and also regulates hyphal morphogenesis. Our results suggest that filamentous fungi possess distinct pools of ceramide that make independent contributions to polarized hyphal growth, perhaps through the formation of specialized lipid microdomains that regulate organization of the cytoskeleton.  相似文献   

9.
The construction of mutant fungal strains is often limited by the poor efficiency of homologous recombination in these organisms. Higher recombination efficiencies can be obtained by increasing the length of homologous DNA flanking the transformation marker, although this is a tedious process when standard molecular biology techniques are used for the construction of gene replacement cassettes. Here, we present a two-step technology which takes advantage of an Escherichia coli strain expressing the phage λ Red(gam, bet, exo) functions and involves (i) the construction in this strain of a recombinant cosmid by in vivo recombination between a cosmid carrying a genomic region of interest and a PCR-generated transformation marker flanked by 50 bp regions of homology with the target DNA and (ii) genetic exchange in the fungus itself between the chromosomal locus and the circular or linearized recombinant cosmid. This strategy enables the rapid establishment of mutant strains carrying gene knock-outs with efficiencies >50%. It should also be appropriate for the construction of fungal strains with gene fusions or promoter replacements.  相似文献   

10.
In the ascomycetous fungus Aspergillus nidulans, the expression of two inducible, contiguous or closely linked genes (qutB and qutC) which encode enzymes for quinate breakdown to protocatechuate, appears to be controlled by the product of a tightly linked third gene (qutA). The qut gene cluster locates on chromosome VIII. The catalytic steps required for this conversion are dehydrogenase, dehydroquinase, and dehydratase, and these activities are induced by the presence of quinate in a similar manner. The dehydroquinase enzyme has been purified and shown to be multimeric, consisting of 20–22 identical subunits of approximately 10,000 MW. The enzyme has a pI value of 5.84, a K m of 5×10–4 m, and an amino acid composition that lacks tryptophan and cysteine. The enzyme also cross-reacts with rabbit antibodies raised against Neurospora crassa catabolic dehydroquinase.This work was supported in part by European Molecular Biology Organisation grants to J.R.K. and A.R.H. and by National Institutes of Health Grant GM23051 to N.H.G.  相似文献   

11.
We have studied compensatory evolution in a fludioxonil resistant mutant of the filamentous fungus Aspergillus nidulans. In an evolution experiment lasting for 27 weeks (about 3000 cell cycles) 35 parallel strains of this mutant evolved in three different environmental conditions. Our results show a severe cost of resistance (56%) in the absence of fludioxonil and in all conditions the mutant strain was able to restore fitness without loss of the resistance. In several cases, the evolved strain reached a higher fitness than the original sensitive ancestor. Fitness compensation occurred in one, two or three discrete steps. Genetic analysis of crosses between different evolved strains and between evolved and ancestral strains revealed interaction between compensatory mutations and provided information on the number of loci involved in fitness compensation. In addition, we discuss the opportunities for the experimental study of evolutionary processes provided by the filamentous fungus A. nidulans.  相似文献   

12.
Eades CJ  Hintz WE 《Gene》2000,255(1):25-34
We describe the cloning and sequence characterization of three Class I alpha-1,2-mannosidase genes from the filamentous fungus Aspergillus nidulans. We used degenerate PCR primers to amplify a portion of the alpha-1,2-mannosidase IA gene and used the PCR fragment to isolate the 2495 nt genomic gene plus several hundred bases of flanking region. Putative introns were confirmed by RT-PCR. Coding regions of the genomic sequence were used to identify two additional members of the gene family by BLAST search of the A. nidulans EST sequencing database. Specific PCR primers were designed to amplify portions of these genes which were used to isolate the genomic sequences. The 1619 nt coding region of the alpha-1,2-mannosidase IB gene and the 1759 nt coding region of the alpha-1,2-mannosidase IC gene, plus flanking regions, were fully sequenced. All three genes appeared to encode type-II transmembrane proteins that are typical of Class I alpha-1,2-mannosidases. The deduced protein sequences were aligned with 11 published Class I alpha-1, 2-mannosidases to determine sequence relationships. All three genes exhibited high similarity to other fungal alpha-1,2-mannosidases. The alpha-1,2-mannosidase IB exhibited very high similarity to the Aspergillus satoi and Penicillium citrinum alpha-1,2-mannosidases and likely represents an orthologue of these genes. Phylogenetic analysis suggests that the three A. nidulans Class I alpha-1, 2-mannosidases arose from duplication events that occurred after the divergence of fungi from animals and insects. This is the first report of the existence of multiple Class I mannosidases in a single fungal species.  相似文献   

