首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostacyclin (PGI(2)) and thromboxane (TxA(2)) are biological opposites; PGI(2), a vasodilator and inhibitor of platelet aggregation, limits the deleterious actions of TxA(2), a vasoconstrictor and platelet activator. The molecular mechanisms involved in the counterregulation of PGI(2)/TxA(2) signaling are unclear. We examined the interaction of the receptors for PGI(2) (IP) and TxA(2) (TPalpha). IP-induced cAMP and TP-induced inositol phosphate generation were unaltered when the receptors were co-expressed in HEK 293 cells (IP/TPalpha-HEK). TP-cAMP generation, in response to TP agonists or a TP-dependent isoprostane, iPE(2)III, was evident in IP/TPalpha-HEK and in aortic smooth muscle cells, but not in cells expressing either receptor alone, or in IP-deficient aortic smooth muscle cells. Augmentation of TP-induced cAMP generation, with the IP agonist cicaprost, was ablated in IP-deficient cells and was independent of direct IP signaling. IP/TPalpha heterodimers were formed constitutively when the receptors were co-expressed, with no overt changes in ligand binding to the individual receptor sites. However, despite inefficient binding of iPE(2)III to either the IP or TPalpha, expressed alone or in combination, robust cAMP generation was evident in IP/TPalpha-HEK, suggesting the formation of an alternative receptor site. Thus, IP/TPalpha dimerization was coincident with TP-cAMP generation, promoting a "PGI(2)-like" cellular response to TP activation. This represents a previously unknown mechanism by which IP may limit the cellular effects of TP.  相似文献   

2.
H Patscheke 《Blut》1990,60(5):261-268
Urinary and plasma metabolites of thromboxane A2 (TxA2) indicate an increased TxA2 synthesis in a number of diseases, whereby TxA2 is assumed to contribute to the underlying pathomechanisms by its profound effects on platelet aggregation and smooth muscle contraction. In some clinical situations the increment in TxA2 biosynthesis is accompanied by an increased formation of prostacyclin (PGI2) which is one of the most potent inhibitors of platelet activation and smooth muscle contraction. Therefore, drugs are being developed which suppress the formation or action of TxA2 without interfering with its functional antagonist PGI2. Low doses of acetylsalicyclic acid (ASA) preferentially inhibit cyclooxygenase activity in platelets and the synthesis of TxA2 in vivo. However, neither low doses (approximately 300 mg/day) nor very low doses spare the formation of PGI2 completely. Despite its limited selectivity, very low dose ASA (approximately 40 mg/day) provides an attractive perspective in TxA2 pharmacology. Although thromboxane synthase inhibitors selectively suppress TxA2 biosynthesis PGH2 can accumulate instead of TxA2 and substitute for TxA2 at their common TxA2/PGH2 receptors. Thromboxane synthase inhibitors can only exert platelet-inhibiting and vasodilating effects if PGH2 rapidly isomerizes to functional antagonists like PGI2 that can be formed from platelet-derived PGH2 by the vessel wall. TxA2/PGH2 receptor antagonists provide a specific and effective approach for inhibition of TxA2. These inhibitors do not interfere with the synthesis of PGI2 and other prostanoids but prevent TxA2 and PGH2 from activating platelets and inducing smooth muscle contractions. Most of the available TxA2/PGH2 receptor antagonists produce a competitive antagonism that can be overcome by high agonist concentrations. Since in certain disease states very high local TxA2 concentrations are to be antagonized, non-competitive receptor antagonists may be of particular interest. Some recent TxA2/PGH2 receptor antagonists produce such a non-competitive type of inhibition due to their low dissociation rate constant. As a consequence, agonists like TxA2 or PGH2 only reach a hemiequilibrium state at their receptors, previously occupied by those antagonists. A combination of a thromboxane synthase inhibitor with a TxA2/PGH2 receptor antagonist presents a very high inhibitory potential that utilizes the dual activities of the synthase inhibitor to increase PGI2 formation and of the receptor antagonist to antagonize PGH2 and TxA2. Such combinations or dual inhibitors, combining both moieties in one compound, prolong the skin bleeding time to a greater extent than thromboxane synthase inhibitors and even more than low dose ASA or TxA2/PGH2 receptor antagonists.  相似文献   

