首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determinants of tetracycline resistance have been cloned from two different tetracycline-producing industrial strains of Streptomyces into Streptomyces lividans using the plasmid vector pUT206. Three plasmids, pUT250 and pUT260 with a 9.5 and a 7.5 kb insert respectively of Streptomyces rimosus DNA, and pUT270 with a 14.0 kb insert of Streptomyces aureofaciens DNA, conferring resistance to tetracycline, have been isolated. By in vitro sub-cloning, a similar fragment of 2.45 kb containing the tetracycline resistance gene (tet347) was further localized on these plasmids. The S. rimosus gene has been cloned into Escherichia coli and expressed under the control of lambda pL or Lpp promoters. Differential protein extraction of E. coli cells revealed the presence of an additional membrane-embedded protein in tetracycline-resistant cells. On the basis of available restriction endonuclease maps, the tet347 gene is probably identical to the tetB gene from S. rimosus recently identified by T. Ohnuki and co-workers as responsible for the reduced accumulation of tetracycline. The nucleotide sequence of a 2052 bp DNA fragment containing the TcR structural gene from S. rimosus has been determined. The amino acid sequence of the tet347 protein (Mr35818) deduced from the nucleotide sequence shows a limited but significant homology to other characterized tetracycline transport acting determinants from pathogenic bacteria.  相似文献   

2.
The complete nucleotide sequence of the tetracycline resistance plasmid pAG1 from the gram-positive soil bacterium Corynebacterium glutamicum 22243 (formerly Corynebacterium melassecola 22243) was determined. The R-plasmid has a size of 19,751 bp and contains at least 18 complete open reading frames. The resistance determinant of pAG1 revealed homology to gram-negative tetracycline efflux and repressor systems of Tet classes A through J. The highest levels of amino acid sequence similarity were observed to the transmembrane tetracycline efflux protein TetA(A) and to the tetracycline repressor TetR(A) of transposon Tn1721 with 64 and 56% similarity, respectively. This is the first time a repressor-regulated tet gene has been found in gram-positive bacteria. A new class of tetracycline resistance and repressor proteins, termed TetA(Z) and TetR(Z), is proposed.  相似文献   

3.
Some genetic and biochemical properties of the tetracycline resistance element of the Staphylococcus aureus plasmid pT181 have been studied. Resequencing of a portion of the tetracycline resistance gene (tet) showed the presence of a single open reading frame of 1,299 nucleotides capable of encoding a polypeptide of 433 amino acids. Analysis of BAL 31 nuclease-generated deletion mutants of the tet gene showed the presence of two complementation groups within this region. Northern blot hybridizations demonstrated that the tet gene encodes a single mRNA, and its initiation site has been mapped by S1 nuclease protection experiments. We also identified an approximately 52,000-dalton tetracycline-inducible polypeptide in Bacillus subtilis minicells carrying pT181. Induction of the tet gene by tetracycline resulted in a 4-fold increase in the levels of TET mRNA and at least a 15-fold increase in the amount of TET protein in B. subtilis minicells.  相似文献   

4.
The Butyrivibrio fibrisolvens tet(W) gene is located on the conjugative transposon TnB1230. TnB1230 encodes transfer proteins with 48 to 67% identity to some of those encoded by Tn1549. tet(W) is flanked by directly repeated sequences with significant homology to oxygen-insensitive nitroreductases. The 340 nucleotides upstream of tet(W) are strongly conserved and are required for tetracycline resistance.  相似文献   

5.
Tetracycline resistance in the Enterobacteriaceae is mediated by a number of genetically related, usually plasmid-borne, determinants which specify an efflux system involving an inner membrane protein, Tet. Attempts to overproduce the Tn10 (Class B)-encoded Tet in Escherichia coli by cloning the structural gene tet downstream of the lambda PL promoter under regulation by temperature-sensitive lambda repressor cI857 were unsuccessful; induction at 42 degrees C resulted in filamentous, non-viable cells containing little detectable overproduction of the protein. However, cells containing tet fused to lacZ were resistant to tetracycline at 30 degrees C and synthesized modest amounts of a large fusion protein when induced at 42 degrees C. Fusion of the N-terminal half or the first 38 amino acids of tet to lacZ did lead to increased production of fusion proteins. Fusions could be purified by size or by LacZ immunoaffinity or substrate-affinity chromatography. In the latter method, selected detergents were required to counteract nonspecific binding of Tet to the adsorbant. Amino acid sequencing of the N-terminus of Tet-LacZ fusion proteins indicated that most molecules were blocked at this terminus. The sequence of an unblocked subpopulation was consistent with that expected from the nucleotide sequence. A collagen peptide linker, genetically placed between tet and lacZ, allowed recovery of purified Tet protein after collagenase treatment of the purified fusion protein.  相似文献   