13.
14.
15.
A betaine:homocysteine methyltransferase activity was demonstrated in the cell-free extracts from the fungus Aspergillusnidulans. Among methionine-requiring mutants which do not grow on homocysteine one class responds to betaine indicating that this compound can serve as a methyl donor in methionine synthesis in vivo. Mutants of the second class which grow only on methionine were shown to have betaine: homocysteine — and methyltetrahydrofolate: homocysteine methyltransferases simultaneously impaired.  相似文献   

16.
17.
The role of cAMP signalling during germination of asexual spores (conidia) of the filamentous fungus Aspergillus nidulans was investigated. A. nidulans strains defective for adenylate cyclase (CyaA) or for the functionally overlapping cAMP-dependent protein kinase (PkaA) and newly characterized SchA protein kinase, homologous to Saccharomyces cerevisiae Sch9, show altered trehalose mobilization and kinetics of germ tube outgrowth, in addition to other defects in colony formation. cAMP-dependent trehalose breakdown is triggered by the addition of a carbon source independently of further catabolism, suggesting that cAMP signalling controls early events of conidial germination in response to carbon source sensing. Additional results suggest that cAMP has targets other than PkaA and SchA and that PkaA retains activity in the absence of cAMP. Conversely, PkaA regulates cAMP levels in A. nidulans because these are elevated by approximately 250-fold in a strain that lacks PkaA. Furthermore, analysis of mutant strains impaired in both adenylate cyclase and RasA GTPase previously implicated in the control of A. nidulans spore germination suggested that RasA and cAMP signalling proceed independently during germination in A. nidulans.  相似文献   

18.
19.
The catabolism of fatty acids is important in the lifestyle of many fungi, including plant and animal pathogens. This has been investigated in Aspergillus nidulans, which can grow on acetate and fatty acids as sources of carbon, resulting in the production of acetyl coenzyme A (CoA). Acetyl-CoA is metabolized via the glyoxalate bypass, located in peroxisomes, enabling gluconeogenesis. Acetate induction of enzymes specific for acetate utilization as well as glyoxalate bypass enzymes is via the Zn2-Cys6 binuclear cluster activator FacB. However, enzymes of the glyoxalate bypass as well as fatty acid beta-oxidation and peroxisomal proteins are also inducible by fatty acids. We have isolated mutants that cannot grow on fatty acids. Two of the corresponding genes, farA and farB, encode two highly conserved families of related Zn2-Cys6 binuclear proteins present in filamentous ascomycetes, including plant pathogens. A single ortholog is found in the yeasts Candida albicans, Debaryomyces hansenii, and Yarrowia lipolytica, but not in the Ashbya, Kluyveromyces, Saccharomyces lineage. Northern blot analysis has shown that deletion of the farA gene eliminates induction of a number of genes by both short- and long-chain fatty acids, while deletion of the farB gene eliminates short-chain induction. An identical core 6-bp in vitro binding site for each protein has been identified in genes encoding glyoxalate bypass, beta-oxidation, and peroxisomal functions. This sequence is overrepresented in the 5' region of genes predicted to be fatty acid induced in other filamentous ascomycetes, C. albicans, D. hansenii, and Y. lipolytica, but not in the corresponding genes in Saccharomyces cerevisiae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号