首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA base composition, expressed as % GC, was determined in 34 strains of yellow-pigmentedErwinia-like organisms from plant, animal and human origin. Organisms calledErwinia herbicola (Graham and Hodgkiss, 1967) have a % GC in the narrow range 55.0 to 56.5, with the exception of strain G 146 which has 58.6% GC. They include the formerBacterium herbicola, Erwinia lathyri, Bacterium typhi flavum and the Muraschi isolates,Erwinia milletiae with 55.8 % falls within the % GC range of theHerbicola group,Erwinia ananas is at the lower end of the group with 54.8 ± 0.4 % GC andErwinia uredovora still lower at 53.7 ± 0.7 % GC. These data and the compositional distribution of the DNA fragments do not exclude the inclusion of these organisms into the genusErwinia.  相似文献   

2.
Summary Determinations of the guanine+cytosine content in the DNA ofSarcina ventriculi andSarcina maxima indicated that these organisms are phylogenetically distant from packet-forming cocci capable of aerobic growth.The classification of sarcinae is discussed and it is suggested that, among the known packet-forming cocci, only the strictly anaerobic sugar-fermenting species (S. ventriculi andS. maxima) should be retained in the genusSarcina.  相似文献   

3.
The standard diagnostic test for differentiating staphylococci from micrococci is based on the ability of the former to produce acid anaerobically in a glucose-containing growth medium. This test has been modified to provide greater convenience, easier interpretation of results, and better correlation with deoxyribonucleic acid (DNA) base composition. In the modified test, shake cultures in Brewer's fluid thioglycolate medium with 0.3% agar added are observed for growth in the anaerobic zone of the tubes. This test was applied to 125 strains of staphylococci and micrococci, and all except two strains gave results that were consistent with other criteria. Of particular interest were eight strains of Micrococcus saprophyticus and three strains of M. lactis that have a DNA composition of 30 to 37% guanine plus cytosine (GC). All 11 of these cultures produced anaerobic growth and thus would be classified as staphylococci. Strains of M. lactis that have a high GC content in their DNA grew only aerobically. Some cultures of staphylococci produced characteristic band patterns of anaerobic growth and other cultures produced only a few anaerobic colonies from an inoculum of 10(6) to 10(7) cells. These observations suggest some interesting genetic and metabolic capabilities in such cultures.  相似文献   

4.
Sarcina lutea was grown in Trypticase Soy Broth, Nutrient Broth, and a chemically defined medium. Gas chromatographic analysis of lipid components demonstrated that the composition of the medium had an effect on the relative per cent composition of the aliphatic hydrocarbons and fatty acids present in the cells. The branched olefinic hydrocarbons from the organisms grown in Trypticase Soy Broth showed no predominance or only a slight predominance of odd-numbered carbon chains, whereas the hydrocarbons from cells grown in the other two media showed an obvious predominance of odd-numbered carbon chains. The monocarboxylic fatty acid content and distribution showed only minor differences, with all normal saturated fatty acids present in relatively small quantities for cells grown in Nutrient Broth and in a chemically defined medium.  相似文献   

5.
The strains designated in this paper asMicrococcus lysodeikticus, M. sodonensis, M. flavus, Sarcina flava, S. pelagia, S. variabilis, S. marginata, S. subflava, S. citrea, S. lutea andStaphylococcus afermentans have similar DNA base compositions. The mole % GC (guanine plus cytosine) contents in DNA of these strains ranged from 71.8 to 73.3 as calculated from the denaturation temperature (Tm). They may be, therefore, closely related. However, at variance with Kocur and Martinec (1962) they do not seem to be identical withMicrococcus luteus (Schroeter 1872) Cohn 1872, because the neotype culture of the latter species has a different content of guanine and cytosine in its DNA (GC=66.3%). Sarcina aurantiaca, Micrococcus dentrificans andM. luteus have a similar DNA base composition. However, they are not identical as they differ from each other in several physiological characters. In the strains designated asStaphylococcus roseus andSarcina erythromyxa the content of GC varies within the range 72–72.8%. These species do not differ from each other physiologically. They form a pink pigment, reduce nitrates, do not hydrolyze casein and gelatin, and do not produce urease. They seem, therefore, to be identical, which confirms the conclusion of Kocur and Martinec (1962) who designated them asMicrococcus roseus Flügge 1886. Micrococcus conglomeratus differs significantly in DNA base composition from almost all strains of the groupM. lysodeikticus—Staphylococcus afermentans, also fromMicrococcus luteus, M. roseus andM. denitrificans. It differs fromSarcina aurantiaca only physiologically.  相似文献   

