首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
亚热带地区树叶凋落物在流水和静水环境中的淋溶规律   总被引:4,自引:0,他引:4  
为了解亚热带地区水体中树叶凋落物在分解初期的淋溶规律,比较研究了广州地区8种常见树种的树叶凋落物在静水和流水环境中淋溶量的变化.结果表明,在第1 d内,8种树叶无论在静水还是流水环境下干重损失率均显著高于其他时段(P<0.05),但不同树种在淋溶量的大小上存在差异,其中以质地柔软、革质化程度低的人面子树叶干重淋溶率最大(流水中:27.0%;静水中:24.2%);质地坚硬、革质化程度高的竹柏树叶淋溶率最小(流水中:9.8%;静水中:8.0%).第2d和第3d,8种树叶凋落物的干重损失率无显著差异,表明淋溶阶段趋于结束.综上结果表明,亚热带地区的树叶凋落物在静水环境和流水环境中的淋溶阶段均主要出现在第1天.  相似文献   

2.
SUMMARY. 1. Although the bulk of litter input to stream ecosystems is in the form of fresh leaves, current understanding of organic matter processing is largely founded on experimental studies made with pre-dried leaves. This paradox points to the critical need for evaluating to what extent those experiments with dried leaves reflect natural litter decomposition.
2. The mass loss rates, patterns of mass loss, and chemical changes during processing of fresh leaf litter were compared with air-dried leaf litter in a stream ecosystem.
3. Although overall mass loss rates were similar between treatments ( k = 0.0213 day−1 and 0.0206 day−1), fresh leaves lost mass at a constant rate, whereas the decay of dried leaves proceeded in two distinct phases. Soluble organic carbon, phosphorus, and potassium were rapidly leached from dried litter, but were largely retained in fresh material for more than a week. Kinetics of concentrations of cellulose and changes in amounts of lignin remaining per leaf pack revealed further differences in decomposition dynamics between treatments, apparently related, either directly or indirectly, to differences in leaching behaviour.
4. Dynamics of nitrogen and protein contents were similar between treatments, indicating that microbial colonization was not greatly delayed on fresh leaves.
5. It is concluded that the retention of labile carbon and nutrients in fresh leaf litter facilitates their utilization by leaf-associated micro-organisms and invertebrates, resulting in an increased importance of biotic processes relative to physical processes such as leaching.
6. At the ecosystem level, retention of carbon and nutrients in streams would be increased, allowing greater overall productivity. Conversely, the availability of labile organic carbon would be reduced in compartments such as the epilithon, fine sediments, and the water column.  相似文献   

3.
阔叶红松林是我国东北地区地带性顶级森林群落,对维持区域生态系统稳定性具有重要作用。对阔叶红松林内主要树种凋落叶分解过程及影响因素进行研究,有助于增加长白山阔叶红松林生态系统的基础数据,为明确阔叶红松林的养分循环和物质流动提供依据。选取了长白山阔叶红松林内30个常见乔灌树种和16个凋落叶性状,采用野外分解袋法和室内样品分析等方法研究了长白山阔叶红松林内主要树种凋落叶分解速率及其与凋落叶性状的关系。1年的野外分解实验表明,30个树种的凋落叶重量损失率表现出较大差异。不同树种凋落叶的重量损失率在20.56%—92.11%之间,以红松(Pinus koraiensis)质量损失率最低,东北山梅花(Philadelphus schrenkii)质量损失率最高。不同生活型树种的凋落叶在质量损失率上存在显著差异,以灌木树种凋落叶的质量损失率最高,小乔木次之,乔木树种质量损失率最低。Olson模型拟合结果表明,不同树种凋落叶的分解速率k以红松最低,瘤枝卫矛(Euonymus verrucosus)最高,分别为0.24和1.64。不同树种分解50%和95%所需的时间分别在0.43—2.86年,1.83—...  相似文献   

