首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungal cell wall degrading enzymes produced by the biocontrol fungiTrichoderma harzianum andGliocladium virens are strong inhibitors of spore germination and hyphal elongation of a number of phytopathogenic fungi. The purified enzymes include chitinolytic enzymes with different modes of action or different substrate specificity and glucanolytic enzymes with exo-activity. A variety of synergistic interactions were found when different enzymes were combined or associated with biotic or abiotic antifungal agents. The levels of inhibition obtained by using enzyme combinations were, in some cases, comparable with commercial fungicides. Moreover, the antifungal interaction between enzymes and common fungicides allowed the reduction of the chemical doses up to 200-fold. Chitinolytic and glucanolytic enzymes fromT. harzianum were able to improve substantially the antifungal ability of a biocontrol strain ofEnterobacter cloacae. DNA fragments containing genes encoding for different chitinolytic enzymes were isolated from a cDNA library ofT. harzianum and cloned for mechanistic studies and biocontrol purposes. Our results provide additional information on the role of lytic enzymes in processes of biocontrol and strongly suggest the use of lytic enzymes and their genes for biological control of plant diseases.  相似文献   

2.
Several independent studies of bacterial degradation of nitrate ester explosives have demonstrated the involvement of flavin-dependent oxidoreductases related to the old yellow enzyme (OYE) of yeast. Some of these enzymes also transform the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT). In this work, catalytic capabilities of five members of the OYE family were compared, with a view to correlating structure and function. The activity profiles of the five enzymes differed substantially; no one compound proved to be a good substrate for all five enzymes. TNT is reduced, albeit slowly, by all five enzymes. The nature of the transformation products differed, with three of the five enzymes yielding products indicative of reduction of the aromatic ring. Our findings suggest two distinct pathways of TNT transformation, with the initial reduction of TNT being the key point of difference between the enzymes. Characterization of an active site mutant of one of the enzymes suggests a structural basis for this difference.  相似文献   

3.
The 72 enzymes in nucleotide metabolism, from all sources, have a distribution of subunit sizes similar to those from other surveys: an average subunit Mr of 47,900, and a median size of 33,300. The same enzyme, from whatever source, usually has the same subunit size (there are exceptions); enzymes having a similar activity (e.g., kinases, deaminases) usually have a similar subunit size. Most simple enzymes in all EC classes (except class 6, ligases/synthetases) have subunit sizes of less than 30,000. Since structural domains defined in proteins tend to be in the Mr range of 5,000 to 30,000, it may be that most simple enzymes are formed as single domains. Multifunctional proteins and ligases have subunits generally much larger than Mr 40,000. Analyses of several well-characterized ligases suggest that they also have two or more distinct catalytic sites, and that ligases therefore are also multifunctional proteins, containing two or more domains. Cooperative kinetics and evidence for allosteric regulation are much more frequently associated with larger enzymes: such complex functions are associated with only 19% of enzymes having a subunit Mr less than or equal to 29,000, and with 86% of all enzymes having a subunit Mr greater than 50,000. In general, larger enzymes have more functions. Only 20% of these enzymes appear to be monomers; the rest are homopolymers and rarely are they heteropolymers. Evidence for the reversible dissociation of homopolymers has been found for 15% of the enzymes. Such changes in quaternary structure are usually mediated by appropriate physiological effectors, and this may serve as a mechanism for their regulation between active and less active forms. There is considerable structural organization of the various pathways: 19 enzymes are found in various multifunctional proteins, and 13 enzymes are found in different types of multienzyme complexes.  相似文献   