6.
The DNA of CAENORHABDITIS ELEGANS   总被引:71,自引:8,他引:63       下载免费PDF全文
Chemical analysis and a study of renaturation kinetics show that the nematode, Caenorhabditis elegans, has a haploid DNA content of 8 x 10(7) base pairs (20 times the genome of E. coli). Eighty-three percent of the DNA sequences are unique. The mean base composition is 36% GC; a small component, containing the rRNA cistrons, has a base composition of 51% GC. The haploid genome contains about 300 genes for 4S RNA, 110 for 5S RNA, and 55 for (18 + 28)S RNA.  相似文献   

7.
The genetic code relates nucleotide sequence to amino acid sequence and is shared across all organisms, with the rare exceptions of lineages in which one or a few codons have acquired novel assignments. Recoding of UGA from stop to tryptophan has evolved independently in certain reduced bacterial genomes, including those of the mycoplasmas and some mitochondria. Small genomes typically exhibit low guanine plus cytosine (GC) content, and this bias in base composition has been proposed to drive UGA Stop to Tryptophan (Stop→Trp) recoding. Using a combination of genome sequencing and high-throughput proteomics, we show that an α-Proteobacterial symbiont of cicadas has the unprecedented combination of an extremely small genome (144 kb), a GC–biased base composition (58.4%), and a coding reassignment of UGA Stop→Trp. Although it is not clear why this tiny genome lacks the low GC content typical of other small bacterial genomes, these observations support a role of genome reduction rather than base composition as a driver of codon reassignment.  相似文献   

8.
A methanogenic acetate enrichment was initiated by inoculation of an acetate-mineral salts medium with domestic anaerobic digestor sludge and maintained by weekly transfer for 2 years. The enrichment culture contained a Methanosarcina and several obligately anaerobic nonmethanogenic bacteria. These latter organisms formed varying degrees of association with the Methanosarcina, ranging from the nutritionally fastidious gram-negative rod called the satellite bacterium to the nutritionally nonfastidious Eubacterium limosum. The satellite bacterium had growth requirements for amino acids, a peptide, a purine base, vitamin B12, and other B vitamins. Glucose, mannitol, starch, pyruvate, cysteine, lysine, leucine, isoleucine, arginine, and asparagine stimulated growth and hydrogen production. Acetate was neither incorporated nor metabolized by the satellite organism. Since acetate was the sole organic carbon source in the enrichment culture, organism(s) which metabolize acetate (such as the Methanosarcina) must produce substrates and growth factors for associated organisms which do not metabolize acetate.  相似文献   

9.
D M Ward  R A Mah    I R Kaplan 《Applied microbiology》1978,35(6):1185-1192
A methanogenic acetate enrichment was initiated by inoculation of an acetate-mineral salts medium with domestic anaerobic digestor sludge and maintained by weekly transfer for 2 years. The enrichment culture contained a Methanosarcina and several obligately anaerobic nonmethanogenic bacteria. These latter organisms formed varying degrees of association with the Methanosarcina, ranging from the nutritionally fastidious gram-negative rod called the satellite bacterium to the nutritionally nonfastidious Eubacterium limosum. The satellite bacterium had growth requirements for amino acids, a peptide, a purine base, vitamin B12, and other B vitamins. Glucose, mannitol, starch, pyruvate, cysteine, lysine, leucine, isoleucine, arginine, and asparagine stimulated growth and hydrogen production. Acetate was neither incorporated nor metabolized by the satellite organism. Since acetate was the sole organic carbon source in the enrichment culture, organism(s) which metabolize acetate (such as the Methanosarcina) must produce substrates and growth factors for associated organisms which do not metabolize acetate.  相似文献   