4.
Xu  Xiaoniu  Hirata  Eiji  Enoki  Tsutomu  Tokashiki  Yoshihiro 《Plant Ecology》2004,173(2):161-170
Decomposition of typhoon-generated and normal leaf litter and their release patterns for eight nutrient elements were investigated over 3 yr using the litterbag technique in a subtropical evergreen broad-leaved forest on Okinawa Island, Japan. Two common tree species, Castanopsis sieboldii and Schima wallichii, representative of the vegetation and differing in their foliar traits, were selected. The elements analyzed were N, P, K, Ca, Mg, Na, Al, Fe and Mn. Dry mass loss at the end of study varied in the order: typhoon green leaves > typhoon yellow leaves > normal leaves falling for both species. For the same litter type, Schima decomposed faster than Castanopsis. Dry mass remaining after 2 yr of decomposition was positively correlated with initial C:N and C:P ratios. There was a wide range in patterns of nutrient concentration, from a net accumulation to a rapid loss in decomposition. Leaf litter generated by typhoons decomposed more rapidly than did the normal litter, with rapid losses for N and P. Analysis of initial quality for the different litter types showed that the C:P ratios were extremely high (range 896 – 2467) but the P:N ratios were < 0.05 (range 0.02 – 0.04), indicating a likely P-limitation for this forest. On average 32% less N and 60% less P was retranslocated from the typhoon-generated green leaves than from the normal litter for the two species, Castanopsis and Schima. An estimated 2.13 g m–2 yr–1 more N and 0.07 g m–2 yr–1 more P was transferred to the soil as result of typhoon disturbances, which were as high as 52% of N and 74% of P inputted from leaf litter annually in a normal year. Typhoon-driven maintenance of rapid P cycling appears to be an important mechanism by which growth of this Okinawan subtropical forest is maintained.  相似文献   

5.
Leaf breakdown of two riparian tree species, Cunonia capensis L. and Ilex mitis (L.) Radlk. was investigated in vitro at Window Stream, Table Mountain, using three different designs of litter bag. Breakdown of Cunonia and Ilex in coarse-mesh (5 mm) litter bags was very rapid (respectively 14.79 and 13.93% loss d–1), and was significantly greater than the loss of leaf material of 1% d–1 for both species from fine-mesh bags (180 µm). Differences recorded between fine-mesh and composite-mesh bags (180 µm mesh with 5 mm mesh top) represented macro-invertebrate ingestion, and at t = 28 d, amounted to 67.57% material loss in Cunonia and 62.58% in Ilex. The losses due to microbial activity and leaching, 31.28% in Cunonia and 29.17% in Ilex were not significantly different. Weight loss of Cunonia in coarse-mesh bags (14.79% loss d–1) and in composite-mesh bags (13.93% loss d–1) did not differ, but this was not the case for Ilex, where a significantly higher rate of loss in coarse-mesh bags (13.93% loss d–1) than in composite-mesh bags (7.69% loss d–1) was observed. This difference was used to quantify fragmentation losses. It was concluded that future leaf breakdown experiments in mountain streams must take cognisance of differential fragmentation losses before inferences can be made as to both invertebrate feeding preferences and biological decomposition of leaves.  相似文献   

6.
Most studies of terrestrial litter decomposition in streams and rivers have used leaves from a single tree species, but leaf packs in streams in eastern North America are usually mixtures of two or more species. Litter mixtures may decay more quickly than either of the component species. If so, estimates of stream energy and nutrient budgets may be inaccurate. In northern Nova Scotia, Canada, we measured mass loss from binary mixtures (1:1 mass ratio) of leaf litter in mesh bags, using freshly fallen or air-dried litter from five species of canopy trees. We repeated the experiment eight times, in summer and fall, in two streams and a small river, over 3 years. In some trials we enumerated benthic invertebrate and fungal colonization of decaying litter. Although there were marked differences in mass loss rates among litter types, decomposition was accelerated in mixtures relative to the mean of the component species in only three of eight trials, and only in mixtures containing N-rich speckled alder leaves. Mixing yellow birch and red maple leaves inhibited decomposition. Diversity (Shannon–Weaver Index), species richness, and abundance of aquatic hyphomycete fungi, as indexed by conidial production, were never greater (and sometimes less) on litter mixtures than on the component species. Total numbers, taxonomic richness and diversity of benthic invertebrates generally, and litter-feeding species in particular, were not augmented by mixing litter types. Litter mixtures appear to dilute a preferred substrate with patches of a less preferred substrate. Our results provide only weak support for the contention that combining two litter types leads to acceleration of decomposition rates. Handling editor: K. Martens  相似文献   

