首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Separations of all major cyclooxygenase and lipoxygenase metabolites of arachidonic acid were obtained by high performance liquid chromatography (HPLC). A C18 reverse-phase column was used in ion suppression mode to separate underivatized metabolites of arachidonic acid isolated from human and rabbit platelets. The metabolites were monitored by measuring radioactivity or ultraviolet light absorption at 192 nm (absorption by double bonds). Comparisons of TLC and HPLC separations demonstrated that the HPLC separation of metabolites of [1-14C]arachidonic acid was quantitative. HPLC also resolved several minor metabolites that were not detected by scanning of TLC separations.  相似文献   

2.
Previous experiments have suggested that superoxide dismutase (SOD) and catalase (CAT) may inhibit prostaglandin synthesis. The purpose of this study was to determine if these free radical scavengers can alter the metabolism of free arachidonic acid (AA) by the cyclooxygenasse and lipoxygenase enzyme systems in platelets. In control experiments washed platelets were incubated with 3H-AA for 5 minutes, extracted and the products separated by reverse phase high pressure liquid chromatography (HPLC). In normal intact platelets 13.5 ± 0.6% of the radioactivity was found in TxB2, 16.3 ± 1.4% in HHT, 61.3 ± 1.1% in 12-HETE and 9.0 ± 1.0% was unconverted AA. Pre-incubating the platelets for 1 minute with 10 μg/ml SOD or CAT or 10 μg/ml SOD plus 10 μg/ml CAT did not inhibit AA conversion or alter the percent product distribution. Similarly, SOD and CAT had no effect on AA metabolism in broken cells. However, as expected, pretreating platelets with indomethaoin blocked TxB2,and HHT formation (P <.0001). We conclude that SOD and CAT do not inhibit cyclooxygenase or lipoxygenase metabolism of free AA in platelets.  相似文献   

3.
Lipoxygenase activities were estimated in washed platelets (intact platelets) and their subcellular fractions obtained from 7 patients with deficient platelet lipoxygenase activities and 9 normal subjects. From sonicated platelet preparations, 12,000 g supernatant (F-I), cytosol (F-II) and microsomal fractions (F-III) were prepared by differential centrifugation. When 12-hydroxyeicosatetraenoic acid (12-HETE) produced by the incubation of arachidonic acid with intact platelets or each of their subcellular fractions from normal subjects was measured by reversed-phase high-performance liquid chromatography analysis, the lipoxygenase activities of F-I, F-II and F-III were 87%, 31% and 17%, respectively, of the enzyme activity of intact platelets. One of the patients showed no detectable lipoxygenase activity in any preparation, while the other patients showed reduced enzyme activities in all preparations. The addition of CaCl2 significantly increased 12-HETE synthesis solely by F-I from these patients. In most of these patients, contrary to normal subjects, it appeared that the lipoxygenase activity was not fully expressed in intact platelets, since the F-I produced more 12-HETE than the intact platelets.  相似文献   

4.
Somatostatin (10−9 M) significantly elevated the synthesis of thromboxane B2 in rat platelets. The transformation of arachidonic acid to active lipoxygenase metabolites was suppressed by somatostatin (10−9 and 10−8 M). The ratio of the lipoxygenase/cyclooxygenase products was significantly reduced by the polypeptide (10−9 and 10−8 M) in rat platelets. Higher concentrations (10−7, 10−6 and 10−5 M) of somatostatin did not modify the lipoxygenase pathway of the platelets. The synthesis of the vasoconstrictor — proaggregatory cyclooxygenase products was stimulated by the polypeptide (10−9 and 10−8 M), while the formation of vasodilatator - antiaggregatory cyclooxygenase metabolites was induced by higher concentrations of somatostatin (10−7 and 10−6 M). Somatostatin might act on the deacylation process of phospholipids, reducing the free arachidonic acid substrate level, resulting in a lower lipoxygenation rate in the platelets, which could be responsible for the increased formation of thromboxane. The contradictory results reported by others concerning the action of somatostatin on the platelet function might be explained by our results that the effect of somatostatin depends on the applied dose.  相似文献   