10.
The deoxyribonucleic acid base composition (percent guanine + cytosine [GC]) was determined for 29 strains, representing 18 species of the genus Kluyveromyces. It was concluded that on the basis of GC content (47.4%) and other properties K. veronae occupies an uncertain position in the genus Kluyveromyces. The GC content of the remaining 17 species ranged from 35.3 to 43.4%, and three groups of species were recognized. The GC content of the first ranged from 35.3 to 38.0%; that of the second group from 39.5 to 41.7%; that of the third group from 42.4 to 43.4%. Several species revealed a nearly identical GC content. The GC contents do not correspond in all instances with the five groups of species proposed by van der Walt.  相似文献   

11.
During gas chromatography (GC) analysis of fatty acid (FA) composition of the dinoflagellate Gymnodinium kowalevskii, we found unex‐pectedly low and irreproducible content of all‐cis‐3,6,9,12,15‐octadecapentaenoic acid (18:5n‐3), which is an important chemotaxonomic marker of several classes of microalgae. We compared chromatographic behavior of 18:5n‐3 methyl ester and other GC derivatives obtained using different conventional methods of derivatization. The use of methods based on saponification or base‐catalyzed transesterification resulted in a mixture of double‐bond positional isomers of 18:5. On a SUPELCOWAX 10 column, the equivalent chain length (ECL) value for authentic 18:5n‐3 methyl ester was 20.22, whereas the main component after base‐catalyzed methylation had ECL 20.88. Attempts to prepare N‐acyl pyrrolidides or 4,4‐dimethyloxazoline (DMOX) derivatives of 18:5n‐3 also gave inadequate results. These derivatives also showed a main peak corresponding to isomerized 18:5. Mass spectra for both DMOX and pyrrolidide derivatives of this compound showed the base peak at m/z 139, probably corresponding to 2,6,9,12,15‐18:5 acid. Of all methods tested for methylation, only derivatization with 5% HCl or 1% sulphuric acid in methanol gave satisfactory results. Therefore, GC or GC‐mass spectrometry analyses of algal lipids containing 18:5n‐3 may be inaccurate when base‐catalyzed methods of FA derivatization are applied. The best and simplest way to avoid incorrect GC results is to use standard acid‐catalyzed methylation.  相似文献   

12.
The GC contents of 2670 prokaryotic genomes that belong to diverse phylogenetic lineages were analyzed in this paper. These genomes had GC contents that ranged from 13.5% to 74.9%. We analyzed the distance of base frequencies at the three codon positions, codon frequencies, and amino acid compositions across genomes with respect to the differences in the GC content of these prokaryotic species. We found that although the phylogenetic lineages were remote among some species, a similar genomic GC content forced them to adopt similar base usage patterns at the three codon positions, codon usage patterns, and amino acid usage patterns. Our work demonstrates that in prokaryotic genomes: a) base usage, codon usage, and amino acid usage change with GC content with a linear correlation; b) the distance of each usage has a linear correlation with the GC content difference; and c) GC content is more essential than phylogenetic lineage in determining base usage, codon usage, and amino acid usage. This work is exceptional in that we adopted intuitively graphic methods for all analyses, and we used these analyses to examine as many as 2670 prokaryotes. We hope that this work is helpful for understanding common features in the organization of microbial genomes.  相似文献   

13.
The genetic code relates nucleotide sequence to amino acid sequence and is shared across all organisms, with the rare exceptions of lineages in which one or a few codons have acquired novel assignments. Recoding of UGA from stop to tryptophan has evolved independently in certain reduced bacterial genomes, including those of the mycoplasmas and some mitochondria. Small genomes typically exhibit low guanine plus cytosine (GC) content, and this bias in base composition has been proposed to drive UGA Stop to Tryptophan (Stop→Trp) recoding. Using a combination of genome sequencing and high-throughput proteomics, we show that an α-Proteobacterial symbiont of cicadas has the unprecedented combination of an extremely small genome (144 kb), a GC–biased base composition (58.4%), and a coding reassignment of UGA Stop→Trp. Although it is not clear why this tiny genome lacks the low GC content typical of other small bacterial genomes, these observations support a role of genome reduction rather than base composition as a driver of codon reassignment.  相似文献   

14.

