首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional structures of the complexes between the Abeta(1-42) fragments Abeta(1-11), Abeta(10-20), Abeta(12-28), and Abeta(22-35) and the alpha7 nicotinic receptor were obtained with the aid of the ESCHER program. Furthermore, short high-temperature molecular dynamics simulations in vacuo were employed to relax the complexes and allow the peptides to accommodate in the binding site. The final models have shown that Abeta peptides do bind on the same site, which is delineated by loop C of one subunit and the loops 62-74 and G of the adjacent subunit on the receptor. This finding is supported by previous experimental and theoretical data, and should help one to obtain a better and more detailed structural information about the activity of the Abeta peptides and their repercussion in the disorders at molecular level, which are characteristic of the Alzheimer's disease.  相似文献   

2.
We previously demonstrated that intrathecal treatment with substance P metabolite substance P1-7 induced anti-hyperalgesia in diabetic mice. In the present study, we have used a synthetic analog of this peptide, the substance P1-7 amide, showing higher binding affinitiy than the native heptapeptide, for studies of the tail-flick response in diabetic and non-diabetic mice. Intrathecal injection of substance P1-7 amide produced prolongation of the tail-flick latency in both diabetic and non-diabetic mice, an effect that was more pronounced in diabetic mice than non-diabetic mice. Moreover, the observed antinociceptive potency of the substance P1-7 amide was higher in both diabetic and non-diabetic mice in comparison with the native substance P1-7. The antinociceptive effect of substance P1-7 amide was reversed by naloxone but not by the selective opioid receptor antagonist β-funaltrexamine, naltrindole or nor-binaltorphimine, selective for the μ-, δ- or κ-opioid receptor, respectively. In addition, the antinociceptive effect induced by substance P1-7 amide was partly reversed by the σ1 receptor agonist (+)-pentazocine, suggesting a possible involvement of the σ1 receptor for the action of this peptide. These results suggest that the actions of substance P1-7 amide mimic the effects of the native substance P fragment but with higher potency and that the mechanisms for its action may involve the σ1 receptor system.  相似文献   

3.
Acetylcholine-evoked currents of the receptor chimera alpha7-5HT3A V201 expressed in Xenopus oocytes are strikingly small when compared to the amount of alpha-bungarotoxin binding sites detected at the oocyte membrane. Since the chimeric receptor is made of the extracellular N-terminal region of the rat alpha7 nicotinic acetylcholine receptor and the C-terminal region of the mouse 5-HT3A receptor, which includes the ion channel, we hypothesized that communication between these two regions was not optimal. Here, we show that mutating to aspartate several adjacent positions in the M2-M3 extracellular linker increases current amplitudes to different extents, thus confirming the important role of this region on receptor gating.  相似文献   

4.
We have recently reported evidence that a very high affinity interaction between the beta-amyloid peptide Abeta(1-42) and the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) may be a precipitating event in the formation of amyloid plaques in Alzheimer's disease. In the present study, the kinetics for the binding of Abeta(1-42) to alpha7nAChR and alpha4beta2nAChR were determined using the subtype-selective nicotinic receptor ligands [(3)H]methyllycaconitine and [(3)H]cytisine. Synaptic membranes prepared from rat and guinea pig cerebral cortex and hippocampus were used as the source of receptors. Abeta(1-42) bound to the alpha7nAChR with exceptionally high affinity, as indicated by K(i) values of 4.1 and 5.0 pM for rat and guinea pig receptors, respectively. When compared with the alpha7nAChR, the affinity of Abeta(1-42) for the alpha4beta2nAChR was approximately 5,000-fold lower, as indicated by corresponding K(i) values of 30 and 23nM. The results of this study support the concept that an exceptionally high affinity interaction between Abeta(1-42) and alpha7nAChR could serve as a precipitating factor in the formation of amyloid plaques and thereby contribute to the selective degeneration of cholinergic neurons that originate in the basal forebrain and project to the cortex and hippocampus.  相似文献   