4.
Several independent studies of bacterial degradation of nitrate ester explosives have demonstrated the involvement of flavin-dependent oxidoreductases related to the old yellow enzyme (OYE) of yeast. Some of these enzymes also transform the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT). In this work, catalytic capabilities of five members of the OYE family were compared, with a view to correlating structure and function. The activity profiles of the five enzymes differed substantially; no one compound proved to be a good substrate for all five enzymes. TNT is reduced, albeit slowly, by all five enzymes. The nature of the transformation products differed, with three of the five enzymes yielding products indicative of reduction of the aromatic ring. Our findings suggest two distinct pathways of TNT transformation, with the initial reduction of TNT being the key point of difference between the enzymes. Characterization of an active site mutant of one of the enzymes suggests a structural basis for this difference.  相似文献   

5.
Seven multiforms of indanol dehydrogenase were isolated in a highly purified state from male rabbit liver cytosol. The enzymes were monomeric proteins with similar molecular weights of 30,000-37,000 but with distinct electrophoretic mobilities. All the enzymes oxidized alicyclic alcohols including benzene dihydrodiol and hydroxysteroids at different optimal pH, but showed clear differences in cofactor specificity, steroid specificity, and reversibility of the reaction. Two NADP+-dependent enzymes exhibited both 17 beta-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes and 3 alpha-hydroxysteroid dehydrogenase activity for 5 beta-androstan-3 alpha-ol-17-one. Three of the other enzymes with dual cofactor specificity catalyzed predominantly 5 beta-androstane-3 alpha,17 beta-diol dehydrogenation. The reverse reaction rates of these five enzymes were low, whereas the other two enzymes, which had 3 alpha-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes or 3(17)beta-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes, highly reduced 3-ketosteroids and nonsteroidal aromatic carbonyl compounds with NADPH as a cofactor. All the enzymes exhibited Km values lower for the hydroxysteroids than for the alicyclic alcohols. The results of kinetic analyses with a mixture of 1-indanol and hydroxysteroids, pH and heat stability, and inhibitor sensitivity suggested strongly that, in the seven enzymes, both alicyclic alcohol dehydrogenase and hydroxysteroid dehydrogenase activities reside on a single enzyme protein. On the basis of these data, we suggest that indanol dehydrogenase exists in multiple forms in rabbit liver cytosol and may function in in vivo androgen metabolism.  相似文献   

6.
Thermolysin (Bacillus thermoproteolyticus neutral proteinase, EC 3.4.24.4) has been immobilized by radiation polymerization of hydrophilic and hydrophobic monomers, and its properties, such as enzyme activity, thermal stability and durability, have been studied. The activity of the immobilized enzymes increased with an increase in the hydrophilicity of the polymer matrix and with a decrease in monomer concentration. Immobilization with hydrophilic monomers increased the thermal stability of the enzymes, but the thermal stability of the enzymes immobilized with hydrophobic monomers was comparable with that of native enzymes. The durability of the immobilized enzymes was examined by continuous hydrolysis of casein; enzymes immobilized with a high concentration (90%) of hydrophilic monomers appeared to be stabilized and could be used for long times.  相似文献   

7.
The first 3 reaction steps of the de novo pyrimidine biosynthetic pathway are catalyzed by carbamoyl-phosphate synthetase II (CPSII), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO), respectively. In eukaryotes, these enzymes are structurally classified into 2 types: (1) a CPSII-DHO-ATC fusion enzyme (CAD) found in animals, fungi, and amoebozoa, and (2) stand-alone enzymes found in plants and the protist groups. In the present study, we demonstrate direct intermolecular interactions between CPSII, ATC, and DHO of the parasitic protist Trypanosoma cruzi, which is the causative agent of Chagas disease. The 3 enzymes were expressed in a bacterial expression system and their interactions were examined. Immunoprecipitation using an antibody specific for each enzyme coupled with Western blotting-based detection using antibodies for the counterpart enzymes showed co-precipitation of all 3 enzymes. From an evolutionary viewpoint, the formation of a functional tri-enzyme complex may have preceded-and led to-gene fusion to produce the CAD protein. This is the first report to demonstrate the structural basis of these 3 enzymes as a model of CAD. Moreover, in conjunction with the essentiality of de novo pyrimidine biosynthesis in the parasite, our findings provide a rationale for new strategies for developing drugs for Chagas disease, which target the intermolecular interactions of these 3 enzymes.  相似文献   

