首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The coexistence of two different PII, proteins in Azospirillum brasilense was established by comparing proteins synthesized by the wild-type strain and two null mutants of the characterized glnB gene (encoding PII) adjacent to glnA. Strains were grown under conditions of nitrogen limitation or nitrogen excess. The proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) or isoelectric focusing gel electrophoresis and revealed either by [32P]phosphate or [3H]uracil labeling or by cross-reaction with an anti-A. brasilense PII-antiserum. After SDS-PAGE, a single band of 12.5 kDa revealed by the antiserum in all conditions tested was resolved by isoelectric focusing electrophoresis into two bands in the wild-type strain, one of which was absent in the glnB null mutant strains. The second PII protein, named Pz, was uridylylated under conditions of nitrogen limitation. The amino acid sequence deduced from the nucleotide sequence of the corresponding structural gene, called glnZ, is very similar to that of PII. Null mutants in glnB were impaired in regulation of nitrogen fixation and in their swarming properties but not in glutamine synthetase adenylylation. No glnZ mutant is yet available, but it is clear that PII and Pz are not functionally equivalent, since glnB null mutant strains exhibit phenotypic characters. The two proteins are probably involved in different regulatory steps of the nitrogen metabolism in A. brasilense.  相似文献   

3.
ABSTRACT: BACKGROUND: PII proteins have a fundamental role in the control of nitrogen metabolism in bacteria, through interactions with different PII targets, controlled by metabolite binding and post-translational modification, uridylylation in most organisms. In the photosynthetic bacterium Rhodospirillum rubrum, the PII proteins GlnB and GlnJ were shown, in spite of their high degree of similarity, to have different requirements for post-translational uridylylation, with respect to the divalent cations, Mg2+ and Mn2+. RESULTS: Given the importance of uridylylation in the functional interactions of PII proteins, we have hypothesized that the difference in the divalent cation requirement for the uridylylation is related to efficient binding of Mg/Mn-ATP to the PII proteins. We concluded that the amino acids at positions 42 and 85 in GlnJ and GlnB (in the vicinity of the ATP binding site) influence the divalent cation requirement for uridylylation catalyzed by GlnD. CONCLUSIONS: Efficient binding of Mg/Mn-ATP to the PII proteins is required for uridylylation by GlnD. Our results show that by simply exchanging two amino acid residues, we could modulate the divalent cation requirement in the uridylylation of GlnJ and GlnB. Considering that post-translational uridylylation of PII proteins modulates their signaling properties, a different requirement for divalent cations in the modification of GlnB and GlnJ adds an extra regulatory layer to the already intricate control of PII function.  相似文献   

4.
PII proteins are small homotrimeric signal transduction proteins that regulate the activities of metabolic enzymes and permeases, and control the activities of signal transduction enzymes. The protein family shows high conservation, with examples in eukaryota (plants and eukaryotic algae), archaea, and bacteria. This distribution indicates that PII is one of the most ancient signalling proteins known.  相似文献   

5.
6.
GlnD is a bifunctional uridylyltransferase/uridylyl-removing enzyme that has a central role in the general nitrogen regulatory system NTR. In enterobacteria, GlnD uridylylates the PII proteins GlnB and GlnK under low levels of fixed nitrogen or ammonium. Under high ammonium levels, GlnD removes UMP from these proteins (deuridylylation). The PII proteins are signal transduction elements that integrate the signals of nitrogen, carbon and energy, and transduce this information to proteins involved in nitrogen metabolism. In Herbaspirillum seropedicae, an endophytic diazotroph isolated from grasses, several genes coding for proteins involved in nitrogen metabolism have been identified and cloned, including glnB, glnK and glnD. In this work, the GlnB, GlnK and GlnD proteins of H. seropedicae were overexpressed in their native forms, purified and used to reconstitute the uridylylation system in vitro. The results show that H. seropedicae GlnD uridylylates GlnB and GlnK trimers producing the forms PII (UMP)(1), PII (UMP)(2) and PII (UMP)(3), in a reaction that requires 2-oxoglutarate and ATP, and is inhibited by glutamine. The quantification of these PII forms indicates that GlnB was more efficiently uridylylated than GlnK in the system used.  相似文献   