5.
The metabolism of arachidonic acid in platelets by both cyclooxygenase and lipoxygenase involves the rapid consumption of molecular oxygen. However, selective inhibition of cyclooxygenase completely abolishes the arachidonate-induced oxygen burst in intact platelets. This is in contrast to platelet lysates, in which approximately 50% of the arachidonate-induced oxygen burst remains detectable following inhibition of cyclooxygenase with acetylsalicylic acid. This lipoxygenase oxygen burst is blocked by preincubation of the platelets with ETYA, which inhibits both cyclooxygenase and lipoxygenase. In cell-free 100000 x g supernatants of platelet lysates, which contain only lipoxygenase activity, arachidonate induces an oxygen burst which is not blunted by preincubation with aspirin but is completely abolished by preincubation with ETYA. The finding of a lipoxygenase-dependent oxygen burst in platelet lysates but not in intact platelet suspensions suggests differential activation or differential availability of platelet lipoxygenase in intact and disrupted platelets. This was confirmed by a 5 min lag in the generation of [14C]HETE (the major lipoxygenase product) from [14C]arachidonic acid in intact platelets, but an almost immediate initiation of [14C]HETE production in platelet lysates. In contrast, the synthesis of [14C]thromboxane B2 (the major cyclooxygenase product) from [14C]arachidonic acid began immediately in both intact and disrupted platelet preparations and peaked within 5 min. These observations provide new insight into factors controlling platelet hydroxy acid production and help to explain the nature of the platelet oxygen burst.  相似文献   

6.
Human blood platelet aggregation and the formation of icosanoids were studied in response to triethyl lead chloride (Et3PbCl). Concentrations higher than 75 microM stimulate platelets to aggregate, whereas low concentrations (less than or equal to 20 microM) caused platelet hypersensitivity to aggregating agents such as collagen or arachidonic acid. Incubation of suspensions of washed platelets with Et3PbCl resulted in a stimulated liberation and subsequent metabolism of arachidonic acid. This response was dependent on the concentration of Et3PbCl and the incubation time. Using low concentrations of Et3PbCl and up to 3 h of incubation, the lipoxygenase product 12-hydroxy-5,8,10,14-icosatetraenoic acid was the major metabolite. Under normal conditions, however, stimulation of platelets with collagen, thrombin, or arachidonic acid leads to higher amounts of the cyclooxygenase products 12-hydroxy-5,8,10-heptadecatrienoic acid and thromboxane B2. The aggregation of human platelets induced by Et3PbCl was inhibited by three different drugs: acetylsalicylic acid, forskolin and quinacrine; but only quinacrine could prevent the liberation of arachidonic acid and the appearance of its metabolites. These specific effects of the inhibitors on Et3PbCl-stimulated platelets as well as the differences in the pattern of arachidonic acid metabolites and phosphatidic acid suggest a direct stimulatory action of Et3PbCl on platelet phospholipase A2.  相似文献   

7.
Z Mezei  A Gecse  G Telegdy 《Prostaglandins》1988,36(3):399-408
Somatostatin (10(-9) M) significantly elevated the synthesis of thromboxane B2 in rat platelets. The transformation of arachidonic acid to active lipoxygenase metabolites was suppressed by somatostatin (10(-9) and 10(-8) M). The ratio of the lipoxygenase/cyclooxygenase products was significantly reduced by the polypeptide (10(-9) and 10(-8) M) in rat platelets. Higher concentrations (10(-7), 10(-6) and 10(-5) M) of somatostatin did not modify the lipoxygenase pathway of the platelets. The synthesis of the vasoconstrictor - proaggregatory cyclooxygenase products was stimulated by the polypeptide (10(-9) and 10(-8) M), while the formation of vasodilatator - antiaggregatory cyclooxygenase metabolites was induced by higher concentrations of somatostatin (10(-7) and 10(-6) M). Somatostatin might act on the deacylation process of phospholipids, reducing the free arachidonic acid substrate level, resulting in a lower lipoxygenation rate in the platelets, which could be responsible for the increased formation of thromboxane. The contradictory results reported by others concerning the action of somatostatin on the platelet function might be explained by our results that the effect of somatostatin depends on the applied dose.  相似文献   