8.
Constitutive synthesis of enzymes responsible for methyl group oxidation in 3,5-xylenol degradation and an associated p-cresol methylhydroxylase in Pseudomonas putida NCIB 9869 was shown by their retention at high specific activities in cells transferred from 3,5-xylenol medium to glutamate medium. The specific activities of other enzymes of the 3,5-xylenol pathway declined upon removal of aromatic substrate, consistent with their inducible control. Specific activities of the methyl-oxidizing enzymes showed an eventual decline concomitant with a decrease in the fraction of bacteria capable of growth with 3,5-xylenol; a simultaneous loss of the ability to grow with m-hydroxybenzoate was also observed. The property of 3,5-xylenol utilization could be transferred to another strain of P. putida. It is proposed that enzymes of the 3,5-xylenol pathway and those for conversion of p-cresol to p-hydroxybenzoate are plasmid encoded, that the early methyl-oxidizing enzymes are expressed constitutively, and that the later enzymes are inducible.  相似文献   

9.
Traditional covalent immobilization of enzymes was mostly operated within water phase. However, most of enzymes are flexible when they are in water environment, and the covalent reactions generally lead to complete or partial activity losing due to the protein conformational changes.This paper examined enzyme covalent immobilization operated in micro-aqueous organic media, to display the differences between two environments of immobilization within water and micro-aqueous organic solvent by activity and stability determination of the resulting immobilized enzymes. Catalase, trypsin, horseradish peroxidase, laccase and glucose oxidase have been employed as model enzymes. Results showed the thermal, pH and reusable stabilities of the micro-aqueous organic covalently immobilized enzymes were improved when compared with the immobilized enzymes within water. Micro-aqueous covalent immobilization showed a remarkable advantage in remaining the enzymes catalytic activity for all the five enzymes compared with the traditional water phase immobilization. And the optimum pH values for both immobilization within water and micro-aqueous organic media shifted slightly.  相似文献   

10.
氮沉降增加对森林凋落物分解酶活性的影响   总被引:7,自引:0,他引:7  
氮沉降增加对森林凋落物分解酶产生的影响在世界范围受到关注。综述了凋落物分解酶的种类、影响酶的因素、酶的生态学意义和土壤酶研究技术的研究发展趋势。根据森林凋落物底物性质的不同,将凋落物分解酶分为纤维素分解酶类、木质素分解酶类、蛋白水解酶类和磷酸酶类。目前普遍认为,氮沉降增加,磷酸酶类活性随之增加,其它三类酶活性未呈现规律性变化。此外,还对氮沉降增加与土壤酶之间关系的研究前景进行了探讨。  相似文献   

11.
The Xylella fastidiosa is a bacterium that is the cause of citrus variegated chlorosis (CVC). The shikimate pathway is of pivotal importance for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Putative structural differences in the enzymes from the shikimate pathway, between the proteins of bacterial origin and those of plants, could be used for the development of a drug for the control of CVC. However, inhibitors for shikimate pathway enzymes should have high specificity for X. fastidiosa enzymes, since they are also present in plants. In order to pave the way for structural and functional efforts towards antimicrobial agent development, here we describe the molecular modeling of seven enzymes of the shikimate pathway of X. fastidiosa. The structural models of shikimate pathway enzymes, complexed with inhibitors, strongly indicate that the previously identified inhibitors may also inhibit the X. fastidiosa enzymes.  相似文献   