7.
For the effective use of mulch materials in tropical agriculture and agroforestry knowledge of the speed of decomposition and nutrient release is of primary importance. The transfer of these informations from one site to another requires comparability of the processes of decomposition and their intensity at the two sites. In a litterbag experiment the decomposition and release of main nutrients from leaves and branches of Cajanus cajan (L.) Millsp. were investigated with regard to the underlying physical and biological processes during an 81 days period. To test the influence of perennial plants on the decomposition process, the study was conducted on an agricultural field in 1.1 m, 6.9 m and 14.9 m distance from a tree and hedge band. During the first 11 days leaching was high, especially for N and P (about 50% lost) and K (75–80% lost). After the 11th day consumption of the mulch material by the soil fauna was the dominating process of decomposition. During this phase the perennial plants significantly retarded the decomposition of Cajanus branches, but not leaves, probably by their influence on termite activity. Ca release was also retarded in leaves. After about 6–7 weeks, more than 90% of all main nutrients except Ca had been released from the samples. To minimize nutrient losses from nutrient-rich mulch materials, they should be applied repeatedly in small quantities according to the nutrient demand of the crop.  相似文献   

8.
Litter disappearance was examined before (1989) and after (1990) Hurricane Hugo in the Luquillo Experimental Forest, Puerto Rico using mesh litterbags containing abscised Cyrilla racemiflont or Dacryodes excelsa leaves or fresh Prestoea montana leaves. Biomass and nitrogen dynamics were compared among: (i) species; (ii) mid- and high elevation forest types; (iii) riparian and upland sites; and (iv) pre- and post-hurricane disturbed environments. Biomass disappearance was compared using multiple regression and negative exponential models in which the slopes were estimates of the decomposition rates subsequent to apparent leaching losses and the y-intercepts were indices of initial mass losses (leaching). Cyrilla racemiflora leaves with low nitrogen (0.39%) and high lignin (22.1%) content decayed at a low rate and immobilized available nitrogen. Dacryodes excelsa leaves had moderate nitrogen (0.67%) and lignin (16.6%) content, decayed at moderate rates, and maintained the initial nitrogen mass. Prestoea montana foliage had high nitrogen (1.76%) and moderate lignin (16.7%) content and rapidly lost both mass and nitrogen. There were no significant differences in litter disappearance and nitrogen dynamics among forest types and slope positions. Initial mass loss of C. racemiflora leaves was lower in 1990 but the subsequent decomposition rate did not change. Initial mass losses and the overall decomposition rates were lower in 1990 than in 1989 for Dacryodes excelsa. Dacryodes excelsa and C. racemiflora litter immobilized nitrogen in 1990 but released 10-15 percent of their initial nitrogen in 1989, whereas P. montana released nitrogen in both years (25-40%). Observed differences in litter disappearance rates between years may have been due to differences in the timing of precipitation. Foliar litter inputs during post-hurricane recovery of vegetation in Puerto Rico may serve to immobilize and conserve site nitrogen.  相似文献   