8.
Human arterial and venous segments from patients under-going operations when incubated in Tris buffer both alone and with arachidonic acid were able to produce thromboxane B2 (assessed by radioimmunoassay). Thromoboxane B2 (TxB2) production was progressive in time (till 40 min.) and was enhanced by the addition of 1mM norepinephrien. Contamination of tissues by platelet was checked and platelets did not contribute to thromboxane formation. The investigation of the conversions of 1-14C arachidonic acid by vascular tissue indicated that human vascular tissues produce the metabolites of the cyclooxygenase dependent pathway and that prostacyclin is the main metabolite with a PGI2/TxA2 ratio of 4:1. The arterial wall was found to posses an active lipoxygenase dependent pathway. Thromboxane production by intimal cells was neglible and the main source of thromboxane was the media. The production of thromboxane did not change in relation to age, but arterial segments from men produced significantly larger amounts of thromboxane than those from women.  相似文献   

9.
Isolated rat pancreatic acini were employed to demonstrate that the exocrine pancreas can metabolize [14C]-arachidonic acid by way of the lipoxygenase pathway as well as the cyclooxygenase pathway. Analysis by high performance liquid chromtography delineated a monohydroxy acid, presumably 12-L-hydroxy-5,8–10,14-eicosatetraenoic acid (12-HETE) as the major lipoxygenase product. The formation of this hydroxy arachidonic derivative was stimulated by the calcium ionophore ionomycin. Stimulation of lipoxygenase pathway by ionomycin was confirmed by thin layer chromatography. In addition, 6-keto-PGF, PGF, and PGE2 were identified; and ionomycin, carbamylcholine, and caerulein enhanced the formation of these metabolites of the cyclooxygenase pathway. Ionomycin induced stimulation of HETE formation was inhibited by ETYA and nordihydroguaiaretic acid, but spontaneous and evoked enzyme secretion was unaffected. Thus, although ionomycin, a pancreatic secretagogue, stimulates the lipoxygenase pathway, the precise role of these arachidonate metabolites in the physiology of the exocrine pancreas is still obscure.  相似文献   

10.
A peroxidase-linked immunoassay of the sandwich type was developed for a quantitative determination of the amount of human cyclooxygenase. Two species of monoclonal antibodies (hPES01 against the human enzyme and PES-5 against the bovine enzyme) were utilized, which recognized different epitopes on the cyclooxygenase of human platelets. The peroxidase activity of the immunoprecipitate was correlated with the amount of cyclooxygenase. The enzyme immunoassay was applied to platelets from 15 normal subjects and a clinical case of platelet cyclooxygenase abnormality with a prolonged bleeding time. Almost the same level of immunoreactive protein was found in platelets of both normal subjects and the patient. However, the solubilized enzyme from the patient's platelets did not transform arachidonic acid to prostaglandin H2 (PGH2) while thromboxane production from PGH2 was observed at a normal level.  相似文献   

11.
It has been postulated that the diacylglycerol lipase pathway is a predominant source of the free arachidonic acid which is released from phospholipids upon the exposure of human platelets to thrombin. The amount of released arachidonic acid and other fatty acids in thrombin-stimulated platelets was determined in the presence of BW755C, the cyclooxygenase/lipoxygenase inhibitor, and in relation to phosphatidylinositol degradation and phosphatidic acid formation. A stearic acid:arachidonic acid molar ratio approaching unity would be expected in the free fatty acid fraction if the latter pathway were a major source of released arachidonic acid. Our results indicate that the diacylglycerol lipase pathway contributes a maximum of 3-4 nmol of arachidonic acid/2 X 10(9) platelets or 12-15% of the total arachidonic acid released (25.8 nmol/2 X 10(9) platelets) upon exposure to thrombin (2 units/ml) for 4 min. Trifluoperazine inhibited most of the thrombin-dependent free arachidonic acid release but only 15% of the absolute loss of arachidonic acid from phosphatidylinositol. Therefore, we conclude that the diacylglycerol lipase pathway represents only a minor source of the free arachidonic acid that is released upon thrombin stimulation of human platelets.  相似文献   