Background

Identifying organism-environment interactions at the molecular level is crucial to understanding how organisms adapt to and change the chemical and molecular landscape of their habitats. In this work we investigated whether relative amino acid compositions could be used as a molecular signature of an environment and whether such a signature could also be observed at the level of the cellular amino acid composition of the microorganisms that inhabit that environment.

Methodologies/Principal Findings

To address these questions we collected and analyzed environmental amino acid determinations from the literature, and estimated from complete genomic sequences the global relative amino acid abundances of organisms that are cognate to the different types of environment. Environmental relative amino acid abundances clustered into broad groups (ocean waters, host-associated environments, grass land environments, sandy soils and sediments, and forest soils), indicating the presence of amino acid signatures specific for each environment. These signatures correlate to those found in organisms. Nevertheless, relative amino acid abundance of organisms was more influenced by GC content than habitat or phylogeny.

Conclusions

Our results suggest that relative amino acid composition can be used as a signature of an environment. In addition, we observed that the relative amino acid composition of organisms is not highly determined by environment, reinforcing previous studies that find GC content to be the major factor correlating to amino acid composition in living organisms.  相似文献   

15.
Okayasu T  Sorimachi K 《Amino acids》2009,36(2):261-271
We recently classified 23 bacteria into two types based on their complete genomes; “S-type” as represented by Staphylococcus aureus and “E-type” as represented by Escherichia coli. Classification was characterized by concentrations of Arg, Ala or Lys in the amino acid composition calculated from the complete genome. Based on these previous classifications, not only prokaryotic but also eukaryotic genome structures were investigated by amino acid compositions and nucleotide contents. Organisms consisting of 112 bacteria, 15 archaea and 18 eukaryotes were classified into two major groups by cluster analysis using GC contents at the three codon positions calculated from complete genomes. The 145 organisms were classified into “AT-type” and “GC-type” represented by high A or T (low G or C) and high G or C (low A or T) contents, respectively, at every third codon position. Reciprocal changes between G or C and A or T contents at the third codon position occurred almost synchronously in every codon among the organisms. Correlations between amino acid concentrations (Ala, Ile and Lys) and the nucleotide contents at the codon position were obtained in both “AT-type” and “GC-type” organisms, but with different regression coefficients. In certain correlations of amino acid concentrations with GC contents, eukaryotes, archaea and bacteria showed different behaviors; thus these kingdoms evolved differently. All organisms are basically classifiable into two groups having characteristic codon patterns; organisms with low GC and high AT contents at the third codon position and their derivatives, and organisms with an inverse relationship.  相似文献   

16.
In this paper we describe a simple and rapid protocol for DNA base composition determination by CsCl gradient in the presence of acrylamide. This method permits the determination of GC content in microgram amounts of DNA, and results are easily documented in photographs or graphs. The protocol was applied to the characterization of nematode DNA, but can be used for other organisms. Analyzing several experiments the mean standard deviation observed in the calculated GC content is near 1.3%.  相似文献   