3.
Cardiovascular eicosanoids are of significance in relation to regulation of hemostasis and flow under healthy and pathological conditions. In healthy subjects, TxA2 and PGI2 participate in the maintenance of vascular integrity in relation to vascular injury. In this respect, vascular eicosanoids can be regarded as constituents of a balancing system which favours platelet deaggregation in intact vessels but platelet aggregation in a injured vessel. Degenerative arterial disease, like e.g. atherosclerosis, disturbs the balance and favours platelet activation and adhesion to vascular surfaces. This may promote the development of platelets thrombi in the absence of vascular injury and lead to thrombosis.  相似文献   

4.
Platelets from vitamin E-deficient and vitamin E-supplemented rats generate the same amount of thromboxane A2 (TxA2) when they are incubated with unesterified arachidonic acid. Platelets from vitamin E-deficient rats produced more TxA2 than platelets from vitamin E-supplemented rats when the platelets are challenged with collagen. Arterial tissue from vitamin E-deficient rats generates less prostacyclin (PGI2) than arterial tissue from vitamin E- supplemented rats. The vitamin E effect with arterial tissue is observed when the tissue is incubated with and without added unesterified arachidonic acid. These data show that arterial prostacyclin synthesis is diminished in vitamin E-deficient rats. Vitamin E, in vivo, inhibits platelet aggregation both by lowering platelet TxA2 and by raising arterial PGI2.  相似文献   

5.
TxA2 production by human arteries and veins   总被引:1,自引:0,他引:1  
Human arterial and venous segments from patients under-going operations when incubated in Tris buffer both alone and with arachidonic acid were able to produce thromboxane B2 (assessed by radioimmunoassay). Thromboxane B2 (TxB2) production was progressive in time (till 40 min.) and was enhanced by the addition of 1mM norepinephrine. Contamination of tissues by platelet was checked and platelets did not contribute to thromboxane formation. The investigation of the conversion of 1-14C arachidonic acid by vascular tissue indicated that human vascular tissues produce the metabolites of the cyclooxygenase dependent pathway and that prostacyclin is the main metabolite with a PGI2/TxA2 ratio of 4:1. The arterial wall was found to possess an active lipoxygenase dependent pathway. Thromboxane production by intimal cells was negligible and the main source of thromboxane was the media. The production of thromboxane did not change in relation to age, but arterial segments from men produced significantly larger amounts of thromboxane than those from women.  相似文献   

6.
Inflammatory mediators can both enhance or inhibit canine airway reactivity. PGE2 and PGI2 in general are inhibitory, interfering with release of acetylcholine and with responses to bronchoconstrictors. These prostaglandins may be more effective against agonists that open voltage-dependent Ca2+ channels to induce Ca2+ influx and contraction compared with those agonists that release internal Ca2+. Other mediators are excitatory: histamine, PGD2, thromboxane A2 (TxA2), and leukotrienes (LT) C4, D4, and E4. In canine airway only histamine and TxA2 have effects in the absence of indomethacin, i.e., in the presence of the large amounts of PGE2 and PGI2 produced in vitro LTs are ineffective. Effects of TxA2 and histamine may be potentiated if the synthesis of these inhibitory PGs is inhibited. Whether histamine or TxA2 normally promote synthesis and release of PGE2 and PGI2 in a kind of homeostasis remains to be explored. It is also unclear whether pre- as well as post-junctional TxA2 receptors exist and have different pharmacological sensitivities to antagonists. LTC4 and LTD4 also constrict canine bronchi but only when PGE2 and PGI2 synthesis is blocked and, again, whether this is a result of LT-induced release of inhibitory mediators is unknown. The concept that airway responsiveness can be caused by turning off PGE2 and PGI2 production and turning on TxA2 or LT production (or unmasking their actions) needs further exploration. Our recent data suggest that such a mechanism may explain ozone-induced responsiveness in dogs.  相似文献   