9.
Synthesis This study compared the decomposability of leaf, twig and wood litter from 27 co‐occurring temperate rainforest tree species in New Zealand. We found that interspecific variation in decomposition was not coordinated across the three litter types. Analysis of the relationships between functional traits and decomposition revealed that traits predictive of wood decomposition varied among the species independently from traits predictive of the decomposition of leaf and twig litter. We conclude that efforts to understand how tree species influence C, N and P dynamics in forested ecosystems through the decomposition pathway need to consider the functional traits of multiple plant structures. Plant functional traits are increasingly used to evaluate changes in ecological and ecosystem processes. However our understanding of how functional traits coordinate across different plant structures, and the implications for trait‐driven processes such as litter decomposition, remains limited. We compared the functional traits of green leaves and leaf, twig and wood litter among 27 co‐occurring tree species from New Zealand, and quantified the loss of mass, N and P from the three litter types during decomposition. We hypothesised that: a) the functional traits of green leaves, and leaf, twig and wood litter are co‐ordinated so that species which produce high quality leaves and leaf litter will also produce high quality twig and wood litter, and b) the decomposability of leaf, twig and wood litter is coordinated because breakdown of all three litter types is driven by similar combinations of traits. Trait variation across species was co‐ordinated between leaves, twigs and wood when angiosperm and gymnosperm species were considered in combination, or when angiosperms were considered separately, but trait coordination was poor for gymnosperms. There was little coordination among the three litter types in their decomposability, especially when angiosperms and gymnosperms were considered separately; this was caused by the decomposability of each of the three litter types, at least partially, being driven by different functional traits or trait combinations. Our findings indicate that although interspecific variation in the functional traits of trees can be coordinated among leaves, twigs and wood, different or unrelated traits predict the decomposition of these different structures. Furthermore, leaf‐level analyses of functional traits are not satisfactory proxies for function of whole trees and related ecological processes. As such, efforts to understand how tree species influence C, N and P dynamics in forested ecosystems through the decomposition pathway need to consider functional traits of other plant structures.  相似文献   

10.
The allelopathic potential of the Tamarindus indica L. leaf was investigated through bioassay guided studies using several weed and edible crop species. Both radicle and hypocotyl growth of all the plant species tested was strongly inhibited by the tamarind leaf using a sandwich method. The growth of weed species was reduced more than that of edible crop species. Among the weed species, barnyard grass followed by white clover, and in the edible crop species, lettuce followed by radish ranked top in terms of growth inhibition. Different concentrations of tamarind leaf crude water-soluble extract exhibited a strong inhibition in all the plant species tested and, by contrast, the magnitude of inhibition in the weed species was higher than in edible crop species and ranged from 30–75%. The 10% concentration of the tamarind leaf crude water-soluble extract was most potent against growth of seedlings. The concentrations of the nutrient components were linearly correlated with an increase in the concentration of tamarind leaf crude water-soluble extract. No significant changes in either pH or EC were found in the variations of different concentrations of tamarind leaf crude water-soluble extracts. As compared to control, growth of both radicle and hypocotyl in weed (barnyard grass and white clover) and in edible crop (lettuce and radish) species were significantly reduced when blended tamarind leaves at different concentrations were incorporated into the growth medium. The inhibitory magnitude increased with an increase in the concentration of the tamarind leaf. In terms of growth inhibition, among these tested plants, weed species particularly barnyard grass were most sensitive to the allelochemicals exuded from blended tamarind leaves. When the blended tamarind leaves were removed from the growth medium, all the seedlings grew quickly and the percentage of recovery was between 76–97% of the corresponding controls. Reduction in the fresh and dry weight of these 4 plant species was observed under the experimental conditions, and ranged between 33–42% and 40–53% in the radicle and hypocotyl, respectively. The fresh and dry weight, and total chlorophyll content declined significantly in the incorporated tamarind leaf treatments. Compared to the control, the highest drop in the chlorophyll content of 60% in barnyard grass was observed with the 10% concentration of the leaf treatment. These results clearly indicate that the tamarind leaf contains one or more strong biologically active allelochemical(s) that function as true growth regulator(s) and is involved in plant growth regulation, particularly in weed species.  相似文献   

11.
Decomposition dynamics in mixed-species leaf litter   总被引:57,自引:1,他引:57  
Literature on plant leaf litter decomposition is substantial, but only in recent years have potential interactions among leaves of different species during decomposition been examined. We review emerging research on patterns of mass loss, changes in nutrient concentration, and decomposer abundance and activity when leaves of different species are decaying in mixtures. Approximately 30 papers have been published that directly examine decomposition in leaf mixtures as well as in all component species decaying alone. From these litter‐mix experiments, it is clear that decomposition patterns are not always predictable from single‐species dynamics. (Characteristics of decomposition in litter‐mixes that deviate from responses predicted from decomposition of single‐species litters alone are designated "non‐additive"; "additive" responses in mixes are predictable from component species decaying alone.) Non‐additive patterns of mass loss were observed in 67% of tested mixtures; mass loss is often (though not always) increased when litters of different species are mixed. Observed mass loss in some mixtures is as much as 65% more extensive than expected from decomposition of single‐species litter, but more often mass loss in mixtures exceeds expected decay by 20% or less. Nutrient transfer among leaves of different species is striking, with 76% of the mixtures showing non‐additive dynamics of nutrient concentrations. Non‐additive patterns in the abundance and activity of decomposers were observed in 55% and 65% of leaf mixes, respectively. We discuss some methodological details that likely contribute to conflicting results among mixed‐litter studies to date. Enough information is available to begin formulating mechanistic hypotheses to explain patterns in litter‐mix experiments. Emerging patterns in the mixed‐litter decomposition literature have implications for relationships between biodiversity and ecosystem function (in this case, the function being decomposition), and for potential mechanisms through which invasive plant species could alter carbon and nutrient dynamics in ecosystems.  相似文献   