17.
Organisms use proteins to perform an enormous range of functions that are essential for life. Proteins are usually composed of 20 different kinds of amino acids that each contain between one and four nitrogen atoms. In aggregate, the nitrogen atoms that are bound in proteins typically account for a substantial fraction of the nitrogen in a cell. Many organisms obtain the nitrogen that they use to make proteins from the environment, where its availability can vary greatly. These observations prompt the question: can environmental nitrogen scarcity lead to adaptive evolution in the nitrogen content of proteins? In this issue, Gilbert & Fagan (2011) address this question in the marine cyanobacteria Prochlorococcus, examining a variety of ways in which cells might be thrifty with nitrogen when making proteins. They show that different Prochlorococcus strains vary substantially in the average nitrogen content of their encoded proteins and relate this variation to nitrogen availability in different marine habitats and to genomic base composition (GC content). They also consider biases in the nitrogen content of different kinds of proteins. In most Prochlorococcus strains, a group of proteins that are commonly induced during nitrogen stress are poor in nitrogen relative to other proteins, probably reflecting selection for reduced nitrogen content. In contrast, ribosomal proteins are nitrogen rich relative to other Prochlorococcus proteins, and tend to be down‐regulated during nitrogen limitation. This suggests the possibility that decaying ribosomal proteins act as a source of nitrogen‐rich amino acids during periods of nitrogen stress. This work contributes to our understanding of how nutrient limitation might lead to adaptive variation in the composition of proteins and signals that marine microbes hold great promise for testing hypotheses about protein elemental costs in the future.  相似文献   

18.
19.
Summary The nucleotide composition of ribosomal, soluble and total ribonucleic acids (RNA) from the zoospores of Rhizophlyctis rosea was determined. The base ratios for ribosomal, soluble, and total RNA were 49.16, 51.79 and 49.97 moles percent, guanylic acid (G) and cytidylic acid (C) respectively. The distribution of the nucleotides in ribosomal RNA differed slightly from those determined in other fungi and microorganisms. The amount of uridylic acid in soluble RNA was very high, while the GC content was unexpectedly low. Ribosomes were characterized with respect to their mean sedimentation coefficient, under high magnesium (0.01 M) concentrations, in the analytical ultracentrifuge, and by a linear sucrose-density gradient centrifugation. The particles had an average of 82 S by the sucrose-density gradient method, and an average of 78 S by the analytical ultracentrifugation technique.  相似文献   

20.
Eighty strains of anaerobic coryneforms were compared with 29 strains of classical propionibacteria and 8 strains of Arachnia propionica by cell wall analysis, deoxyribonucleic acid (DNA) base compositions, and nucleotide sequence similarities. The anaerobic coryneforms have DNA base compositions in the range of 58 to 64% guanine + cytosine (GC) and show at least three homology groups. The largest group corresponds to organisms identified as Propionibacterium acnes and shows about 50% homology to strains in the P. avidum homology group. The third group, P. granulosum, shows low levels of similarities to the other two. All strains of anaerobic coryneforms have some combination of galactose, glucose, or mannose as cell wall sugars, and most have alanine (ala), glutamic acid (glu), glycine (gly), and l-alpha-epsilon-diaminopimelic acid (l-DAP) as amino acids of peptidoglycan. However, a few strains in the P. acnes and P. avidum homology groups have meso-DAP and minimal amounts of glycine. Two serological types, based on cell wall antigens, were found in the P. acnes homology group. One type had galactose, glucose, and mannose as cell wall sugars, the other glucose and mannose only. The classical propionibacteria have DNA base compositions in the range of 65 to 68% GC and show four homology groups which correspond closely to van Niel's classification as given in the 7th edition of Bergey's Manual. The P. jensenii group showed about 50% homology to the P. thoenii group and about 30 to 35% to the P. acidi-propionici group. The P. freudenreichii strains showed a rather lower level of similarity (8 to 25%) to the other homology groups. Most of the strains of classical propionibacteria also have some combination of galactose, glucose, or mannose as cell wall sugars and ala, glu, gly, and l-DAP as peptidoglycan amino acids, but P. shermanii and P. freudenreichii strains, which form a single homology group, have galactose, mannose, and rhamnose as cell wall sugars and ala, glu, and meso-DAP in their peptidoglycan. There is a rather low level of DNA homology (10 to 20%) between the anaerobic coryneforms and classical propionibacteria. However, the strains of A. propionica which have a GC content of 64 to 65% and form a single homology group, show no homology to either of the other two major groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号