6.
A Hung  R Pictet 《FEBS letters》1989,245(1-2):57-60
The regulatory regions of the tetracycline genes present in pBR322 (pSC101) and in the transposon Tn10 are compared. They show a low degree of nucleotide sequence similarity but a high level of structure similarity. Furthermore, analyses of RNAs transcribed in the opposite direction of the pBR322 tet gene show that there are two mRNA initiation sites separated by 29 nucleotides. This suggests the existence of two promoters for the tet repressor gene in Tn10. These features reveal a strong resemblance of the mode of regulation between the tet operons of Tn10 and pSC101.  相似文献   

7.
Specificity of RepC protein in plasmid pT181 DNA replication   总被引:6,自引:0,他引:6  
The plasmid pT181 of Staphylococcus aureus consists of 4437 base pairs and encodes resistance to tetracycline. Initiation of pT181 DNA replication specifically requires the plasmid-encoded initiator protein, RepC. The initiator protein binds specifically to a 32-base pair sequence within the pT181 origin of replication. RepC protein also has a nicking-closing activity that is specific for the pT181 origin. Replication of pT181 initiates by covalent extension of the nick and proceeds by a rolling circle mechanism. Two other small, multicopy plasmids pC221 and pS194 belong to the pT181 family and have common structural organization and replication properties. The replication proteins and replication origins of these plasmids have extensive sequence homologies, although they belong to different incompatibility groups. In spite of this homology, the replication proteins and replication origins of these three plasmids do not show any cross-reactivity in vivo. We have carried out a series of in vitro experiments to determine the specificity of pT181-encoded initiator protein, RepC. DNA binding experiments showed that although the binding of RepC to the pT181 origin was very efficient, little or no binding was seen with pC221 and pS194 origins. The nicking-closing activity of RepC was found to be equally efficient with the pC221 and pS194 plasmids. The plasmids pC221 and pS194 replicated efficiently in a RepC-dependent in vitro system. However, replication of these plasmids was greatly reduced in the presence of a competing pT181 origin. The results presented here suggest that nicking-closing by RepC at the origin is not sufficient for maximal replication and that tight binding of RepC to the origin plays an important role in the initiation of DNA replication.  相似文献   

8.
9.
In the present study, a collection of 187 Enterococcus food isolates mainly originating from European cheeses were studied for the phenotypic and genotypic assessment of tetracycline (TC) resistance. A total of 45 isolates (24%) encompassing the species Enterococcus faecalis (n = 33), E. durans (n = 7), E. faecium (n = 3), E. casseliflavus (n = 1), and E. gallinarum (n = 1) displayed phenotypic resistance to TC with MIC ranges of 16 to 256 microg/ml. Eight of these strains exhibited multiresistance to TC, erythromycin, and chloramphenicol. By PCR detection, TC resistance could be linked to the presence of the tet(M) (n = 43), tet(L) (n = 16), and tet(S) (n = 1) genes. In 15 isolates, including all of those for which the MIC was 256 micro g/ml, both tet(M) and tet(L) were found. Furthermore, all tet(M)-containing enterococci also harbored a member of the Tn916-Tn1545 conjugative transposon family, of which 12 erythromycin-resistant isolates also contained the erm(B) gene. Filter mating experiments revealed that 10 E. faecalis isolates, 3 E. durans isolates, and 1 E. faecium isolate could transfer either tet(M), tet(L), or both of these genes to E. faecalis recipient strain JH2-2. In most cases in which only tet(M) was transferred, no detectable plasmids were acquired by JH2-2 but instead all transconjugants contained a member of the Tn916-Tn1545 family. Sequencing analysis of PCR amplicons and evolutionary modeling showed that a subset of the transferable tet(M) genes belonged to four sequence homology groups (SHGs) showing an internal homology of > or = 99.6%. Two of these SHGs contained tet(M) mosaic structures previously found in Tn916 elements and on Lactobacillus and Neisseria plasmids, respectively, whereas the other two SHGs probably represent new phylogenetic lineages of this gene.  相似文献   