7.
Cigarette smoking is a major cause of mortality and morbidity worldwide. Cyclooxygenase (COX) and its derived prostanoids, mainly including prostaglandin E2 (PGE2), thromboxane A2 (TxA2) and prostacyclin (PGI2), have well-known roles in cardiovascular disease and cancer, both of which are associated with cigarette smoking. This article is focused on the role of COX-2 pathway in smoke-related pathologies and cancer. Cigarette smoke exposure can induce COX-2 expression and activity, increase PGE2 and TxA2 release, and lead to an imbalance in PGI2 and TxA2 production in favor of the latter. It exerts pro-inflammatory effects in a PGE2-dependent manner, which contributes to carcinogenesis and tumor progression. TxA2 mediates other diverse biologic effects of cigarette smoking, such as platelet activation, cell contraction and angiogenesis, which may facilitate tumor growth and metastasis in smokers. Among cigarette smoke components, nicotine and its derived nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are the most potent carcinogens. COX-2 and PGE2 have been shown to play a pivotal role in many cancers associated with cigarette smoking, including cancers of lung, gastric and bladder, while the information for the role of TxA2 and PGI2 in smoke-associated cancers is limited. Recent findings from our group have revealed how NNK influences the TxA2 to promote the tumor growth. Better understanding in the above areas may help to generate new therapeutic protocols or to optimize the existing treatment strategy.  相似文献   

8.
This study determined if altered vascular prostacyclin (PGI(2)) and/or thromboxane A(2) (TxA(2)) production with reduced Po(2) contributes to impaired hypoxic dilation of skeletal muscle resistance arterioles of obese Zucker rats (OZRs) versus lean Zucker rats (LZRs). Mechanical responses were assessed in isolated gracilis muscle arterioles following reductions in Po(2) under control conditions and following pharmacological interventions inhibiting arachidonic acid metabolism and nitric oxide synthase and alleviating elevated vascular oxidant stress. The production of arachidonic acid metabolites was assessed using pooled arteries from OZRs and LZRs in response to reduced Po(2). Hypoxic dilation, endothelium-dependent in both strains, was attenuated in OZRs versus LZRs. Nitric oxide synthase inhibition had no significant impact on hypoxic dilation in either strain. Cyclooxygenase inhibition dramatically reduced hypoxic dilation in LZRs and abolished responses in OZRs. Treatment of arterioles from OZRs with polyethylene glycol-superoxide dismutase improved hypoxic dilation, and this improvement was entirely cyclooxygenase dependent. Vascular PGI(2) production with reduced Po(2) was similar between strains, although TxA(2) production was increased in OZRs, a difference that was attenuated by treatment of vessels from OZRs with polyethylene glycol-superoxide dismutase. Both blockade of PGH(2)/TxA(2) receptors and inhibition of thromboxane synthase increased hypoxic dilation in OZR arterioles. These results suggest that a contributing mechanism underlying impaired hypoxic dilation of skeletal muscle arterioles of OZRs may be an increased vascular production of TxA(2), which competes against the vasodilator influences of PGI(2). These results also suggest that the elevated vascular oxidant stress inherent in metabolic syndrome may contribute to the increased vascular TxA(2) production and may blunt vascular sensitivity to PGI(2).  相似文献   

9.
To study the role of prostacyclin (PGI2) and thromboxane A2 (TxA2) in uterine tumors, pieces of endometrial cancer (n = 12) and leiomyomas (n = 12) were incubated in vitro, and the productions of 6-keto-prostaglandin F1a (6-keto-PGF1a, a hydration product of PGI2) and thromboxane B2 (TxB2, a hydration product of TxA2), measured by radioimmunoassay, were compared to those of corresponding healthy tissues. The production of 6-keto-PGF1a by endometrial cancer (20.8; 15.1-85.0 ng/mg protein/min, median and interquartile range), by healthy endometrium (25.5; 10.0-55.0), by healthy myometrium (34.9; 25.0-59.9) and by leiomyoma (20.3; 10.2-45.1) was similar. The production of TxB2 was increased by endometrial cancer (55.5; 10.5-155.2, p less than 0.02) in comparison with endometrium (9.8; 4.3-35.1), myometrium (3.8; 2.1-8.0) and leiomyoma (1.9; 1.0-3.8). The 6-keto-PGF1a/TxB2 ratio in endometrial cancer (0.9; 0.3-1.5) was smaller (p less than 0.02) than that in healthy endometrium (3.3; 1.9-4.8). Thus, TxA2 may be a factor in endometrial cancer.  相似文献   

10.
本工作采用分离培养家兔肺内小动脉平滑肌细胞(PASMCs),观察了外源性血小板活化因子(plateletactivatingfactor,PAF)、BN52021(PAF受体拮抗剂)、吲哚美辛、维拉帕米对PASMCs产生血栓素A_2(TxA_2)、前列环素(PGI_2)及对细胞膜Ca~(2+)-ATPase活力的影响。结果表明:(1)基础状态下PASMCs存在花生四烯酸(AA)代谢。(2)外源性PAF通过受体后途径激活环加氧酶促进AA代谢致TXA_2及PGI-2增加,TXA_2/PGI_2比值无明显变化。(3)外源性PAF能直接抑制Ca~(2+)-ATPase活力。(4)维拉帕米可逆转PAF抑制PASMCs膜Ca~(2+)-ATPase活力的效应。  相似文献   

