首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
It is desirable to obtain TR antagonists for treatment of hyperthyroidism and other conditions. We have designed TR antagonists from first principles based on TR crystal structures. Since agonist ligands are buried in the fold of the TR ligand binding domain (LBD), we reasoned that ligands that resemble agonists with large extensions should bind the LBD, but would prevent its folding into an active conformation. In particular, we predicted that extensions at the 5′ aryl position of ligand should reposition helix (H) 12, which forms part of the co-activator binding surface, and thereby inhibit TR activity. We have found that some synthetic ligands with 5′ aryl ring extensions behave as antagonists (DIBRT, NH-3), or partial antagonists (GC-14, NH-4). Moreover, one compound (NH-3) represents the first potent TR antagonist with nanomolar affinity that also inhibits TR action in an animal model. However, the properties of the ligands also reveal unexpected aspects of TR behavior. While nuclear receptor antagonists generally promote binding of co-repressors, NH-3 blocks co-activator binding and also prevents co-repressor binding. More surprisingly, many compounds with extensions behave as full or partial agonists. We present hypotheses to explain both behaviors in terms of dynamic equilibrium of H12 position.  相似文献   

4.
We developed a surface plasmon resonance (SPR) assay to estimate the competitive inhibition by pharmaceuticals for thyroxine (T4) binding to thyroid hormone transport proteins, transthyretin (TTR) and thyroxine binding globulin (TBG). In this SPR assay, the competitive inhibition of pharmaceuticals for introducing T4 into immobilized TTR or TBG on the sensor chip can be estimated using a running buffer containing pharmaceuticals. The SPR assay showed reproducible immobilization of TTR and TBG, and the kinetic binding parameters of T4 to TTR or TBG were estimated. The equilibrium dissociation constants of TTR or TBG measured by SPR did not clearly differ from data reported for other binding assays. To estimate the competitive inhibition of tetraiodothyroacetic acid, diclofenac, genistein, ibuprofen, carbamazepine, and furosemide, reported to be competitive or noncompetitive pharmaceuticals for T4 binding to TTR or TBG, their 50% inhibition concentrations (IC50) (or 80% inhibition concentration, IC80) were calculated from the change of T4 responses in sensorgrams obtained with various concentrations of the pharmaceuticals. Our SPR method should be a useful tool for predicting the potential of thyroid toxicity of pharmaceuticals by evaluating the competitive inhibition of T4 binding to thyroid hormone binding proteins, TTR and TBG.  相似文献   

5.
Design and synthesis of a novel 3-hydroxy-cyclobut-3-ene-1,2-dione derivatives are reported and their in vitro thyroid hormone receptor selectivity has been evaluated in the thyroid luciferase receptor assay. The 3-[3,5-dichloro-4-(4-hydroxy-3-isopropylphenoxy)-phenylamino]-4-hydroxy-cyclobut-3-ene-1,2-dione 21 has shown selectivity towards thyroid hormone receptor β.  相似文献   

6.
7.
Two distinct cDNAs encoding thyroid hormone receptors (THRs) were cloned from a λ gtl0 library prepared from the whole bodies of metamorphosing flounder larvae (Paralichfhys olivaceus). Deduced amino acid sequences of the two isolated cDNAs shared 96% and 92% homologies in their DNA- and hormone-binding domains, respectively. These were highly conserved when compared to THRs for other vertebrates: 88–96% in the DNA-binding domain and 84–94% in the hormone-binding domain. Other receptors in the nuclear receptor family showed lower homologies than those of THRs. Both THRs for the flounder had higher homologies with the α-type THRs of other vertebrates than with the β-type. Thus, the two THRs for flounder were designated as fTHRαA and fTHRαB. © 1994 Wiiey-Liss, Inc.  相似文献   

8.
Thyroid hormone deficiency is known to deeply affect cerebellum post-natal development. We present here a detailed analysis of the phenotype of a recently generated mouse model, expressing a dominant-negative TRα1 mutation. Although hormonal level is not affected, the cerebellum of these mice displays profound alterations in neuronal and glial differentiation, which are reminiscent of congenital hypothyroidism, indicating a predominant function of this receptor isoform in normal cerebellum development. Some of the observed effects might result from the cell autonomous action of the mutation, while others are more likely to result from a reduction in neurotrophic factor production.  相似文献   

9.
10.
Thyroid hormone receptors (TRs) are nuclear receptors that are activated by thyroid hormone ligands and co-regulator proteins. Two receptor subtypes, TRα and TRβ, have been suggested to play a role in numerous physiological functions. However, specificity of receptor subtype function and co-regulator interaction is unclear due to the lack of TR subtype-specific ligands. Five TR ligands were evaluated for their selectivity and interaction with the TR subtypes. A multiplex assay was used to identify co-regulator peptide interaction, and biochemical assays were used to characterize ligand-receptor specificity. In the biochemical assay, rank order ligand potencies were similar in the presence of co-activator peptides, SRC1-2 and SRC3-2, and the co-repressor peptide, NCoR1-2, with T3 and Triac potencies greater in the presence of the co-repressor. The potency of Tetrac was similar regardless of the co-regulator used while T4 and rT3 demonstrated selectivity for TRα subtype. The rank order among TR ligands at either receptor subtype in the biochemical assay correlated with the multiplex assay. These assays can be used to identify new ligands that can provide further insight into TR biology.  相似文献   