12.
The aim of this study was to elucidate the evolution of enzyme secretome of early lineage fungi to contribute to resolving the basal part of Fungal Kingdom and pave the way for industrial evaluation of their unique enzymes. By combining results of advanced sequence analysis with secretome mass spectrometry and phylogenetic trees, we provide evidence for that plant cell wall degrading enzymes of higher fungi share a common ancestor with enzymes from aerobic ancient fungi. Sequence analysis (HotPep, confirmed by dbCAN-HMM models) enabled prediction of enzyme function directly from sequence. For the first time, oxidative enzymes are described here in early lineage fungi (Chytridiomycota & Cryptomycota), which supports the conceptually new understanding that fungal LPMOs were also present in the early evolution of the Fungal Kingdom. Phylogenetic analysis of fungal AA9 proteins suggests an LPMO-common-ancestor with Ascomycetes and Basidiomycetes and describes a new clade of AA9s. We identified two very strong biomass degraders, Rhizophlyctis rosea (soil-inhabiting) and Neocallimastix californiae (rumen), with a rich spectrum of cellulolytic, xylanolytic and pectinolytic enzymes, characteristically including several different enzymes with the same function. Their secretome composition suggests horizontal gene transfer was involved in transition to terrestrial and rumen habitats. Methods developed for recombinant production and protein characterization of enzymes from zoosporic fungi pave the way for biotechnological exploitation of unique enzymes from early lineage fungi with potential to contribute to improved biomass conversion. The phyla of ancient fungi through evolution have developed to be very different and together they constitute a rich enzyme discovery pool.  相似文献   

13.
The preparation of fused materials using liposomes has been examined for several decades as a tool for the stabilization of heterogeneous enzymes. We investigated the liposomal encapsulation of lysosomal enzymes extracted from Saccharomyces cerevisiae. Liposomes were formed with L-α-phosphatidylcholine from egg yolk and cholesterol. To encapsulate whole lysosomal enzymes in liposomes made with and without cholesterol, L-α-phosphatidylcholine and cholesterol were added to chloroform at a ratio of 10:0 (L-α-phosphatidylcholine:cholesterol) and then evaporated for 10 min at 4°C. The residue after evaporation was mixed with lysosomal enzymes at the same ratio and then vortexed for 1 min and sonicated for 5 sec to encapsulate the enzymes. Liposome-encapsulated lysosomal enzymes were created using various amounts of lysosomal enzymes and cholesterol. The results indicated that the optimal encapsulation conditions were lipid:cholesterol ratios of 7:3 and 8:2. Liposome formation was confirmed by TEM imaging. After 1 day, two types of liposomes released small amounts of lysosomal enzymes. However, after 6 days, liposomes formed from mixtures of lipid and cholesterol did not exhibit any changes, whereas liposomes formed from only lipids released high amounts of lysosomal enzymes. Lysosomal enzymes encapsulated in liposomes have potential as important drug delivery carriers, as liposomes are able to control drug release and bioavailability.  相似文献   

14.
Bhat S  Hutson RA  Owen E  Bhat MK 《Anaerobe》1997,3(5):347-352
Immuno-cross reactivity between the subunits of Clostridium thermocellum cellulosome and cloned endogucanases and xylanase from the same bacterium was studied using the polyclonal antibodies raised against cloned enzymes. Dot blot analysis showed that the cellulosome, S8 and S11 subunits cross-reacted strongly with the antibodies of all cloned enzymes tested except that raised against CelC. Western blot analysis revealed that S8 and S11 subunits cross-reacted with the antibodies of CelA, CelB, CelD, CelG, CelH and XynZ, but the antibodies of CelB and CelG were highly specific for S8 and S11 subunits, respectively. Similar analysis using dissociated cellulosome showed that the antibodies of all cloned enzymes tested cross-reacted with more than one subunit of the cellulosome. Antibodies of CelC showed a very low cross-reactivity against all subunits of the cellulosome. The results indicate that immunological cross-reactivity studies could be useful, not only for demonstrating the similarities between native and cloned enzymes, but also for identifying native enzymes using antibodies of cloned enzymes.  相似文献   

