首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Quorum-sensing pheromones are signal molecules that are secreted from Gram-positive bacteria and utilized by these bacteria to communicate among individual cells to regulate their activities as a group through a cell density-sensing mechanism. Typically, these pheromones are processed from precursor polypeptides. The mechanisms of trafficking, processing, and modification of the precursor to generate a mature pheromone are unclear. In Staphylococcus aureus, AgrD is the propeptide for an autoinducing peptide (AIP) pheromone that triggers the Agr cell density-sensing system upon reaching a threshold and subsequently regulates expression of virulence factor genes. The transmembrane protein AgrB, encoded in the agr locus, is necessary for the processing of AgrD to produce mature AIP; however, it is not clear how AgrD interacts with AgrB and how this interaction results in the generation of mature AIP. In this study, we found that the AgrD propeptide was integrated into the cytoplasmic membrane by a conserved alpha-helical amphipathic motif in its N-terminal region. We demonstrated that membrane targeting of AgrD by this motif was required for the stabilization of AgrD and the production of mature AIP, although this region was not specifically involved in the interaction with AgrB. An artificial amphipathic peptide replacing the N-terminal amphipathic motif of AgrD directed the protein to the cytoplasmic membrane and enabled the production of AIP. Analysis of Bacillus ComX precursor protein sequences suggested that the amphipathic membrane-targeting motif might also exist in pheromone precursors of other Gram-positive bacteria.  相似文献   

3.
Sakacin A is an antilisterial bacteriocin produced by Lactobacillus sake Lb706. In order to identify genes involved in sakacin A production and immunity, the plasmid fraction of L. sake Lb706 was shotgun cloned directly into a sakacin A-nonproducing and -sensitive variant, L. sake Lb706-B, by using the broad-host-range vector pVS2. Two clones that produced sakacin A and were immune to the bacteriocin were obtained. A DNA fragment of approximately 1.8 kb, derived from a 60-kb plasmid of strain Lb706 and present in the inserts of both clones, was necessary for restoration of sakacin A production and immunity in strain Lb706-B. The sequence of the 1.8-kb fragment from one of the clones was determined. It contained one large open reading frame, designated sakB, potentially encoding a protein of 430 amino acid residues. Hybridization and nucleotide sequence analyses revealed that the cloned sakB complemented a mutated copy of sakB present in strain Lb706-B. The sakB gene mapped 1.6 kb from the previously cloned structural gene for sakacin A (sakA) on the 60-kb plasmid. The putative SakB protein shared 22% amino acid sequence identity (51% similarity if conservative changes are considered) to AgrB, the deduced amino acid sequence of the Staphylococcus aureus gene agrB. The polycistronic agr (accessory gene regulator) locus is involved in the regulation of exoprotein synthesis in S. aureus. Similar to the AgrB protein, SakB had some features in common with a family of transmembrane histidine protein kinases, involved in various adaptive response systems of bacteria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Otto M 《Peptides》2001,22(10):1603-1608
The accessory gene regulator (agr) system of staphylococci regulates the expression of virulence factors in response to cell density. The extracellular signaling molecule encoded by this system is a thiolactone-containing pheromone peptide whose primary sequence varies among staphylococcal strains. A post-translational modification of the peptide is believed to be carried out by an enzyme with a novel function, AgrB. Staphylococcal pheromones show cross-inhibiting properties: Pheromones of self and pheromones of non-self induce and suppress the agr response, respectively, and have therefore been proposed as novel anti-staphylococcal drugs. As inhibition of agr leads to diminished expression of toxins, but to increased expression of colonization factors and biofilm formation, their therapeutic potential remains yet to be evaluated in depth.  相似文献   

5.
6.
The P2 operon of the staphylococcal accessory gene regulator (agr) encodes four genes (agrA, -B, -C, and -D) whose products compose a quorum sensing system: AgrA and AgrC resemble a two-component signal transduction system of which AgrC is a sensor kinase and AgrA is a response regulator; AgrD, a polypeptide that is integrated into the cytoplasmic membrane via an amphipathic alpha-helical motif in its N-terminal region, is the propeptide for an autoinducing peptide that is the ligand for AgrC; and AgrB is a novel membrane protein that involves in the processing of AgrD propeptide and possibly the secretion of the mature autoinducing peptide. In this study, we demonstrated that AgrB had endopeptidase activity, and identified 2 amino acid residues in AgrB (cysteine 84 and histidine 77) that might form a putative cysteine endopeptidase catalytic center in the proteolytic cleavage of AgrD at its C-terminal processing site. Computer analysis revealed that the cysteine and histidine residues were conserved among the potential AgrB homologous proteins, suggesting that the Agr quorum sensing system homologues might also exist in other Gram-positive bacteria.  相似文献   