5.
The alpha7 nicotinic receptors in human fetal brain and spinal cord   总被引:3,自引:0,他引:3  
The alpha7 nicotinic acetylcholine receptor subtype is believed to be involved in the regulation of neuronal growth, differentiation and synapse formation during the development of the human brain. In this study the expression of the alpha7 nicotinic acetylcholine receptor was investigated in human fetal brain and spinal cord of 5-11 weeks gestational age. Both the specific binding of [125I]alpha-bungarotoxin to prenatal brain membranes and the expression of alpha7 mRNA were significantly higher in the pons, medulla oblongata, mesencephalon and spinal cord of 9-11 weeks gestational age compared with cerebellum, cortex and subcortical forebrain. A significant positive correlation between gestational age and the expression of alpha7 mRNA was observed in all brain regions except cortex. A positive correlation was also observed between the gestational age and the [125I]alpha-bungarotoxin binding in the pons, medulla oblongata, mesencephalon, and cerebellum. Consequently, a significant relationship between the alpha7 mRNA levels and the binding sites for [125I]alpha-bungarotoxin was found in the fetal brain. The increasing levels of the alpha7 nicotinic acetylcholine receptor during the first trimester support the important role of nAChRs for the development of the central nervous system.  相似文献   

6.
The structure of a homopentameric alpha7 nicotinic acetylcholine receptor is modelled by combining structural information from two sources: the X-ray structure of a water soluble acetylcholine binding protein from Lymnea stagnalis, and the electron microscopy derived structure of the transmembrane domain of the Torpedo nicotinic receptor. The alpha7 nicotinic receptor model is generated by simultaneously optimising: (i) chain connectivity, (ii) avoidance of stereochemically unfavourable contacts, and (iii) contact between the beta1-beta2 and M2-M3 loops that have been suggested to be involved in transmission of conformational change between the extracellular and transmembrane domains. A Gaussian network model was used to predict patterns of residue mobility in the alpha7 model. The results of these calculations suggested a flexibility gradient along the transmembrane domain, with the extracellular end of the domain more flexible that the intracellular end. Poisson-Boltzmann (PB) energy calculations and atomistic (molecular dynamics) simulations were used to estimate the free energy profile of a Na+ ion as a function of position along the axis of the pore-lining M2 helix bundle of the transmembrane domain. Both types of calculation suggested a significant energy barrier to exist in the centre of the (closed) pore, consistent with a "hydrophobic gating" model. Estimations of the PB energy profile as a function of ionic strength suggest a role of the extracellular domain in determining the cation selectivity of the alpha7 nicotinic receptor. These studies illustrate how molecular models of members of the nicotinic receptor superfamily of channels may be used to study structure-function relationships.  相似文献   

7.
The alpha18-mer peptide, spanning residues 181-198 of the Torpedo nicotinic acetylcholine receptor alpha1 subunit, contains key binding determinants for agonists and competitive antagonists. To investigate whether the alpha18-mer can bind other alpha-neurotoxins besides alpha-bungarotoxin, we designed a two-dimensional (1)H-(15)N heteronuclear single quantum correlation experiment to screen four related neurotoxins for their binding ability to the peptide. Of the four toxins tested (erabutoxin a, erabutoxin b, LSIII, and alpha-cobratoxin), only alpha-cobratoxin binds the alpha18-mer to form a 1:1 complex. The NMR solution structure of the alpha-cobratoxin.alpha18-mer complex was determined with a backbone root mean square deviation of 1.46 A. In the structure, alpha-cobratoxin contacts the alpha18-mer at the tips of loop I and II and through C-terminal cationic residues. The contact zone derived from the intermolecular nuclear Overhauser effects is in agreement with recent biochemical data. Furthermore, the structural models support the involvement of cation-pi interactions in stabilizing the complex. In addition, the binding screen results suggest that C-terminal cationic residues of alpha-bungarotoxin and alpha-cobratoxin contribute significantly to binding of the alpha18-mer. Finally, we present a structural model for nicotinic acetylcholine receptor-alpha-cobratoxin interaction by superimposing the alpha-cobratoxin.alpha18-mer complex onto the crystal structure of the acetylcholine-binding protein (Protein Data Bank code ).  相似文献   

8.
The alpha7 nicotinic acetylcholine receptor is highly expressed in hippocampus and in cholinergic projection neurons from the basal forebrain, structures that are particularly vulnerable to the ravages of Alzheimer's disease. Previous work suggests that beta-amyloid peptide can interact with alpha7 nicotinic acetylcholine receptors, although the nature of this interaction has not been well characterized. To test whether beta-amyloid peptide can activate alpha7 nicotinic acetylcholine receptors, we expressed these receptors in Xenopus oocytes and performed two-electrode voltage clamp recordings, characterizing the response to beta-amyloid peptide 1-42 applied at concentrations ranging from 1 pm to 100 nm. In alpha7-expressing oocytes, beta-amyloid peptide 1-42 elicits inward currents at low concentrations (1-100 pm), whereas at higher concentrations (nm), less effective receptor activation is observed, indicative of receptor desensitization. Preincubation with the alpha7-selective agents, the antagonist methyllycaconatine, and the agonist 4-OH-GTS-21 blocked beta-amyloid peptide-induced receptor activation. beta-amyloid peptide 1-42 at low concentrations was able to activate the L250T mutant alpha7 receptor. The endogenous Ca(2+)-activated chloride current in Xenopus oocytes is recruited upon receptor activation since replacing Ca(2+) with Ba(2+) in the recording solution reduced current amplitude. Thus, when beta-amyloid peptide activation of alpha7 receptors occurs, these currents are comprised, at least in part, of Ca(2+).  相似文献   