10.
Comparative analysis of five related staphylococcal plasmids   总被引:26,自引:0,他引:26  
The genomic organization of five small multicopy staphylococcal plasmids comprising the pT181 family has been analyzed. In addition to pT181, the family presently includes the streptomycin resistance plasmid pS194 and the chloramphenicol resistance plasmids pC221, pC223, and pUB112. Although they belong to five different incompatibility groups, the five plasmids have similar basic replicons, use the same basic copy control mechanism, and have a common structural organization. It has been demonstrated previously that pT181 and pC221 encode trans-active replication proteins (RepC and RepD, respectively) which specifically recognize the respective plasmid's origin of replication in both cases is initiated by site-specific nicking and 3' extension. The other three plasmids in this family encode similar replication proteins; 63% of the predicted amino acid residues are identical for all five and the least similar pair shows 75% identity at the amino acid level. However, despite this homology, the replication proteins and origins of replication of different members in this family did not show cross complementation in vivo. Outside of the basic replicon, which comprises about one-third of each plasmid's genome, functional organization is also conserved. The resistance determinants are all located in the same position, immediately downstream of the replication protein coding sequence, and all are transcribed in the same direction. The three chloramphenicol resistance determinants encode highly homologous chloramphenicol transacetylases which are unrelated to the tet and str gene products. Three of the five plasmids form relaxation complexes and the involved genome segments are closely related. The other two are not homologous to these three in the corresponding region, but are homologous to each other and encode a site-specific recombinase, Pre. It is suggested that the replication, resistance, and relaxation complex regions of these plasmids can be regarded as conserved segments ("cassettes") assembled in various combinations, but always with the same spatial arrangement.  相似文献   

11.
Roberts MC 《Anaerobe》2003,9(2):63-69
In general bacterial antibiotic resistance is acquired on mobile elements such as plasmids, transposons and/or conjugative transposons. This is also true for many antibiotic resistant anaerobic species described in the literature. Of the 23 different tetracycline resistant efflux genes identified, tet(B), tet(K), tet(L), and tetA(P) have been found in anaerobic species and six of the ten tetracycline resistant genes coding for ribosomal protection proteins, tet(M), tet(O), tetB(P), tet(Q), tet(W), and tet(32), have been identified in anaerobes. There are now three enzymes which inactivate tetracycline, of which the tet(X) has been identified in Bacteroides though is not functional under anaerobic growth conditions. A similar situation exists with the genes conferring macrolide-lincosamide-streptogramin (MLS) resistance. Of the 26 rRNA methylase MLS resistant genes characterized, five genes; erm(B), erm(C), erm(F), erm(G), and erm(Q), have been identified in anaerobes. In contrast, no genes coding for MLS resistant efflux proteins or inactivating enzymes have been described in anaerobic species. This mini-review will summarize what is known about tetracycline and MLS resistance in genera with anaerobic species and the mobile elements associated with acquired tetracycline and/or MLS resistance genes.  相似文献   

12.
R plasmid pRSD1 contains tetracycline resistance (tet) genes in a 3.55 Mdal-region capable of amplification by forming tandem repeats (Mattes, Burkardt and Schmitt, Molec. gen. Genet., 1979). The repetitious tet element is itself part of a 7.2 Mdal-transposon, named Tn1721, as demonstrated by the following criteria; (i) Tn1721 has been translocated to phage lambda. The resulting hybrid phage lambda tet contains the 7.2 Mdal-insertion to the right of the attachment site, but not continguous with it indicating translocation of the element by non-homologous recombination. In addition, lambda tet has sustained a 3.4 Mdal-deletion adjacent to the insertion. (ii) Further transposition of Tn1721 to the 21.5 Mdal-plasmid R388 resulted in R388::Tn1721 derivatives, two of which were characterised. They contain Tn1721 inserted into different sites but in the same orientation as shown by restriction and heteroduplex analyses. These translocation of Tn1721 were not accompanied by deletions of DNA. (iii) The insertion plasmid pRSD102(R388::Tn1721) has conserved the capacity of the original plasmid pRSD1 to amplify the 3.55 Mdal-tet region. It has been concluded that Tn1721 constitutes a novel transposon encompassing a tet region capable of selective amplification. The model proposed for Tn1721 contains three short repeats. Two direct repeats, flanking the 3.55 Mdal tet region, provide sequence homology for amplification. The third repeat (located distally to tet) is inverted and provides the basis for transposition of the 7.2 Mdal-element.  相似文献   