12.
TxA2 production by human arteries and veins   总被引:1,自引:0,他引:1  
Human arterial and venous segments from patients under-going operations when incubated in Tris buffer both alone and with arachidonic acid were able to produce thromboxane B2 (assessed by radioimmunoassay). Thromboxane B2 (TxB2) production was progressive in time (till 40 min.) and was enhanced by the addition of 1mM norepinephrine. Contamination of tissues by platelet was checked and platelets did not contribute to thromboxane formation. The investigation of the conversion of 1-14C arachidonic acid by vascular tissue indicated that human vascular tissues produce the metabolites of the cyclooxygenase dependent pathway and that prostacyclin is the main metabolite with a PGI2/TxA2 ratio of 4:1. The arterial wall was found to possess an active lipoxygenase dependent pathway. Thromboxane production by intimal cells was negligible and the main source of thromboxane was the media. The production of thromboxane did not change in relation to age, but arterial segments from men produced significantly larger amounts of thromboxane than those from women.  相似文献   

13.
The role of individual eicosanoids of the arachidonic acid (AA) cascade in the growth control of A549 human lung adenocarcinoma cells has been studied. Cyclooxygenase and lipoxygenase metabolites of [14C]AA incorporated were actively synthesized in the cultures of tumor cells with full confluence unaccomplished. In such cultures inhibitors of AA metabolism (indomethacin and esculetin) and also a lipoxygenase metabolite of AA, 15-hydroxyeicosatetraenoic acid (15-HETE), significantly suppressed the incorporation of [3H]thymidine and biosynthesis of prostaglandin E2(PGE2). Other lipoxygenase metabolites of AA (5-HETE and 12-HETE) had no effect on these parameters. The basic fibroblast growth factor (bFGF) had practically no affect on the growth of A549 cells and the PGE2 production in cultures with 5% fetal calf serum (FCS); however, in the presence of 0.5% FCS this factor significantly increased the number of tumor cells. The growth-stimulating effect of bFGF was completely abolished by a cyclooxygenase inhibitor indomethacin. The data suggest a key role of PGE2 in the growth control of A549 cells with an active synthesis of cyclooxygenase and lipoxygenase metabolites of AA, its importance in realization of the mitogenic effect of bFGF, and specific features of 15-HETE as a down-regulator of the PGE2-dependent proliferation.  相似文献   

14.
Two fatty acids differing from arachidonic acid in lacking one of the internal double bonds (20:35,8,14 and 20:35,11,14) and their 1-C14 and acetylenic analogues were synthesized. 20:35,8,14 was not metabolized by human platelets but 20:35,11,14 yielded a small amount (1.5% conversion) of two hydroxy fatty acids in a three (11-hydroxy-5,12,14-icosatrienoic acid) to one (15-hydroxy-5,11,13-icosatrienoic acid) proportion. Indomethacin inhibited formation of both hydroxy fatty acids indicating that they are produced via cyclooxygenase. Both ethylenic acids were weak inhibitors of cyclooxygenase (substrate 20 microM arachidonic acid) (ID50: 8.8 microM 20:35,8,14; 11.2 microM 20:35,11,14) but were inactive against lipoxygenase (ID50 greater than 100 microM). Similarly, both acetylenic analogues were poor inhibitors of lipoxygenase (ID50: 23.4 microM 20:35,8,14; 47.8 microM 20:35,11,14) but although 20:35,8,14 was inactive against cyclooxygenase (ID50 greater than 100 microM) the 20:35,11,14 was a potent inhibitor (ID50: 0.35 microM). The results are interpreted on the basis that hydrogen removal by the lipoxygenase is from C10 and by the cyclooxygenase from C13 but only in 20:35,11,14 are these hydrogens (C13) located at the center of a 1,4 cis cis pentadiene system (ethylenic) or a 1,4 pentadiyne system (acetylenic).  相似文献   