12.
The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest.  相似文献   

13.
Cottonwoods are dominant riparian trees of the western United States and are known for their propensity to hybridize. We compared the decomposition of leaf litter from two species (Populus angustifolia and P. fremontii) and their hybrids. Three patterns were found. First, in one terrestrial and two aquatic experiments, decomposition varied twofold among tree types. Second, backcross hybrid leaves decomposed more slowly than those of either parent. Third, the variation in decomposition between F1 and backcross hybrids was as great as the variation between species. These results show significant differences in decomposition in a low-diversity system, where >80% of the leaf litter comes from just two species and their hybrids. Mechanistically, high concentrations of condensed tannins in leaves appear to inhibit decomposition (r 2=0.63). The initial condensed tannin concentration was high in narrowleaf leaves, low or undetectable in Fremont leaves, and intermediate in F1 hybrid leaves (additive inheritance). Backcross hybrids were high in condensed tannins and were not different from narrowleaf (dominant inheritance). Neither nitrogen (N) concentration nor the ratio of ash-free dry weight to N (a surrogate for carbon:nitrogen ratio) were significantly correlated with decomposition. The N content of leaf material at the end of each year’s experiment was inversely correlated with rates of litter mass loss and varied 1.6- to 2.1-fold among tree classes. This result suggests that hybrids and their parental species are used differently by the microbial community. Received: 7 April 1999 / Accepted: 2 November 1999  相似文献   

14.
The water hyacinth (Eichhornia crassipes (Mart.) Solms.) plants in lakes and reservoirs have gained considerable attention in tropical and sub-tropical parts of the world due to its rapid growth. The amount of nutrients released from the dead plant materials is of particular interest. Thus, decomposition of water hyacinth plant parts under aerobic conditions was studied in the laboratory. Roots, petioles, and leaves of water hyacinth were enclosed separately in one litre polypropylene bottles which contained 500 ml of lake water. To study the influence of bacteria on the decomposition, antibiotics were added to half of the bottles. We observed that decomposition of leaves and petioles without antibiotics were relatively rapid through day 61, with almost 92.7 and 97.3% of the dry mass removed, respectively. Weight loss due to bacterial activities during 94 days decomposition was 22.6, 3.9, and 30.5% from leaf, petiole, and root litter. Decomposition of litter in lake water indicated that after 94 days 0.6, 0, and 0.6 g m–2 of leaf, petiole, and root N was dissolved in leachate, while 23.1, 14.4, and 6.0 g m–2 of leaf, petiole, and root N was either volatilized or remained as particulate organic N. Moreover, 0.2, 0, and 0.1 g m–2 of leaf, petiole, and root P remained dissolved in the leachate, while 3.1, 3.4, and 1.1 g m–2 of leaf, petiole, and root P was either precipitated or remained as particulate organic P. The carbon dynamics during the decomposition indicated that 7.4, 28.8, and 3.7 g m–2 of leaf, petiole, and root C remained dissolved in the leachate after 94 days while 228.0, 197.6, and 107.4 g m–2 of leaf, petiole, and root C was either diffused or remained as particulate organic C. These findings are useful for quantifying the nutrient cycles of very shallow lakes with water hyacinth under aerobic water environment. Further examination of the fate of the plant litter as it moves down in deep anaerobic water environment, is necessary to understand the leaching process better.  相似文献   