7.
The Gram-positive, anaerobic, endospore-forming bacterium Clostridium acetobutylicum has considerable biotechnological potential due to its ability to produce solvents as fermentation products, in particular the biofuel butanol. Its genome contains a putative agr locus, agrBDCA, known in staphylococci to constitute a cyclic peptide-based quorum sensing system. In staphylococci, agrBD is required for the generation of a peptide signal that, upon extracellular accumulation, is sensed by an agrCA-encoded two-component system. Using ClosTron technology, agrB, agrC, and agrA mutants of C. acetobutylicum ATCC 824 were generated and phenotypically characterized. Mutants and wild type displayed similar growth kinetics and no apparent differences in solvent formation under the conditions tested. However, the number of heat-resistant endospores formed by the mutants in liquid culture was reduced by about one order of magnitude. On agar-solidified medium, spore formation was more strongly affected, particularly in agrA and agrC mutants. Similarly, accumulation of the starch-like storage compound granulose was almost undetectable in colonies of agrB, agrA, and agrC mutants. Importantly, these defects could be genetically complemented, demonstrating that they were directly linked to agr inactivation. A diffusible factor produced by agrBD-expressing strains was found to restore granulose and spore formation in the agrB mutant. Furthermore, a synthetic cyclic peptide, designed on the basis of the C. acetobutylicum AgrD sequence, was also capable of complementing the defects of the agrB mutant when added exogenously to the culture. Together, these findings support the hypothesis that agr-dependent quorum sensing is involved in the regulation of sporulation and granulose formation in C. acetobutylicum.  相似文献   

8.
The Staphylococcus aureus accessory gene regulator (agr) is a peptide signalling system that regulates the production of secreted virulence factors required to cause infections. The signal controlling agr function is a 7‐9 residue thiolactone‐containing peptide called an autoinducing peptide (AIP) that is biosynthesized from the AgrD precursor by the membrane peptidase AgrB. To gain insight into AgrB and AgrD function, the agrBD genes were mutagenized and screened for deficiencies in AIP production. In total, single‐site mutations at 14 different residues in AgrD were identified and another 20 within AgrB. In AgrD, novel mutations were characterized in the N‐terminal leader and throughout the central region encoding the AIP signal. In AgrB, most mutations blocked peptidase activity, but mutations in the K129–K131 residues were defective in a later step in AIP biosynthesis, separating the peptidase function from thiolactone ring formation and AIP transport. With the identification of residues in AgrB essential for AgrD processing, we reevaluated the membrane topology and the new model predicts four transmembrane helices and a potential re‐entrant loop on the cytoplasmic face. Finally, co‐immunoprecipitation studies indicate that AgrB forms oligomeric structures within the membrane. These studies provide further insight into the unique structural and functional properties of AgrB.  相似文献   

9.
M Otto  R Süssmuth  C Vuong  G Jung  F G?tz 《FEBS letters》1999,450(3):257-262
The agr quorum-sensing system in Staphylococci controls the production of surface proteins and exoproteins. In the pathogenic species Staphylococcus aureus, these proteins include many virulence factors. The extracellular signal of the quorum-sensing system is a thiolactone-containing peptide pheromone, whose sequence varies among the different staphylococcal strains. We demonstrate that a synthetic Staphylococcus epidermidis pheromone is a competent inhibitor of the Staphylococcus aureus agr system. Derivatives of the pheromone, in which the N-terminus or the cyclic bond structure was changed, were synthesized and their biological activity was determined. The presence of a correct N-terminus and a thiolactone were absolute prerequisites for an agr-activating effect in S. epidermidis, whereas inhibition of the S. aureus agr system was less dependent on the original structure. Our results show that effective quorum-sensing blockers that suppress the expression of virulence factors in S. aureus can be designed based on the S. epidermidis pheromone.  相似文献   

10.
Ji G  Pei W  Zhang L  Qiu R  Lin J  Benito Y  Lina G  Novick RP 《Journal of bacteriology》2005,187(9):3139-3150
The agr system is a global regulator of accessory functions in staphylococci, including genes encoding exoproteins involved in virulence. The agr locus contains a two-component signal transduction module that is activated by an autoinducing peptide (AIP) encoded within the agr locus and is conserved throughout the genus. The AIP has an unusual partially cyclic structure that is essential for function and that, in all but one case, involves an internal thiolactone bond between a conserved cysteine and the C-terminal carboxyl group. The exceptional case is a strain of Staphylococcus intermedius that has a serine in place of the conserved cysteine. We demonstrate here that the S. intermedius AIP is processed by the S. intermedius AgrB protein to generate a cyclic lactone, that it is an autoinducer as well as a cross-inhibitor, and that all of five other S. intermedius strains examined also produce serine-containing AIPs.  相似文献   