15.
In macrophages, isolated from the peritoneal fluid of rats, after activation, formation of metabolites of arachidonic acid occurs both by the cyclooxygenase and lipoxygenase pathways. The cells of normal animals produce mainly cyclooxygenase products. After adrenalectomy, a considerable increase occurs in the formation of lipoxygenase products, and less in those of the cyclooxygenase (1). In the experiments described here, the effect of adrenalectomy on the presence of leukotriene B4 (LTB4), 6-keto-PGF1 alpha and thromboxane B2 (TxB2) in the peritoneal fluid is determined.  相似文献   

16.
Abstract: Rat cerebrum, prelabeled in vivo by intraventric-ular injection of [1-14C]arachidonic acid, was used to assess cyclooxygenase and lipoxygenase reaction products in total homogenates, cytosol, synaptosomes, and microsomes. Effects of bicuculline-induced status epilepticus on arachi-donic acid metabolism in synaptosomes and microsomes were also measured. Lipoxygenase activity, resulting in the synthesis of hydroxyeicosatetraenoic acids (HETEs), and cyclooxygenase activity, resulting in the synthesis of prostaglandins (PGs), were measured by reverse-phase and normal-phase HPLC with flow scintillation detection. Endogenous lipoxygenase products in synaptosomes were identified by capillary gas chromatography-mass spectrometry. PGs and HETEs were detected in all subcellular fractions. The synaptosomal fraction showed the highest lipoxygenase activity, with 5-HETE, 12-HETE, and leukotriene B4 as the major products. Following bicuculline-induced status epilepticus, endogenous free arachidonic acid and other fatty acids accumulated in synaptosomes, but not in microsomes. Incorporation of [1-l4C]arachidonic acid into synaptosomal and microsomal phospholipids was decreased after bicuculline treatment. Bicuculline-induced status epilepticus resulted in increased synthesis of HETEs in synaptosomes. PG synthesis increased in the microsomal fraction. When [1-14C]arachidonic acid-labeled synaptosomes and microsomes were incubated for 1 h at 37°C the synthesis of eicosa-noids, particularly PGD2, was increased significantly in bi-cuculline-treated rats, as compared with untreated rats. Depolarization (45 mM K+) of synaptosomes induced a loss of [1-14C]arachidonic acid from phosphatidylinositol, and increased the synthesis of PGD2 and HETEs, an effect that was enhanced in bicuculline-treated rats. This study localizes changes in arachidonic acid metabolism and lipoxygenase activity resulting from bicuculline-induced status epilepticus in the brain subcellular fraction enriched in nerve endings.  相似文献   

17.
Abstract— Microscopic fluorescence analysis of fura-2-loaded bovine adrenal chromaffin cells demonstrates that ~70% of the cells responded to arachidonic acid in increasing the intracellular Ca2+ concentration. Because this increase was markedly less in the absence of external Ca2+, we examined the effect of arachidonic acid on Ca2+ influx electrophysiologically. Bath application of 10 μM arachidonic acid induced a long-lasting inward current when the cell was clamped at -50 mV. Other fatty acids, such as oleic acid, linoleic acid, eicosatrienoic acid, and eicosa-pentaenoic acid, were all ineffective. The current-voltage relationships suggest that arachidonic acid may activate voltage-insensitive channels. Arachidonic acid (2μM) activated a single-channel current in the inside-out patch, even in the presence of inhibitors of cyclooxygenase and lipoxygenase, possibly suggesting that arachidonic acid could activate channels directly. The onset delay of the inward channel current in the outside-out patch configuration (54.02 ± 63.5 s; mean SD) was significantly shorter than that in the inside-out patch one (197.3 ± 177.7 s). Washout of arachidonic acid decreased the probability of channel openings in the outside-out patch but not in the inside-out one. These results suggest that arachidonic acid activates channels reversibly from outside of the plasma membrane. The unitary conductarce for Ca2+ of arachidonic acid-activated channel was ~17 pS. The arachidonic acid-activated channel was permeable to Ba2+, Ca2+, and Na+ but not to Cl?. The opening probability of the arachidonic acid-activated channel did not depend on membrane potential. These results demonstrate that arachidonic acid activates cation-selective, Ca2+-permeable channels in bovine adrenal chromaffin cells.  相似文献   