15.
1. The rates of leaching, speciation and bioavailability of dissolved organic matter (DOM) and dissolved phosphorus (P) leached from fresh leaves of the river redgum, Eucalyptus camaldulensis Dehnh, were compared to those from leaves which had been aged on the flood plain for 5_months. The DOM and P leaching rates from microbially inhibited aged leaves were first-order with respect to leaf quantity. The kinetics of DOM and P leaching from fresh leaves were more complex; DOM leaching from fresh leaves appeared to be self-inhibitory, while P leaching from leaves was potentially enzymatically mediated.
2. The speciation and microbial bioavailability of DOM from fresh and aged leaves were completely different. At lower leaf biomass, almost all the DOM from fresh leaves was utilized by an introduced microbial consortium; at higher biomass, microbial utilization appeared to be nutrient limited. Conversely, only about 30% of the DOM leached from aged leaves was utilized by the introduced microbial consortium during the course of the experiment. The difference in microbial utilization could be a result of changes in DOM speciation as a consequence of terrestrial ageing.
3. Weak-anion exchange chromatograms of microbially inhibited fresh leaf extracts showed numerous (unassigned) DOM peaks, most of which could be used by the microbial consortium present. The weak-anion exchange chromatograms of sterile aged leaves showed only three broad peaks and a number of smaller spikes. Only one of the broad peaks could be utilized by the microbial consortium.
4. Phosphorus speciation was also determined by weak-anion exchange chromatography. Most of the P leached from both fresh and aged leaves was free orthophosphate, and therefore, readily available. Two organic-P species leached from microbially inhibited fresh leaves were also found to be readily available to the microbiota.  相似文献   

16.
The feeding ecology of mangrove sesarmid crabs in Peninsular Malaysia was investigated by field and laboratory experiments using four mangrove leaf species (Avicennia officinalis, Bruguiera gymnorrhiza, B. parviflora and Rhizophora apiculata) and leaves of different condition (fresh and senescent). Leaves tethered on strings at high (Bruguiera zone) and low (Rhizophora zone) intertidal positions, both upstream (Sungai Pasir) and downstream (Lower Merbok) showed significant amounts of leaf litter removal in 24 h (mean 79±3% initial dry mass). Significantly more B. gymnorrhiza was consumed in Bruguiera zones and significantly less senescent A. officinalis in the upstream Rhizophora zone. In Bruguiera zones, significant numbers of leaves were taken down burrows but there were no preferences for leaf species or condition of leaf taken down burrows at all sites. In 24 h, under laboratory conditions, the sesarmid crabs Sesarma (Perisesarma) eumolpe and S. (Perisesarma) onychophorum were offered with a mangrove species choice of either fresh or senescent leaves. There was no difference in mangrove species taken when the leaves were senescent for both crab species, but when the leaves were fresh, significantly more A. officinalis leaves were consumed by both sesarmid crab species. S. onychophorum ate significantly more B. parviflora than did S. eumolpe. The crab distribution in the field was related to the preferred tree species dominance, indicating that tree species may be important for crab species distribution, or vice versa. The mean rate of leaf consumption was not significantly different between the crab species; S. eumolpe was 29.9±5.9 and S. onychophorum was 35.3±7.2 mg dry mass per wet mass gram of crab in 24 h. Rhizophora spp. were the least preferred species in all feeding experiments, a finding which may have implications for ecosystem functioning in monoculture rehabilitation projects.  相似文献   

17.
植物功能性状种间性状变异反映不同物种的生活史对策,种内性状变异反映了同一物种不同个体应对不同环境的性状应答.人工林均一的环境有利于深入分析不同树种种内和种间变异.该研究以南宁良凤江林场的四种乡土珍贵阔叶树种[观光木(Tsoongiodendron odorum)、红锥(Castanopsis hystrix)、灰木莲(...  相似文献   