11.
The agr quorum-sensing system in Staphylococci controls the production of surface proteins and exoproteins. In the pathogenic species Staphylococcus aureus, these proteins include many virulence factors. The extracellular signal of the quorum-sensing system is a thiolactone-containing peptide pheromone, whose sequence varies among the different staphylococcal strains. We demonstrate that a synthetic Staphylococcus epidermidis pheromone is a competent inhibitor of the Staphylococcus aureus agr system. Derivatives of the pheromone, in which the N-terminus or the cyclic bond structure was changed, were synthesized and their biological activity was determined. The presence of a correct N-terminus and a thiolactone were absolute prerequisites for an agr-activating effect in S. epidermidis, whereas inhibition of the S. aureus agr system was less dependent on the original structure. Our results show that effective quorum-sensing blockers that suppress the expression of virulence factors in S. aureus can be designed based on the S. epidermidis pheromone.  相似文献   

12.
The virulence of Staphylococcus aureus is controlled by the accessory gene regulator (agr) system, including an extracellular inducer encoded by agrD. Variable agr PCR restriction fragment length polymorphism (RFLP) patterns of unique S. aureus strains (n = 192) were determined for a region comprising agrD and parts of the neighboring agrC and agrB genes. Twelve unique RFLP patterns were identified among S. aureus strains in general; these patterns were further specified by sequencing. All sequences could be catalogued in the three current agr groups. A major proportion of the S. aureus strains belong to agr group 1, whereas only 6% of the methicillin-susceptible S. aureus strains and 5% of the methicillin-resistant S. aureus strains belong to agr groups 2 and 3, respectively. The homology between groups varied from 75 to 80%, and within groups it varied from 96 to 100%. Different levels of sequence variability were observed in the different agr genes. agr-related bacterial interference among colonizing S. aureus strains in the noses of persistent and intermittent human carriers was studied. S. aureus strains belonging to different agr groups were encountered in the same individual. This may suggest that the activity of the agrD gene product does not define colonization dynamics, which is further substantiated by the rarity of agr group 2 and 3 strains.  相似文献   

13.
The staphylococcal virulon is activated by the density-sensing agr system, which is autoinduced by a short peptide (autoinducing peptide [AIP]) processed from a propeptide encoded by agrD. A central segment of the agr locus, consisting of the C-terminal two-thirds of AgrB (the putative processing enzyme), AgrD, and the N-terminal half of AgrC (the receptor), shows striking interstrain variation. This finding has led to the division of Staphylococcus aureus isolates into three different agr specificity groups and to the division of non-aureus staphylococci into a number of others. The AIPs cross-inhibit the agr responses between groups. We have previously shown that most menstrual toxic shock strains belong to agr specificity group III but that no strong clinical identity has been associated with strains of the other two groups. In the present report, we demonstrate a fourth agr specificity group among S. aureus strains and show that most exfoliatin-producing strains belong to this group. A striking common feature of group IV strains is activation of the agr response early in exponential phase, at least 2 h earlier than in strains of the other groups. This finding raises the question of the biological significance of the agr autoinduction threshold.  相似文献   

14.
    
Summary The production of sex pheromones responsible for the induction of the sexual agglutination ability in the mutants of the mating type locus, mata1, mat1 and mat2, was examined. mata1 cells behaved just like wild-type MATa cells in the production of a pheromone and responsiveness to pheromone. On the other hand, mat1 cells showed neither a nor ability in the production of and the agglutination ability induction by sex pheromones. Cells carrying mat2 secreted a pheromone but not pheromone and showed the ability to inactivate pheromone. However, mat2 cells responded to neither a nor pheromone in the induction of sexual agglutionation ability.  相似文献   

15.
Effects of ethyl N-phenylcarbamate (EPC) on the mating reaction of Saccharomyces cerevisiae were studied, with special attention on the effect on the pheromone action. EPC inhibited zygote formation at a concentration which promoted induction of sexual agglutinability. EPC enhanced agglutinability induction by pheromone, but inhibited -pheromone-induced formation of large pearshaped cells in a mating type. The enhancement of agglutinability induction was accompanied with increased production of a agglutination substance and inhibition of pheromone inactivation. EPC arrested the cell cycle of a cells probably in the step controlled by CDC19, CDC35, cAMP etc., just before the step controlled by CDC28, pheromone etc.Abbreviations EPC Ethyl N-phenylcarbamate - PBS 0.01 M phosphate buffer solution, pH 5.5 - SPB spindle pole body  相似文献   