11.
SKF 525-A (proadifen), a well-known inhibitor of drug metabolism and cytochrome P-450 activity, stimulated the release of prostacyclin (PGI2) from the rabbit aorta in vitro. The PGI2-stimulating activity of SKF 525-A was characterized by specific structural requirements: activity was abolished by the deletion of the terminal propyl chain and increased by its elongation into an isobutyl chain; chlorination of the phenyl rings increased the potency. SKF 525-A increased the production of PGI2 by cultured endothelial cells from bovine aorta and human umbilical vein, but had no effect on cultured smooth muscle from the bovine aortic media. In human platelets, SKF 525-A inhibited prostaglandin and thromboxane production induced by A23187, thrombin and ADP. Simultaneous stimulation of endothelial PGI2 and inhibition of platelet TxA2 represents an original pharmacological profile: SKF 525-A might thus constitute the prototype of a new class of antiplatelet drugs.  相似文献   

12.
Indomethacin-treated bovine iris-ciliary body microsomes (IBIM) have been studied for their ability to convert PG endoperoxides into either thromboxane-A2 (TxA2)-like or prostacyclin (PGI2)-like activity. The biological activity of the ocular tissue microsomes were compared with either indomethacin-treated human platelet microsomes (for TxA2-like activity) or rabbit aorta microsomes (for PGI2-like activity) under appropriate incubation conditions. No evidence could be found for the formation of TxA2-like activity from PG endoperoxides by the IBIM. In contrast, when the IBIM were incubated with PGH2 for 1 min at 22 degrees C without cofactors, PGI2-like activity was produced, causing profound relaxation of the isolated dog coronary artery preparation without contracting the rabbit aorta and inhibiting arachidonic acid-induced platelet aggregation. Equivalent quantities of boiled IBIM failed to alter the biological activity of PGH2 under identical conditions. Tranylcypromine (500 microgram/ml) completely abolished the appearance of PGI2-like activity. Furthermore, the PGI2-like activity found was stable for 10 min at 22 degrees C at pH 8.5 but completely lost under similar conditions at pH 5.5. It is concluded that microsomal preparations of normal bovine iris-ciliary body can synthesize PGI2-like activity in substantial amounts but not TxA2-like activity.  相似文献   

13.
J Mehta  P Mehta  D Hay 《Prostaglandins》1982,24(6):751-761
These experiments were conducted to determine the effects of dipyridamole on human platelet aggregation, platelet thromboxane A2 (TXA2) and human vessel wall prostacyclin (PGI2) generation. Dipyridamole in varying concentrations (5 to 50 micrograms/ml) had no direct effect on ADP-induced platelet aggregation in vitro, but it potentiated PGI2-induced platelet aggregation inhibition at these concentrations. Dipyridamole also inhibited arachidonic acid-induced platelet TXA2 generation at these concentrations. In continuously perfused umbilical vein segments, dipyridamole treatment resulted in stimulation of PGI2 release determined by bioassay and by measurement of its stable metabolite 6-keto-PGF1 alpha. Minimum concentration of dipyridamole causing PGI2 release was 50 micrograms/ml. These in vitro studies suggest that anti-thrombotic effects of dipyridamole in man are mediated mainly by potentiation of PGI2 activity and to some extent by TXA2 suppression. Stimulation of PGI2 release by human vessels may not be seen in usual therapeutic concentrations.  相似文献   

14.
Overview of physiological and pathophysiological effects of thromboxane A2   总被引:9,自引:0,他引:9  
Thromboxane (Tx) A2 is a biologically potent and chemically unstable metabolite of prostaglandin endoperoxides. Recent developments in measurement techniques and the availability of both selective inhibitors of Tx synthetase and TxA2 receptor antagonists have facilitated the implication of TxA2 as a physiological modulator and as a mediator in thrombotic, vasospastic, and bronchospastic conditions. TxA2 is synthesized by platelets and contributes to platelet activation and irreversible platelet aggregation in physiological hemostasis and in thrombosis (e.g., unstable angina, stroke). TxA2 is also synthesized in intestinal, pulmonary, and renal tissues by cells other than platelets. Particularly in these tissues, TxA2 appears to act as a physiological modulator of changes in blood flow distribution and airway caliber. Strong stimuli for TxA2 release from these tissues may initiate ulcer, pulmonary hypertension, bronchoconstriction, and renal vasoconstriction. Evidence supports participation of TxA2 and/or TxA2 receptors in modulation of natural cytotoxic cell cytotoxicity, in tumor growth and metastasis, in complications of pregnancy (e.g., preeclampsia), and in the progression of ischemic injury after coronary artery occlusion. This evidence supports pivotal involvement of TxA2 in pathophysiology and provides a strong rationale for pursuing TxA2-blocking strategies in drug development.  相似文献   