18.
Leaf specific mass confounds leaf density and thickness   总被引:32,自引:0,他引:32  
Summary We explored the relationship between leaf specific mass (LSM) and its two components, leaf density and thickness. These were assessed on the leaves of (a) the moderately sclerophyllous tree Arbutus menziesii distributed along a natural nutrient/moisture gradient in California, (b) eight sclerophyllous shrub species on four substrates in south-western Australia, and (c) seedlings of two morphologically contrasting Hakea species grown under varying soil nutrient, moisture and light regimes in a glasshouse experiment. Leaf area, mass, LSM, density and thickness varied greatly between leaves on the same plant, different species, and with different nutrient, moisture and light regimes. In some cases, variations in LSM were due to changes in leaf density in particular or thickness or both, while in others, density and thickness varied without a net effect on LSM. At lower nutrient or moisture availabilities or at higher light irradiances, leaves tended to be smaller, with higher LSM, density and thickness. Under increased stress, the thickness (diameter) of needle leaves decreased despite an increase in LSM. We concluded that, while LSM is a useful measure of sclerophylly, its separation into leaf density and thickness may be more appropriate as they often vary independently and appear to be more responsive to environmental gradients than LSM.  相似文献   

19.
Summary The colonization of leaf litter by testate amoebae in a cool temperate deciduous forest was studied over the first 60 months of decomposition. No colonization of fresh leaf litter by Testacea was recorded before the first spring thaw period. Colonization of aspen and balsam leaves was similar in terms of species and numbers of species, with the balsam litter being colonized by slightly fewer species. In the aspen litter bags, all the L-layer species were present after 18 months, and all the species recorded in all soil layers were found after 60 months. The proportion of species which constructed their tests from platelets rather than sediment was 70% of the total number of species for the first 36 months of colonization of both litter types. After 60 months, seven species comprised 70% of the total numbers of Testacea but only 33–38% of the total biomass. Significant, positive correlation existed between the dry weight loss of leaf litter and the total number of active Testacea, the total number of living Testacea, and the total number of species present. The prime limitations to testacean colonization of decomposing leaf litter appeared to be substrate quality, food supply and/or availability of test-building materials.  相似文献   

20.
The rate of decomposition of summer leaf-fall (abscised leaves), winter leaf-fall (containing some green leaves) and mature green (picked) leaves was assessed in sub-alpine forests of E. delegatensis (R. T. Baker), E. pauciflora (Sieb. ex Spreng) and E. dives (Schau.) in the Brindabella Range, Australian Capital Territory, using litter bag and tethered leaf techniques. The relative contribution of leaching, microbial respiration and grazing by invertebrate macrofauna to loss of leaf weight was determined. The effect of leaching and microbial respiration was assessed in terms of weight loss per unit area of leaf (specific leaf weight), while losses due to macro-faunal grazing were assessed by measuring reductions in leaf area. Litter decomposition constants for litter components (leaf, bark, wood) and total litter were determined from long-term records of litterfall and accumulated litter. Weight losses of abscised leaves during the initial 12 months ranged from 25% for E. pauciflora to 39% for E. delegatensis and were almost entirely due to reduction in specific leaf weight. Losses in the weight of leaves falling in winter ranged from 38 to 49%, while green leaves lost 45 - 59%. Approximately 50% of the total weight loss of green leaves was due to a loss in leaf area caused by skeletonization by litter macrofauna. Thus abscised leaves rather than green leaves must be used for measuring litter decomposition rates since abscised leaves constitute most of the litterfall in eucalypt forests. Leaves placed in the field in autumn decomposed slowly during the first summer, while the rate increased during the second winter and summer. Low litter moisture content appears to limit decomposition in the initial summer period in all communities, after which litterfall provides a mulch which reduces the rate of desiccation of lower litter layers. A simple linear regression model relating decomposition rate to the number of days (D) when litter moisture content exceeded 60% ODW accounted for 63-83% of the variation in decomposition of leaves in the field. Inclusion of mean monthly air temperature (T) and the product of D and T (day degrees when litter was wet) in a multiple linear regression increased the variation in decomposition accounted for to 80 – 90%. The rate of weight loss showed a positive linear relationship with the initial concentration of nitrogen (N) or phosphorus (P) in the leaf. These concentrations are an index of the decomposability of leaf substrates (e.g. degree of sclerophylly or lignification). The rate of loss of specific weight was similar for tethered leaves and for leaves enclosed in mesh bags. Measured loss in specific leaf weight after 70 – 90 weeks was less than that predicted using decomposition constants (k).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号