16.
Sex pheromone production in the female pine caterpillar moth, Dendrolimus punctatus is controlled by a PBAN-like substance located in the head of female moth. Pheromone titer was significantly decreased by decapitation of female moth, and restored by injection of either Hez-PBAN or head extract prepared from male or female moth. Stimulation of pheromone production by head extract followed a dose-dependent pattern from 0.5 to at least 4 head equivalent. A gland in vitro assay was used to study the relationship between gland incubation time and pheromone production as well as calcium involvement in the stimulation of pheromone production by head extract. Maximum pheromone production was occurred at 60 min after pheromone gland was incubated with two equivalents of head extracts. In vitro experiments showed that the presence of calcium in the incubation medium was necessary for stimulation of pheromone production. The calcium ionophore, A 23187, alone stimulated pheromone production. The pheromone components (Z,E)-5,7-dodecadienol and its acetate and propionate were produced in these experiments but in addition to the aldehyde, (Z,E)-5,7-dodecadienal was also found. This indicates that females are capable of producing four oxygenated functional groups. The PBAN-like substance control of the pheromone biosynthetic pathway was investigated by monitoring the incorporation of the labeled precursor into both pheromone and pheromone intermediates.  相似文献   

17.
The circadian variation of pheromone production in the turnip moth, Agrotis segetum, was characterized by quantifying (Z)-7-dodecenyl acetate (Z7-12:OAc), the most abundant pheromone component produced by female turnip moth, at different times of day. Under 17:7 h light-dark cycle (LD), the peak of Z7-12:OAc production occurred around 4 h into the scotophase, while there was very little pheromone production during the photophase. When females were maintained under constant darkness (DD), the periodicity of pheromone production was sustained for 3 consecutive days. Furthermore, the rhythm in pheromone production could be entrained to a shifted LD. These results demonstrate that the pheromone production in the turnip moth is regulated endogenously by a circadian clock. To understand how the circadian rhythm of pheromone production is generated, circadian variation of pheromone- biosynthesis-activating neuropeptide (PBAN)-like activity in the brain-suboesophageal ganglion complexes (Br-SOG), hemolymph, and ventral nerve cord (VNC) was also examined. Under both LD and DD, only the VNC displayed a circadian variation in the PBAN-like activity, which was significantly higher during the late-photophase than that in the scotophase. In addition, the present study showed that removal of VNC in isolated abdomen did not affect PBAN stimulation of pheromone production, while severing the VNC impaired normal pheromone production. The role of Br-SOG, VNC, and hemolymph in the regulation of the periodicity of pheromone production is discussed.  相似文献   

18.
The Staphylococcus aureus Agr quorum-sensing system modulates the expression of extracellular virulence factors. The Agr system is controlled by an autoinducing peptide (AIP) molecule that is secreted during growth. In the AIP biosynthetic pathway, two proteolytic events are required to remove the leader and tail segments of AgrD, the peptide precursor of AIP. The only protein known to be involved in this pathway is AgrB, a membrane endopeptidase that removes the AgrD carboxy-tail. We designed a synthetic peptide substrate and developed an assay to detect peptidases that can remove the N-terminal leader of AIP. Several peptidase activities were detected in S. aureus extracts and these activities were present in both wild-type and agr mutant strains. Only one of these peptidases cleaved in the correct position and all properties of this enzyme were consistent with type I signal peptidase. Subsequent cloning and purification of the two known S. aureus signal peptidases, SpsA and SpsB, demonstrated that only SpsB catalysed this activity in vitro. To investigate the role of SpsB in AIP biosynthesis, SpsB peptide inhibitors were designed and characterized. The most effective inhibitor blocked SpsB activity in vitro and showed antibacterial activity against S. aureus. Importantly, the inhibitor reduced expression of an Agr-dependent reporter and inhibited AIP production in S. aureus, indicating a role for SpsB in quorum sensing.  相似文献   

19.
20.
《Journal of Asia》2002,5(1):43-48
This study was undertaken to clarify the suppression phenomenon of sex pheromone production after mating and its relationship to the physiological mechanism in adult females of Helicoverpa assulta, and determine the mating factor from males causing depletion of sex pheromonc production. Sex pheromone production of H. assulta females was mostly terminated in 3 hours after mating. Mated females maintained with a low titer of sex pheromone until 3 days when it started to increase again, which showed a characteristic of species mating more than once. The mated female again produced pheromone upon injection of pheromone biosynthesis activating neuropeptide (PBAN) or extracts of brain-suboesophageal ganglion complexes (Br-Sg) of mated female, which were shown similar pheromonotropic activities as compared with virgin females. These results indicated that the mating did not inhibit the receptivity of pheromone gland itself and PBAN biosynthesis in suboesophageal ganglion of the mated females. And it seems to support that the depletion of sex pheromone production is responsible for blocking of PBAN release from head. To investigate the mating factor from adult males, when extracts of reproductive organs of male were injected into hemocoel of virgin females evoking depletion of sex pheromone production as shown in mated female. The results suggest that a chemical substance(s) from the male reproductive organs could be responsible for the loss of sex pheromone biosynthesis in H. assulta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号