15.
In animals, monocrotaline induces an acute lung injury secondary to capillary endothelial damage. To date, no reports have appeared dealing with the role of prostaglandins in monocrotaline-induced injury. Our studies, in dogs, revealed that monocrotaline (30 mg/kg iv) caused an acute and persistent thrombocytopenia, lung platelet deposition, pulmonary hypertension, and increased extravascular lung water (EVLW). The pulmonary hypertensive response was biphasic. Thromboxane B2 levels were similarly biphasic, peaking at 5 min and 2 h. The levels of 6-keto-PGF1 alpha peaked at 30 min and returned to base line at 3 h. Pulmonary vascular resistance paralleled thromboxane levels. Infusion of prostacyclin (PGI2) at 50 ng X kg-1 X min-1 effectively prevented the thrombocytopenia, lung platelet deposition, pulmonary hypertension, and increased EVLW; and it decreased excess thromboxane production by 79%. These results suggest that platelet activation and lung sequestration play a role in acute lung injury due to monocrotaline, and that the resultant thromboxane production may contribute to the pulmonary hypertension. PGI2 ameliorates monocrotaline-induced injury, perhaps by preventing platelet activation.  相似文献   

16.
Platelet activation at sites of vascular injury is essential for primary hemostasis, but also underlies arterial thrombosis leading to myocardial infarction or stroke. Platelet activators such as adenosine diphosphate, thrombin or thromboxane A(2) (TXA(2)) activate receptors that are coupled to heterotrimeric G proteins. Activation of platelets through these receptors involves signaling through G(q), G(i) and G(z) (refs. 4-6). However, the role and relative importance of G(12) and G(13), which are activated by various platelet stimuli, are unclear. Here we show that lack of Galpha(13), but not Galpha(12), severely reduced the potency of thrombin, TXA(2) and collagen to induce platelet shape changes and aggregation in vitro. These defects were accompanied by reduced activation of RhoA and inability to form stable platelet thrombi under high shear stress ex vivo. Galpha(13) deficiency in platelets resulted in a severe defect in primary hemostasis and complete protection against arterial thrombosis in vivo. We conclude that G(13)-mediated signaling processes are required for normal hemostasis and thrombosis and may serve as a new target for antiplatelet drugs.  相似文献   

17.
Recent studies suggest that aggregation of platelets from patients with coronary artery and cerebrovascular disease may be resistant to low-dose aspirin (ASA) treatment, which may promote plaque-associated thrombus formation. However, the underlying mechanisms of platelet ASA resistance are poorly understood. ASA is thought to inhibit platelet aggregation primarily by inactivating the cyclooxygenase (COX), thus decreasing the synthesis of the pro-aggregatory arachidonic acid metabolite thromboxane A(2) (TxA(2)). However, recent studies also identified a non-enzymatic, oxidation-dependent pathway for the synthesis of the arachidonic acid derivative isoprostanes, which exhibit potent vasoconstrictor and pro-aggregatory effects similar to that of TxA(2). Because the pathophysiological conditions that promote arteriosclerotic vascular diseases (e.g. hypercholesterolemia, diabetes, hyperhomocysteinemia) are thought to be associated with an increased formation of reactive oxygen species and increased plasma isoprostane levels, it can be hypothesized that increased COX-independent isoprostane formation in platelets contribute to ASA resistance.  相似文献   