9.
The interaction of T lymphocytes with tumor cells, a key step in the antitumor immune response, is suppressed by adenosine, a nucleoside produced at increased levels within the hypoxic tumor environment. We have explored the mechanism by which adenosine interferes with the lymphocyte:tumor cell interaction. The adhesion of anti-CD3-stimulated T cells to syngeneic MCA-38 mouse colon adenocarcinoma cells did not involve LFA-1 (alpha(L)beta(2)) or VLA-5 (alpha(5)beta(1)). However, antibodies against either lymphocyte alpha(4) or beta(7) (but not beta(1)) integrin subunits, or against VCAM-1 on the tumor cells, significantly suppressed adhesion, showing that the recognition of MCA-38 cells by T cells is strongly dependent upon the association of alpha(4)beta(7) on the effector cells with VCAM-1 on the tumor targets. This association is modulated by adenosine: The ability of adenosine to suppress T cell adhesion to MCA-38 cells was lost if alpha(4)beta(7) was functionally blocked with anti-alpha(4) antibodies (i) prior to or (ii) during the adhesion assay or if (iii) alpha(+)(4) cells were depleted from the T lymphocyte population. The binding of T cells to fibronectin through alpha(4)beta(1) was not suppressed by adenosine. We conclude that adenosine partially inhibits the interaction of T lymphocytes with tumor cells by blocking the function of integrin alpha(4)beta(7).  相似文献   

10.
The molluskan acetylcholine-binding protein (AChBP) is a homolog of the extracellular binding domain of the pentameric ligand-gated ion channel family. AChBP most closely resembles the alpha-subunit of nicotinic acetylcholine receptors and in particular the homomeric alpha7 nicotinic receptor. We report the isolation and characterization of an alpha-conotoxin that has the highest known affinity for the Lymnaea AChBP and also potently blocks the alpha7 nAChR subtype when expressed in Xenopus oocytes. Remarkably, the peptide also has high affinity for the alpha3beta2 nAChR indicating that alpha-conotoxin OmIA in combination with the AChBP may serve as a model system for understanding the binding determinants of alpha3beta2 nAChRs. alpha-Conotoxin OmIA was purified from the venom of Conus omaria. It is a 17-amino-acid, two-disulfide bridge peptide. The ligand is the first alpha-conotoxin with higher affinity for the closely related receptor subtypes, alpha3beta2 versus alpha6beta2, and selectively blocks these two subtypes when compared with alpha2beta2, alpha4beta2, and alpha1beta1deltaepsilon nAChRs.  相似文献   

11.
12.
The peptide motif NGR (asparagine-glycine-arginine) is known to bind to aminopeptidase N (APN). We have constructed five adenoviruses (Ads) bearing NGR in the HI loop of the adenoviral fiber protein. We compared the targeting properties of the NGR peptide within different amino acid environments and showed that their cellular receptor(s) were not identical. Ads containing NGR within potentially cyclic sequences flanked by cysteines retargeted viruses mainly to APN, while Ads containing NGR within linear sequences not containing cysteines retargeted Ads mainly to alpha(v)beta(3) integrin, albeit with a lower affinity. Finally, we show evidence that disulfide bond formation within an Ad bearing the CDCNGRCFC sequence is essential for retargeting to APN, suggesting that this sequence does indeed assume a cyclic structure which facilitates NGR binding to APN. Therefore, our study underscores the importance of cysteine residues flanking targeting peptides for not only affinity but also specificity of the retargeted Ad.  相似文献   