7.
Two closely related signal transduction proteins, PII and GlnK, have distinct physiological roles in the regulation of nitrogen assimilation. Here, we examined the physiological roles of PII and GlnK when these proteins were expressed from various regulated or constitutive promoters. The results indicate that the distinct functions of PII and GlnK were correlated with the timing of expression and levels of accumulation of the two proteins. GlnK was functionally converted into PII when its expression was rendered constitutive and at the appropriate level, while PII was functionally converted into GlnK by engineering its expression from the nitrogen-regulated glnK promoter. Also, the physiological roles of both proteins were altered by engineering their expression from the nitrogen-regulated glnA promoter. We hypothesize that the use of two functionally identical PII-like proteins, which have distinct patterns of expression, may allow fine control of Ntr genes over a wide range of environmental conditions. In addition, we describe results suggesting that an additional, unknown mechanism may control the cellular level of GlnK.  相似文献   

8.
PII are signal-transducing proteins that integrate metabolic signals and transmit this information to a large number of proteins. In proteobacteria, PII are modified by GlnD (uridylyltransferase/uridylyl-removing enzyme) in response to the nitrogen status. The uridylylation/deuridylylation cycle of PII is also regulated by carbon and energy signals such as ATP, ADP and 2-oxoglutarate (2-OG). These molecules bind to PII proteins and alter their tridimensional structure/conformation and activity. In this work, we determined the effects of ATP, ADP and 2-OG levels on the in vitro uridylylation of Herbaspirillum seropedicae PII proteins, GlnB and GlnK. Both proteins were uridylylated by GlnD in the presence of ATP or ADP, although the uridylylation levels were higher in the presence of ATP and under high 2-OG levels. Under excess of 2-OG, the GlnB uridylylation level was higher in the presence of ATP than with ADP, while GlnK uridylylation was similar with ATP or ADP. Moreover, in the presence of ADP/ATP molar ratios varying from 10/1 to 1/10, GlnB uridylylation level decreased as ADP concentration increased, whereas GlnK uridylylation remained constant. The results suggest that uridylylation of both GlnB and GlnK responds to 2-OG levels, but only GlnB responds effectively to variation on ADP/ATP ratio.  相似文献   

9.
PII proteins, found in Bacteria, Archaea and plants, help coordinate carbon and nitrogen assimilation by regulating the activity of signal transduction enzymes in response to diverse signals. Recent studies of bacterial PII proteins have revealed a solution to the signal transduction problem of how to coordinate multiple receptors in response to diverse stimuli yet permit selective control of these receptors under various conditions and allow adaptation of the system as a whole to long-term stimulation.  相似文献   

10.
Haloferax mediterranei is an extreme halophilic micro-organism belonging to the Archaea domain that was isolated from the Santa Pola solar salterns (Alicante, Spain) in 1983. The biochemistry of the proteins involved in nitrogen metabolism is being studied, but the knowledge of their regulation is very scarce at present. The PII superfamily is constituted by major regulators of nitrogen metabolism, which are widespread in prokaryotic and eukaryotic organisms. These trimeric proteins (12?kDa per subunit) have in Escherichia coli long been known to regulate GS (glutamine synthetase) activity via its adenylyltransferase/adenylyl-removing enzyme and, more recently, to be able to interact directly with this enzyme in methanogenic archaea. We have tested the possible role of PII proteins in the regulation of ammonium assimilation in our model organism and the results clearly indicate that the direct influence of GS by PII proteins can also take place in halophilic archaea, starting with the comprehension of nitrogen regulation in those organisms.  相似文献   