18.
The role of prostacyclin in vascular tissue.   总被引:12,自引:0,他引:12  
Prostacyclin (PGI2) generated by the vascular wall is a potent vasodilator, and the most potent endogenous inhibitor of platelet aggregation so far discovered. Prostacyclin inhibits platelet aggregation by increasing cyclic AMP levels. Prostacyclin is a circulating hormone continually released by the lungs into the arterial circulation. Circulating platelets are, therefore, subjected constantly to prostacyclin stimulation and it is via this mechanism that platelet aggregability in vivo is controlled. Moreover, phosphodiesterase inhibitors such as dipyridamole or theophylline exert their antithrombotic actions by potentiating circulating prostacyclin. The prostacyclin:thromboxane A2 ratio is important in the control of thrombus formation; manipulation of this ratio by small doses of aspirin (which will inhibit mainly platelet cyclooxygenase), a selective inhibitor of thromboxane formation, or the dietary use of a fatty acid like eicosapentaenoic acid (which would be the precursor for a delta17-prostacyclin (PGI3) but is transformed by the platelets into nonaggregating thromboxane A3) might have beneficial effects as antithrombotic therapies. Prostacyclin has interesting potential for clinical application in conditions where enhanced platelet aggregation is involved or to increase biocompatibility of extracorporeal circulation systems.  相似文献   

19.
The concentration profiles of adenosine diphosphate (ADP), thromboxane A2 (TxA2), thrombin, and von Willebrand factor (vWF) released extracellularly from the platelet granules or produced metabolically on the platelet membrane during thrombus growth, were estimated using finite element simulation of blood flow over model thrombi of various shapes and dimensions. The wall fluxes of these platelet-activating agents were estimated for each model thrombus at three different wall shear rates (100 s-1, 800 s-1, and 1,500 s-1), employing experimental data on thrombus growth rates and sizes. For that purpose, whole human blood was perfused in a parallel-plate flow chamber coated with type l fibrillar human collagen, and the kinetic data collected and analyzed by an EPl-fluorescence video microscopy system and a digital image processor. It was found that thrombin concentrations were large enough to cause irreversible platelet aggregation. Although heparin significantly accelerated thrombin inhibition by antithrombin lll, the remaining thrombin levels were still significantly above the minimum threshold required for irreversible platelet aggregation. While ADP concentrations were large enough to cause irreversible platelet aggregation at low shear rates and for small aggregate sizes, TxA2 concentrations were only sufficient to induce platelet shape change over the entire range of wall shear rates and thrombi dimensions studied. Our results also indicated that the local concentration of vWF multimers released from the platelet alpha-granules could be sufficient to modulate platelet aggregation at low and intermediate wall shear rates (less than 1,000 s-1). The sizes of standing vortices formed adjacent to a growing aggregate and the embolizing stresses and the torque, acting at the aggregate surface, were also estimated in this simulation. It was found that standing vortices developed on both sides of the thrombus even at low wall shear rates. Their sizes increased with thrombus size and wall shear rate, and were largely dependent upon thrombus geometry. The experimental observation that platelet aggregation occurred predominantly in the spaces between adjacent thrombi, confirmed the numerical prediction that those standing vortices are regions of reduced fluid velocities and high concentrations of platelet-activating substances, capable of trapping and stimulating platelets for aggregation. The average shear stress and normal stress, as well as the torque, acting to detach the thrombus, increased with increasing wall shear rate. Both stresses were found to be nearly independent of thrombus size and only weekly dependent upon thrombus geometry. Although both stresses had similar values at low wall shear rates, the average shear stress became the predominant embolizing stress at high wall shear rates.  相似文献   

20.
When blood contacts foreign material surfaces, platelets usually adhere and form aggregates on those surfaces, generating mural thrombi. The mechanism of mural thrombogenesis is not completely understood, but one hypothesis states that the local release of certain platelet-active substances from the platelets composing an initial small thrombus stimulates additional platelet recruitment to that thrombus, resulting in growth of the cell aggregate. The purpose of this paper is to investigate the feasibility of this hypothesis. Concentration profiles of adenosine diphosphate (ADP), thromboxane A2 (TxA2), and thrombin were computed in the vicinity of growing model thrombi 10 and 20 micron long. Wall shear rates of 100, 500, and 1,500 s-1 were considered for blood flowing through a thin rectangular slit 200 micron wide coated with collagen, a predominant subendothelial protein. The local concentrations of ADP and TxA2 were marginally large enough to stimulate platelet activation individually, while local thrombin levels can be much greater than required for stimulation. Antithrombin III, a natural thrombin inhibitor, did not significantly reduce the thrombin concentrations, but antithrombin III accelerated by heparin greatly reduced the local thrombin concentrations. The reduced thrombin levels may, however, still be large enough to activate platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号