13.
We inserted the Tn10 tetracycline resistance determinant (tet) into the multicopy plasmid pACYC177, and we examined the phenotype of Escherichia coli K-12 strains harboring these plasmids. In agreement with others, we find that Tn10 tet exhibits a negative gene dosage effect. Strains carrying multicopy Tn10 tet plasmids are 4- to 12-fold less resistant to tetracycline than are strains with a single copy of Tn10 in the bacterial chromosome. In addition, we find that multicopy tet strains are 30- to 100-fold less resistant to the tetracycline derivative 5a,6-anhydrotetracycline than are single-copy tet strains. Multicopy tet strains are, in fact, 10- to 25-fold more sensitive to anhydrotetracycline than are strains that lack tet altogether. The hypersensitivity of multi-copy strains to anhydrotetracycline is correlated with the effectiveness of anhydrotetracycline as an inducer of tet gene expression, rather than its effectiveness as an inhibitor of protein synthesis. Anhydrotetracycline is 50- to 100-fold more effective than tetracycline as an inducer of tetracycline resistance and as an inducer of beta-galactosidase in strains that harbor tet-lac gene fusions. In contrast, anhydrotetracycline appears to be two- to fourfold less effective than tetracycline as an inhibitor of protein synthesis. Both anhydrotetracycline and tetracycline induce synthesis of tet polypeptides in minicells harboring multicopy tet plasmids. Differences between E. coli K-12 backgrounds influence the tetracycline and anhydrotetracycline sensitivity of multicopy strains; ZnCl2 enhances the tetracycline and anhydrotetracycline sensitivity of these strains two- to threefold. We propose that the overexpression of one or more Tn10 tet gene products inhibits the growth of multicopy tet strains and accounts for their relative sensitivity to inducers of tet gene expression.  相似文献   

14.
Deletions in the tet genes derived from Tn10 were formed from different tet::Tn5 insertion mutations by removing DNA sequences located between a HindIII site in Tn5 and a HindIII site adjacent to the tet genes. Tetracycline-sensitive point mutations were mapped in recombination tests with the deletions and were thus aligned with the genetic and physical map of the tet region. Plasmids carrying point mutations were tested for complementation with derivatives of pDU938, a plasmid carrying cloned tet genes derived from Tn10 which had been inactivated by Tn5 insertions. Complementation occurred between promoter-proximal tet point mutations and distal tet::Tn5 insertions, suggesting the existence of two structural genes, tetA and tetB. These results, together with the analysis of polypeptides in minicells harboring pDU938tet::Tn5 mutants, suggested that tetA and tetB are expressed coordinately in an operon. The tetB gene encodes the previously characterized 36,000-dalton cytoplasmic membrane TET protein, but the product of tetA was not identified. Point mutations in either tetA or tetB led to the defective expression of the resistance mechanism involving tetracycline efflux. It is suggested that the tetA and tetB products interact cooperatively in the membrane to express resistance.  相似文献   

15.
The nucleotide sequence of the class G tetracycline resistance determinant previously isolated from Vibrio anguillarum has been determined. Two open reading frames of divergent polarity were identified. A resistance gene (tet A) encodes a protein of 393 amino acid residues (deduced molecular mass of 40.9 kDa), and a repressor gene (tet R) encodes a protein consisting of 210 amino acids with a calculated molecular mass of 23.6 kDa. Based on the deduced amino acid sequences, the proteins of tet A(G) and tet R(G) are about 60% homologous with those of RP1/Tn1721 (class A) and pSC101/pBR322 (class C), and about 50% homologous with Tn10 (class B). The relationship of the tet (G) sequence to five known tetracycline resistance determinants (class A to E) is discussed.  相似文献   

16.
The tet(K) gene, encoding the tetracycline efflux protein from Staphylococcus aureus, mediates the transport of potassium in an Escherichia coli mutant defective in potassium uptake. Deletion mapping indicates that the first third of the tet(K) gene is sufficient to mediate potassium transport.  相似文献   