18.
Radiolabeled cis-(+-)-5,6-epoxyeicosatrienoic acid (5(6)-EpETrE) was incubated with a suspension of isolated human platelets in order to study its metabolic fate. The epoxide slowly disappeared from the suspension and was completely metabolized within 30 min. After extraction and analysis by reverse-phase high performance liquid chromatography, seven metabolites were found. Addition of either indomethacin (0.01 mM, cyclooxygenase inhibitor) or BW755C (0.1 mM, cyclooxygenase/lipoxygenase inhibitor) to the incubations blocked the formation of four and six metabolites, respectively, 1,2-Epoxy-3,3,3-trichloropropane (inhibitor of microsomal epoxide hydrolase) failed to inhibit the formation of 5,6-dihydroxyeicosatrienoic acid (5,6-DiHETrE), a hydrolysis product of the precursor 5(6)-EpETrE. The metabolites were characterized by UV spectroscopy, negative ion chemical ionization liquid chromatography/mass spectrometry, gas chromatography/mass spectrometry and, in one instance, coelution with synthetic standard. Three primary platelet metabolites were structurally determined to be 5,6-epoxy-12-hydroxyeicosatrienoic acid, 5,6-epoxy-12-hydroxyheptadecadienoic acid, and a unique bicyclic metabolite, 5-hydroxy-6,9-epoxy-thromboxane B1, which originated from intramolecular hydrolysis of 5,6-epoxythromboxane-B1. This thromboxane analog was partially separated into stereoisomers and coeluted with the racemic synthetic standard in gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. Three other metabolites were characterized as 5,6,12-trihydroxyeicosatrienoic acid, 5,6,12-trihydroxyheptadecadienoic acid, and 5,6-dihydroxythromboxane-B1, and resulted from the hydrolysis of the corresponding epoxides rather than from the metabolism of 5,6-DiHETrE. The latter was not metabolized by platelet cyclooxygenase or lipoxygenase. The biosynthesis of two cyclooxygenase metabolites indicated the formation of unstable 5,6-epoxythromboxane-A1 as an intermediate precursor. Platelet aggregation was not induced by 5(6)-EpETrE, although responsiveness to arachidonic acid was reduced following preincubation with the epoxide. The platelet metabolites of 5(6)-EpETrE might be useful in assessing its in vivo production in humans.  相似文献   

19.
There is growing evidence that arachidonic acid is oxygenated enzymatically in every cell type and that the oxygenated metabolites regulate a variety of pathological and physiological processes including reproduction. In the present study, the metabolism of arachidonic acid in the testis via cyclooxygenase and lipoxygenase pathways was analyzed. Testicular microsomes showed substantial cyclooxygenase activity as measured by the polarographic method. Analysis of the products on TLC revealed PGF2 alpha (79.5%) as the main product followed by PGE2 (20.3%) and PGD2 (0.17%). At higher substrate concentrations (150 microM), however, 6-keto-PGF1 alpha, the stable metabolite of prostacyclin, was observed in substantial quantities. Maximum activity of lipoxygenase was observed at pH 6.4 in both microsomes and cytosol, the activity being higher in cytosol. Analysis of lipoxygenase pathway products with arachidonic acid as the substrate, revealed the presence of 12-HPETE as the major product both in cytosol and in microsomes. Besides this, 15- and 5-HPETEs were also observed in substantial quantities.  相似文献   

20.
Fatty acid-derived inflammatory mediators are considered to play an important role in airway hyperresponsiveness of asthmatic patients. The pulmonary macrophage may be an important source for these mediators in airway tissue. We investigated the metabolism of arachidonic acid and linoleic acid by human bronchoalveolar lavage cells, mainly comprising pulmonary macrophages. Arachidonic was mainly metabolized by 5-lipoxygenase, giving rise to the formation of leukotriene B4 and 5-hydroxy-eicosatetraenoic acid (5-HETE). Linoleic acid was converted to 5 major metabolites, including the 9-hydroxy and 13-hydroxy derivatives, 9- and 13-hydroxy-octadecadienoic acid (9- and 13-HODE). The formation of HODEs could be inhibited by cyclooxygenase inhibitors as well as lipoxygenase inhibitors, indicating that both enzymic species play a role in the generation of HODEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号