11.
The protein II (PII) outer membrane proteins of Neisseria gonorrhoeae are a family of heat-modifiable proteins that are subject to phase variation, in which the synthesis of different PII species is turned on and off at a high frequency. Transformation of PII genes from a donor gonococcal strain into a recipient strain was detected with monoclonal antibodies specific for the PII proteins of the donor. Individual PII protein-expressing transformants generally bound only one donor-specific PII monoclonal antibody. Recovery of transformants expressing a donor-specific PII protein depended on the PII protein expression state of the donor: the transformed population bound only monoclonal antibodies specific for PII proteins that were expressed in the donor. Colony variants with an altered frequency of switching of PII protein expression were isolated, but the altered switch phenotype did not cotransform with the PII structural gene. These results provide genetic evidence that PII proteins are the products of different genes and that expressed and unexpressed forms of the PII gene are different from each other.  相似文献   

12.
To contribute nitrogen for plant growth and establish an effective symbiosis with alfalfa, Sinorhizobium meliloti Rm1021 needs normal operation of the GlnD protein, a bifunctional uridylyltransferase/uridylyl-cleavage enzyme that measures cellular nitrogen status and initiates a nitrogen stress response (NSR). However, the only two known targets of GlnD modification in Rm1021, the PII proteins GlnB and GlnK, are not necessary for effectiveness. We introduced a Tyr→Phe variant of GlnB, which cannot be uridylylated, into a glnBglnK background to approximate the expected state in a glnD-sm2 mutant, and this strain was effective. These results suggested that unmodified PII does not inhibit effectiveness. We also generated a glnBglnK-glnD triple mutant and used this and other mutants to dissect the role of these proteins in regulating the free-living NSR and nitrogen metabolism in symbiosis. The glnD-sm2 mutation was dominant to the glnBglnK mutations in symbiosis but recessive in some free-living phenotypes. The data show that the GlnD protein has a role in free-living growth and in symbiotic nitrogen exchange that does not depend on the PII proteins, suggesting that S. meliloti GlnD can communicate with the cell by alternate mechanisms.  相似文献   

13.
14.
Shi Z  Chen K  Liu Z  Sosnick TR  Kallenbach NR 《Proteins》2006,63(2):312-321
A great deal of attention has been paid lately to the structures in unfolded proteins due to the recent discovery of many biologically functional but natively unfolded proteins and the far-reaching implications of order in unfolded states for protein folding. Recently, studies on oligo-Ala, oligo-Lys, oligo-Asp, and oligo-Glu, as well as oligo-Pro, have indicated that the left-handed polyproline II (PII) is the major local structure in these short peptides. Here, we show by NMR and CD studies that ubiquitin fragments, model unfolded peptides composed of nonrepeating amino acids, and four alanine-rich peptides containing QQQ, SSS, FFF, and VVV sequences are all present in aqueous solution predominantly in the extended PII or beta conformation. The results from this and related studies indicate that PII might be a major backbone conformation in unfolded proteins. The presence of defined local backbone structure in unfolded proteins is inconsistent with predictions from random coil models.  相似文献   

15.
Jiang P  Ninfa AJ 《Biochemistry》2007,46(45):12979-12996
PII signal transduction proteins are among the most widely distributed signaling proteins in nature, controlling nitrogen assimilation in organisms ranging from bacteria to higher plants. PII proteins integrate signals of cellular metabolic status and interact with and regulate receptors that are signal transduction enzymes or key metabolic enzymes. Prior work with Escherichia coli PII showed that all signal transduction functions of PII required ATP binding to PII and that ATP binding was synergistic with the binding of alpha-ketoglutarate to PII. Furthermore, alpha-ketoglutarate, a cellular signal of nitrogen and carbon status, was observed to strongly regulate PII functions. Here, we show that in reconstituted signal transduction systems, ADP had a dramatic effect on PII regulation of two E. coli PII receptors, ATase, and NRII (NtrB), and on PII uridylylation by the signal transducing UTase/UR. ADP acted antagonistically to alpha-ketoglutarate, that is, low adenylylate energy charge acted to diminish signaling of nitrogen limitation. By individually studying the interactions that occur in the reconstituted signal transduction systems, we observed that essentially all PII and PII-UMP interactions were influenced by ADP. Our experiments also suggest that under certain conditions, the three nucleotide binding sites of the PII trimer may be occupied by combinations of ATP and ADP. In the aggregate, our results show that PII proteins, in addition to serving as sensors of alpha-ketoglutarate, have the capacity to serve as direct sensors of the adenylylate energy charge.  相似文献   