17.
The molecular relationship between pUB110 (Kmr, 4.4 kilobases (kb] and antibiotic-resistant plasmids from thermophilic bacilli, pTHT15 (Tcr, 4.5 kb) and pTHN1 (Kmr, 4.8 kb), were studied by blot hybridization. Extensive homology was observed between pUB110 and pTHT15 at the region which includes the replication origin. Incompatibility studies revealed that pTHT15 and pUB110 were slightly incompatible in Bacillus subtilis but that they were apparently compatible in B. stearothermophilus. This difference in incompatibility between pTHT15 and pUB110 in the two host cells might be due to a difference in the copy number of pTHT15 in the two organisms. From the results of blot hybridization, mode of kanamycin inactivation, and DNA sequencing, it was determined that pTHN1 encoded the identical gene for kanamycin nucleotidyl transferase as that of pUB110. All three plasmids pTHT15, pTHN1, and pUB110 shared a common DNA homology at the in vitro membrane-binding region.  相似文献   

18.
Resistance to intercalating dyes (ethidium, acriflavine) and other organic cations, such as quaternary ammonium-type antiseptic compounds, mediated by the Staphylococcus aureus plasmid pSK1 is specified by an energy-dependent export mechanism encoded by the qacA gene. From nucleotide sequence analysis, qacA is predicted to encode a protein of Mr 55017 containing 514 amino acids. The gene is likely to initiate with a CUG codon, and a 36 bp palindrome immediately preceding qacA, along with an upstream reading frame with homology to the TetR repressors, may be components of a regulatory circuit. The putative polypeptide specified by qacA has properties typical of a cytoplasmic membrane protein, and is indicated to be a member of a transport protein family that includes proteins responsible for export-mediated resistance to tetracycline and methylenomycin, and uptake of sugars and quinate. The analysis suggests that N- and C-terminal regions of these proteins are involved in energy coupling (proton translocation) and substrate transport, respectively. The last common ancestor of the qacA and related tet (tetracycline resistance) lineages is inferred to have been repressor controlled, as occurs for modern tet determinants from Gram-negative, but not those from Gram-positive, bacteria.  相似文献   

19.
The presence of the tetracycline resistance determinant tet(M) in human clinical isolates of Escherichia coli is described for the first time in this report. The homologue was >99% identical to the tet(M) genes reported to occur in Lactobacillus plantarum, Neisseria meningitidis, and Streptococcus agalactiae, and 3% of the residues in its deduced amino acid sequence diverge from tet(M) of Staphylococcus aureus. Sequence analysis of the regions immediately flanking the gene revealed that sequences upstream of tet(M) in E. coli have homology to Tn916; however, a complete IS26 insertion element was present immediately upstream of the promoter element. Downstream from the termination codon is an insertion sequence that was homologous to the ISVs1 element reported to occur in a plasmid from Vibrio salmonicida that has been associated with another tetracycline resistance determinant, tet(E). Results of mating experiments demonstrated that the E. coli tet(M) gene was on a mobile element so that resistance to tetracycline and minocycline could be transferred to a susceptible strain by conjugation. Expression of the cloned tet(M) gene, under the control of its own promoter, provided tetracycline and minocycline resistance to the E. coli host.  相似文献   

20.
T T Nguyen  K Postle  K P Bertrand 《Gene》1983,25(1):83-92
The Tn10 tetracycline resistance gene, tetA, encodes a tetracycline-inducible protein with an apparent Mr of 36 X 10(3). We have determined the nucleotide sequence of the Tn10 tetA gene. The extent of the tetA gene was determined by analysis of amino-terminal and carboxy-terminal deletion mutants. We conclude that a single Tn10 gene, the tetA gene, is sufficient to confer tetracycline resistance. The predicted Mr of the tetA protein is 43.2 X 10(3). The sequence homology between the Tn10 tetA gene and the pBR322 tetracycline resistance determinant (49% nucleotide homology, 44% amino acid homology) indicates that these phenotypically distinct tetracycline-resistance determinants must have evolved from a common ancestral sequence. The markedly hydrophobic character of the predicted amino acid sequences of the Tn10 tetA and pBR322 tet-coded proteins suggests that a substantial portion of these proteins may be embedded within the cytoplasmic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号