13.
The alpha7 nicotinic acetylcholine receptor (nAChR) plays a key role in neural development and neurodegeneration. Here, we identify a novel, modulatory receptor ligand, a 14-amino acid peptide (AEFHRWSSYMVHWK) derived from the C-terminus of acetylcholinesterase (AChE). In three different in vitro preparations, this 'AChE-peptide' is bioactive in a ligand-specific and concentration-dependent manner. First, it modulates acutely the effect of acetylcholine (ACh) on Xenopus oocytes transfected with human alpha7, but not alpha4/beta2, nAChR. The action persists when intracellular calcium is chelated with BAPTA or when calcium is substituted with barium ions. This observation suggests that intracellular Ca(2+) signals do not mediate the interaction between the peptide and nAChR, but rather that the interaction is direct: however, the intervention of other mediators cannot be excluded. Secondly, in recordings from the CA1 region in guinea-pig hippocampal slices, AChE-peptide modulates synaptic plasticity in a alpha-bungarotoxin (alpha-BgTx)-sensitive manner. Thirdly, in organotypic cultures of rat hippocampus, long-term exposure to peptide attenuates neurite outgrowth: this chronic, functional effect is selectively blocked by the alpha7 nAChR antagonists, alpha-BgTx and methyllycaconitine, but not by the alpha4/beta2-preferring blocker dihydro-beta-ethroidine. A scrambled peptide variant, and the analogous peptide from butyrylcholinesterase, are ineffective in all three paradigms. The consequences of this novel modulation of the alpha7 nAChR may be activation of a trophic-toxic axis, of relevance to neurodegeneration.  相似文献   

14.
We report a new, higher resolution NMR structure of alpha-bungarotoxin that defines the structure-determining disulfide core and beta-sheet regions. We further report the NMR structure of the stoichiometric complex formed between alpha-bungarotoxin and a recombinantly expressed 19-mer peptide ((178)IPGKRTESFYECCKEPYPD(196)) derived from the alpha7 subunit of the chick neuronal nicotinic acetylcholine receptor. A comparison of these two structures reveals binding-induced stabilization of the flexible tip of finger II in alpha-bungarotoxin. The conformational rearrangements in the toxin create an extensive binding surface involving both sides of the alpha7 19-mer hairpin-like structure. At the contact zone, Ala(7), Ser(9), and Ile(11) in finger I and Arg(36), Lys(38), Val(39), and Val(40) in finger II of alpha-bungarotoxin interface with Phe(186), Tyr(187), Glu(188), and Tyr(194) in the alpha7 19-mer underscoring the importance of receptor aromatic residues as critical neurotoxin-binding determinants. Superimposing the structure of the complex onto that of the acetylcholine-binding protein (1I9B), a soluble homologue of the extracellular domain of the alpha7 receptor, places alpha-bungarotoxin at the peripheral surface of the inter-subunit interface occluding the agonist-binding site. The disulfide-rich core of alpha-bungarotoxin is suggested to be tilted in the direction of the membrane surface with finger II extending into the proposed ligand-binding cavity.  相似文献   

15.
Most G protein-coupled receptors are desensitized by a uniform two-step mechanism: phosphorylation followed by arrestin binding and internalization. In this study we explored the time-, ligand-, and concentration dependence of alpha2-adrenoceptor internalization in human embryonal kidney (HEK-293) cells expressing alpha2A- and alpha2B-adrenoceptors. We also explored the relationship between ligand-induced receptor internalization and agonist efficacy, determined with a [35S]GTPgammaS binding assay. The results showed rapid dose-dependent internalization of both alpha2A- and alpha2B-receptors; the extent of internalization was directly proportional to agonist efficacy. The agonist UK 14,304 had a subtype-specific high efficacy at alpha2A-AR and dexmedetomidine at alpha2B-AR. Agonist-induced [35S]GTPgammaS binding was totally blocked by pretreatment with pertussis toxin (PTX) for both receptor subtypes, while only about 50% of the internalization was blocked by PTX. The results indicate that the extent of internalization of alpha2A-AR and alpha2B-AR is proportional to agonist efficacy, but only partly dependent on Gi protein coupling.  相似文献   