11.
12.
TIMAP, TGF-β inhibited, membrane-associated protein, is highly abundant in endothelial cells (EC). We have shown earlier the involvement of TIMAP in PKA-mediated ERM (ezrin-radixin-moesin) dephosphorylation as part of EC barrier protection by TIMAP (Csortos et al., 2008). Emerging data demonstrate the regulatory role of TIMAP on protein phosphatase 1 (PP1) activity. We provide here evidence for specific interaction (Ka = 1.80 × 106 M−1) between non-phosphorylated TIMAP and the catalytic subunit of PP1 (PP1c) by surface plasmon resonance based binding studies. Thiophosphorylation of TIMAP by PKA, or sequential thiophosphorylation by PKA and GSK3β slightly modifies the association constant for the interaction of TIMAP with PP1c and decreases the rate of dissociation. However, dephosphorylation of phospho-moesin substrate by PP1cβ is inhibited to different extent in the presence of non- (∼60% inhibition), mono- (∼50% inhibition) or double-thiophosphorylated (<10% inhibition) form of TIMAP. Our data suggest that double-thiophosphorylation of TIMAP has minor effect on its binding ability to PP1c, but considerably attenuates its inhibitory effect on the activity of PP1c. PKA activation by forskolin treatment of EC prevented thrombin evoked barrier dysfunction and ERM phosphorylation at the cell membrane (Csortos et al., 2008). With the employment of specific GSK3β inhibitor it is shown here that PKA activation is followed by GSK3β activation in bovine pulmonary EC and both of these activations are required for the rescuing effect of forskolin in thrombin treated EC. Our results suggest that the forskolin induced PKA/GSK3β activation protects the EC barrier via TIMAP-mediated decreasing of the ERM phosphorylation level.  相似文献   

13.
14.
15.
16.
17.
Cody V  Davis PJ  Davis FB 《Steroids》2007,72(2):165-170
A cell surface receptor for thyroid hormone has recently been identified on the extracellular domain of integrin alphavbeta3. In a variety of human and animal cell lines this hormone receptor mediates activation by thyroid hormone of the cellular mitogen-activated protein kinase (MAPK) signal transduction cascade. An arginine-glycine-aspartate (RGD) recognition site on the heterodimeric integrin is essential to the binding of a variety of extracellular matrix proteins. Recent competition data reveal that RGD peptides block hormone-binding by the integrin and consequent MAPK activation, suggesting that the hormone interaction site is located at or near the RGD recognition site on integrin alphavbeta3. A deaminated thyroid hormone (l-thyroxine, T4) analogue, tetraiodothyroacetic acid (tetrac, T4ac), inhibits binding of T4 and 3,5,3'-triiodo-l-thyronine (T3) to alphavbeta3, but does not activate MAPK. Structural data show that the RGD cyclic peptide binds at the interface of the propeller of the alphav and the B domains on the integrin head [Xiong JP, Stehle T, Zhang R, Joachimiack A, Frech M, Goodman SL, et al. Crystal structure of the extracellular segment of integrin alphavbeta3 in complexing with an Arg-Gly-Asp ligand. Science 2002;296:151-5]. To model potential interactions of thyroid hormone analogues with integrin, we mapped T4 and T4ac to the binding site of the RGD peptide. Modeling studies indicate that there is sufficient space in the cavity for the thyroid hormone to bind. Since the hormone is smaller in overall length than the RGD peptide, the hormone does not interact with the Arg recognition site in the propeller domain from alphav. In this model, most of the hormone interactions are with betaA domain of the integrin. Mutagenic studies can be carried out to validate the role of these residues in directing hormone interactions.  相似文献   

18.
An immunoassay method based on the peak shift of the localized surface plasmon resonance (LSPR) absorption maxima has been developed for the determination of the thyroid stimulating hormone (TSH) in human blood serum. The anti-TSH antibody was adsorbed on the synthesized gold nanoparticles by electrostatic forces. The efficiency of the nanobiosensor was improved by optimizing the factors affecting the probe construction such as the pH and the antibody to gold nanoparticles ratio. Dynamic light scattering was applied for the characterization of the constructed probe. The amount of peak shift of the LSPR absorption maxima was selected as the basis for determination of TSH antigen. The linear dynamic range of 0.4–12.5 mIU L−1 and the calibration sensitivity of 1.71 L mIU−1 were obtained. The human control serum sample was analyzed for TSH by constructed nanobiosensor and the acceptable results were obtained.  相似文献   

19.
We used BIAcore to analyze the kinetics of interactions between CD81 and hepatitis C virus (HCV) envelope proteins. We immobilized different forms of HCV envelope proteins (E1E2, E2, and E2(661)) on the sensor and monitored their interaction with injected fusion proteins of CD81 large extracellular loop (CD81LEL) and glutathione-S-transferase (CD81LEL-GST) or maltose binding protein (CD81LEL-MBP). The difference between the GST and MBP fusion proteins was their multimeric and monomeric forms, respectively. The association rate constants between CD81LEL-GST or CD81LEL-MBP and the E1E2, E2 or E2(661) HCV envelope proteins were similar. However, the dissociation rate constants of CD81LEL-MBP were higher than those of CD81LEL-GST. Interestingly, the dissociation rate constant of CD81LEL-GST from E1E2 was much lower than from E2 or E2(661). The interaction between both forms of the CD81LEL fusion proteins and the HCV envelope proteins best-fitted the heterogeneous ligand model. This model implies that two kinds of interactions occur between envelope proteins and CD81LEL: one is strong, the other is weak. It also implies that the heterogeneity is likely due to the HCV envelope proteins, which are known to form non-covalently linked heterodimers and disulfide-linked aggregate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号