15.
16.
This article deals with the binding of glycolytic enzymes with membranous or protein subcellular structures. The representative papers of the last three decades dealing with this matter are reviewed. The studies evidencing the binding of some glycolytic enzymes to insoluble subcellular proteins and membranous structures are presented. It is currently generally accepted that the glycolytic enzymes work in some organisation. Such organisation undoubtedly plays a marked role, although still poorly known, in the regulation processes of glycolysis. From this review, the conclusion emerges that the regulatory ability of the binding of glycolytic enzymes to cellular membranes should be added to the list of well-known mechanisms of post-translational regulation of the glycolytic enzymes. Some of the results presented are the background for the hypothesis that planar phospholipid domains in/on the membrane surface are capable of functioning as binding sites for these enzymes. Such binding can modify the conformation state of the enzymes, which results in changes in their kinetic properties; thus, it may function as a regulator of catalytic activity  相似文献   

17.
ABSTRACT

The high stereo- and substrate specificities of enzymes have been utilized for micro-determination of amino acids. Here, I review the discovery of l-Phe dehydrogenase and its practical use in the diagnosis of phenylketonuria in more than 5,400,000 neonates over two decades in Japan. Screening and uses of other selective enzymes for micro-determination of amino acids have also been discussed. In addition, novel enzymatic assays with the systematic use of known enzymes, including assays based on a pyrophosphate detection system using pyrophosphate dikinase for a variety of l-amino acids with amino-acyl-tRNA synthetase have been reviewed. Finally, I review the substrate specificities of a few amino acid-metabolizing enzymes that have been altered, using protein engineering techniques, mainly for production of useful chemicals, thus enabling the wider use of natural enzymes.  相似文献   

18.
The commercial production of chemicals and fuels from lignocellulosic residues by enzymatic means still requires considerable research on both the technical and economic aspects. Two technical problems that have been identified as requiring further research are the recycle of the enzymes used in hydrolysis and the reuse of the re calcitrant cellulose remaining after incomplete hydrolysis. Enzyme recycle is required to lower the cost of the enzymes, while the reuse of the spent cellulose will lower the feedstock cost. The conversion process studied was a combined enzymatic hydrolysis and fermentation (CHF) procedure that utilized the cellulolytic enzymes derived from the fungus Trichoderma harzianum E58 and the yeast Saccharomyces cerevisiae. The rate and extent of hydrolysis and ethanol production was monitored as was the activity and hydrolytic potential of the enzymes remaining in the filtrate after the hydrolysis period. When a commercial cellulose was used as the substrate for a routine 2-day CHF process, 60% of the original treated, water-extracted aspenwood was used as the substrate, only 13% of the original filter paper activity was detected after a similar procedure. The combination of 60% spent enzymes with 40% fresh enzymes resulted in the production of 30% less reducing sugars than the original enzyme mixture. Since 100% hydrolysis of the cellulose portion is seldom accomplished in an enzymatic hydrolysis pro cess, the residual cellulose was used as a substrate for the growth of T. harzianum E58 and production of celulolytic enzymes. The residue remaining after the CHF process was used as a substrate for the production of the cellulolytic enzymes. The production of enzymes from the residue of the Solka Floc hydrolysis was greater than the production of enzymes from the original Solka Floc.  相似文献   

19.
20.
A procedure for the simultaneous purification to homogeneity of hexokinase, phosphoglucomutase 1 and 2, aldolase, phosphoglucose isomerase and glucose-6-phosphate dehydrogenase from human origin has been developed. Human placenta homogenate was first chromatographed on DE-52 column which retains hexokinase and glucose-6-phosphate dehydrogenase while the other enzymes are recovered in the unabsorbed protein fraction. The other steps in the purification involve Matrex gel and specific affinity chromatography for the DE-52 retained enzymes and phosphocellulose and Matrex gel chromatography for the other enzymes. All the enzymes mentioned were obtained in one week, with recoveries from 14 percent for glucose-6-phosphate dehydrogenase to 75 percent for hexokinase. Thus, the procedures utilized seem to be useful in obtaining large amounts of enzymes in a a homogeneous form from an easily available human tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号