16.
PII proteins are a protein family important to signal transduction in bacteria and plants. PII plays a critical role in regulation of carbon and nitrogen metabolism in cyanobacteria. Through conformation change and covalent modification, which are regulated by 2-oxoglutarate, PII interacts with different target proteins in response to changes of cellular energy status and carbon and nitrogen sources in cyanobacteria and regulates cellular metabolism. This article reports recent progress in PII research in cyanobacteria and discusses the mechanism of PII regulation of cellular metabolism.  相似文献   

17.
PII proteins are a protein family important to signal transduction in bacteria and plants. PII plays a critical role in regulation of carbon and nitrogen metabolism in cyanobacteria. Through conformation change and covalent modification, which are regulated by 2-oxoglutarate, PII interacts with different target proteins in response to changes of cellular energy status and carbon and nitrogen sources in cyanobacteria and regulates cellular metabolism. This article reports recent progress in PII research in cyanobacteria and discusses the mechanism of PII regulation of cellular metabolism .  相似文献   

18.
19.
The PII proteins are key mediators of the cellular response to carbon and nitrogen status and are found in all domains of life. In eukaryotes, PII has only been identified in red algae and plants, and in these organisms, PII localizes to the plastid. PII proteins perform their role by assessing cellular carbon, nitrogen, and energy status and conferring this information to other proteins through protein-protein interaction. We have used affinity chromatography and mass spectrometry to identify the PII-binding proteins of Arabidopsis thaliana. The major PII-interacting protein is the chloroplast-localized enzyme N-acetyl glutamate kinase, which catalyzes the key regulatory step in the pathway to arginine biosynthesis. The interaction of PII with N-acetyl glutamate kinase was confirmed through pull-down, gel filtration, and isothermal titration calorimetry experiments, and binding was shown to be enhanced in the presence of the downstream product, arginine. Enzyme kinetic analysis showed that PII increases N-acetyl glutamate kinase activity slightly, but the primary function of binding is to relieve inhibition of enzyme activity by the pathway product, arginine. Knowing the identity of PII-binding proteins across a spectrum of photosynthetic and non-photosynthetic organisms provides a framework for a more complete understanding of the function of this highly conserved signaling protein.  相似文献   

20.
Kinch LN  Grishin NV 《Proteins》2002,48(1):75-84
Nitrogen regulatory (PII) proteins are signal transduction molecules involved in controlling nitrogen metabolism in prokaryots. PII proteins integrate the signals of intracellular nitrogen and carbon status into the control of enzymes involved in nitrogen assimilation. Using elaborate sequence similarity detection schemes, we show that five clusters of orthologs (COGs) and several small divergent protein groups belong to the PII superfamily and predict their structure to be a (betaalphabeta)(2) ferredoxin-like fold. Proteins from the newly emerged PII superfamily are present in all major phylogenetic lineages. The PII homologs are quite diverse, with below random (as low as 1%) pairwise sequence identities between some members of distant groups. Despite this sequence diversity, evidence suggests that the different subfamilies retain the PII trimeric structure important for ligand-binding site formation and maintain a conservation of conservations at residue positions important for PII function. Because most of the orthologous groups within the PII superfamily are composed entirely of hypothetical proteins, our remote homology-based structure prediction provides the only information about them. Analogous to structural genomics efforts, such prediction gives clues to the biological roles of these proteins and allows us to hypothesize about locations of functional sites on model structures or rationalize about available experimental information. For instance, conserved residues in one of the families map in close proximity to each other on PII structure, allowing for a possible metal-binding site in the proteins coded by the locus known to affect sensitivity to divalent metal ions. Presented analysis pushes the limits of sequence similarity searches and exemplifies one of the extreme cases of reliable sequence-based structure prediction. In conjunction with structural genomics efforts to shed light on protein function, our strategies make it possible to detect homology between highly diverse sequences and are aimed at understanding the most remote evolutionary connections in the protein world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号