16.
G protein-coupled receptor (GPCR) subtypes are differentially distributed in the cell; however, it remains unclear how this affects the subtype selectivity of particular drugs. In the present study, we used flow cytometry analysis with the fluorescent ligand, BODIPY FL-prazosin, to study the relationship between the subcellular distribution of subtype receptors and the subtype-selective character of ligands using alpha1a and alpha1b-adrenoceptors (ARs). Alpha1a-ARs predominantly localize inside the cell, while alpha1b-ARs on the cell surface. Flow cytometry analysis and confocal laser-scanning micrographs of living cells showed that BODIPY FL-prazosin can label not only alpha1-ARs on the cell surface, but also those localized inside the cell. Furthermore, flow cytometry analysis of alpha1A-AR-selective drug, KMD-3213, and alpha1B-AR-selective drug, CEC, revealed that the major determinant of the subtype selectivity of each drug is different. The alpha1A-AR selectivity of KMD-3213 can be explained by its much higher affinity for alpha1a-AR than alpha1b-AR (affinity-dependent selectivity), while the alpha1B-AR selectivity of the hydrophilic alkylating agent CEC is due to preferential inactivation of alpha1-ARs on the cell surface (receptor localization-dependent selectivity). This study illustrates that factors in addition to the affinity of the drug for the receptor, such as subcellular localization of the receptor, should be taken into account in assessing the subtype selectivity of a drug.  相似文献   

17.
Malignant transformation is highly associated with altered expression of cell surface N-linked oligosaccharides. These changes concern integrins, a family of cell surface glycoproteins involved in the attachment and migration of cells on various extracellular matrix proteins. The integrin alpha3beta1 is particularly interesting because of its role in migration and invasion of several types of metastatic tumours. In this study, alpha3beta1 from human bladder T24 carcinoma cells was purified and treated with peptide N-glycosidase F. Then the N-glycans of the alpha3 and beta1 subunits were characterized using matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). In alpha3beta1 integrin the presence of high-mannose, hybrid and predominantly complex type N-oligosaccharides was shown. Unlike to normal epithelium cells, in both subunits of alpha3beta1 integrin from cancer cells, the sialylated tetraantennary complex type glycan Hex7HexNAc6FucSia4 was present. In a direct ligand binding assay, desialylated alpha3beta1 integrin exhibited significantly higher fibronectin-binding capability than untreated integrin, providing evidence that sialic acids play a direct role in ligand-receptor interaction. Moreover, alpha3beta1 integrin was shown to take part in T24 cell migration on fibronectin: anti-alpha3 antibodies induced ca 30% inhibition of wound closure. Treatment of T24 cells with swainsonine reduced the rate of bladder carcinoma cell migration by 16%, indicating the role of beta1,6 branched complex type glycans in this process. Our data show that alpha3beta1 integrin function may be altered by glycosylation, that both subunits contribute to these changes, and that glycosylation may be considered a newly found mechanism in the regulation of integrin function.  相似文献   

18.
19.
Patients with schizophrenia exhibit deficits in a range of cognitive functions, particularly working and episodic memory, which are thought to be core features of the disorder. Memory dysfunction in schizophrenia is familial and thus a promising endophenotype for genetic studies. Both human and animal studies suggest a role for the neural nicotinic acid receptor family in cognition and specifically the alpha7-receptor subunit in schizophrenia and its endophenotypes. Consequently, we tested mice lacking the alpha7 subunit of the neural nicotinic receptor (B6.129S7-Chrna7(tm1Bay)/J) in the delayed matching-to-place (DMP) task of the Morris water maze, a measure of working/episodic memory akin to human episodic memory. We report that a minor impairment in alpha7 knockout mice was observed in the DMP task, with knockout mice taking longer to find the hidden platform than their wildtype controls. This suggests a role for the alpha7 subunit in working/episodic memory and a potential role for the alpha7 neural nicotinic receptor gene (CHRNA7) in schizophrenia and its endophenotypes.  相似文献   

20.
In rat neonatal myocytes, a constitutively active G alpha(q) causes cellular injury and apoptosis. However, stimulation of the alpha(1)-adrenergic receptor, one of the G(q) protein-coupled receptors, with phenylephrine for 48 h causes little cellular injury and apoptosis. Expression of the G beta gamma-sequestering peptide beta ARK-ct increases the phenylephrine-induced cardiac injury, indicating that G beta gamma released from G(q) counteracts the G alpha(q)-mediated cellular injury. Stimulation with phenylephrine activates extracellular signal-regulated kinase (ERK) and Akt, and activation is significantly blunted by beta ARK-ct. Inhibition of Akt by inhibitors of phosphatidylinositol 3-kinase increases the cellular injury induced by phenylephrine stimulation. In contrast to the inhibition of Akt, inhibition of ERK does not affect the phenylephrine-induced cardiac injury. These results suggest that G beta gamma released from G(q) upon alpha(1)-adrenergic receptor stimulation activates ERK and Akt. However, activation of Akt but not ERK plays an important role in the protection against the G alpha(q)-induced cellular injury and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号