首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Extra-corporal fertilization depends on the formation of copulatory organs: the external genitalia. Coordinated growth and differentiation of the genital tubercle (GT), an embryonic anlage of external genitalia, generates a proximodistally elongated structure suitable for copulation, erection, uresis and ejaculation. Despite recent progress in molecular embryology, few attempts have been made to elucidate the molecular developmental processes of external genitalia formation. Bone morphogenetic protein genes (Bmp genes) and their antagonists were spatiotemporally expressed during GT development. Exogenously applied BMP increased apoptosis of GT and inhibited its outgrowth. It has been shown that the distal urethral epithelium (DUE), distal epithelia marked by the Fgf8 expression, may control the initial GT outgrowth. Exogenously applied BMP4 downregulated the expression of Fgf8 and Wnt5a, concomitant with increased apoptosis and decreased cell proliferation of the GT mesenchyme. Furthermore, noggin mutants and Bmpr1a conditional mutant mice displayed hypoplasia and hyperplasia of the external genitalia respectively. noggin mutant mice exhibited downregulation of Wnt5a and Fgf8 expression with decreased cell proliferation. Consistent with such findings, Wnt5a mutant mice displayed GT agenesis with decreased cell proliferation. By contrast, Bmpr1a mutant mice displayed decreased apoptosis and augmented Fgf8 expression in the DUE associated with GT hyperplasia. These results suggest that some of the Bmp genes could negatively affect proximodistally oriented outgrowth of GT with regulatory functions on cell proliferation and apoptosis. The DUE region can be marked only until 14.0 dpc (days post coitum) in mouse development, while GT outgrowth continues thereafter. Possible signaling crosstalk among the whole distal GT regions were also investigated.  相似文献   

2.
Embryonic external genitalia (genital tubercle [GT]) protrude from the cloaca and outgrow as cloacal development progresses. Individual gene functions and knockout phenotypes in GT development have been extensively analyzed; however, the interactions between these genes are not fully understood. In this study, we investigated the role of p63, focusing on its interaction with the Shh–Wnt/Ctnnb1–Fgf8 pathway, a signaling network that is known to play a role in GT outgrowth. p63 was expressed in the epithelial tissues of the GT at E11.5, and the distal tip of the GT predominantly expressed the ΔNp63α isoform. The GTs in p63 knockout embryos had normal Shh expression, but CTNNB1 protein and Fgf8 gene expression in the distal urethral epithelium was decreased or lost. Constitutive expression of CTNNB1 in p63-null embryos restored Fgf8 expression, accompanied by small bud structure development; however, such bud structures could not be maintained by E13.5, at which point mutant GTs exhibited severe abnormalities showing a split shape with a hemorrhagic cloaca. Therefore, p63 is a key component of the signaling pathway that triggers Fgf8 expression in the distal urethral epithelium and contributes to GT outgrowth by ensuring the structural integrity of the cloacal epithelia. Altogether, we propose that p63 plays an essential role in the signaling network for the development of external genitalia.  相似文献   

3.
External genitalia are body appendages specialized for internal fertilization. Their development can be divided into two phases, an early androgen-independent phase and a late androgen-dependent sexual differentiation phase. In the early phase, the embryonic anlage of external genitalia, the genital tubercle (GT), is morphologically identical in both sexes. Although congenital external genitalia malformations represent the second most common birth defect in humans, the genetic pathways governing early external genitalia development and urethra formation are poorly understood. Proper development of the GT requires coordinated outgrowth of the mesodermally derived mesenchyme and extension of the endodermal urethra within an ectodermal epithelial capsule. Here, we demonstrate that beta-catenin plays indispensable and distinct roles in each of the aforementioned three tissue layers in early androgen-independent GT development. WNT-beta-catenin signaling is required in the endodermal urethra to activate and maintain Fgf8 expression and direct GT outgrowth, as well as to maintain homeostasis of the urethra. Moreover, beta-catenin is required in the mesenchyme to promote cell proliferation. By contrast, beta-catenin is required in the ectoderm to maintain tissue integrity, possibly through cell-cell adhesion during GT outgrowth. The fact that both endodermal and ectodermal beta-catenin knockout animals develop severe hypospadias in both sexes raises the possibility that the deregulation of any of these functions can contribute to the etiology of congenital external genital defects in humans.  相似文献   

4.
The molecular mechanisms underlying the development of the external genitalia in mammals have been very little examined. Recent gene knockout studies have suggested that the developmental processes of its anlage, the genital tubercle (GT), have much in common with those of limb buds. The Fgf genes have been postulated as regulating several downstream genes during organogenesis. Fgf8 was expressed in the distal urethral plate epithelium of the genital tubercle (GT) together with other markers such as the Msx1, Fgf10, Hoxd13 and Bmp4 expressed in the mesenchyme. To analyze the role of the FGF system during GT formation, an in vitro organ culture system was utilized. It is suggested that the distal urethral plate epithelium of GT, the Fgf8-expressing region, regulates the outgrowth of GT. Ectopic application of FGF8 beads to the murine GT induced mesenchymal gene expression, and also promoted the outgrowth of the GT. Experiments utilizing anti-FGF neutralizing antibody suggested a growth-promoting role for FGF protein(s) in GT outgrowth. In contrast, despite its vital role during limb-bud formation, Fgf10 appears not to be primarily essential for initial outgrowth of GT, as extrapolated from Fgf10(-/-) GTs. However, the abnormal external genitalia development of Fgf10(-/-) perinatal mice suggested the importance of Fgf10 in the development of the glans penis and the glans clitoridis. These results suggest that the FGF system is a key element in orchestrating GT development.  相似文献   

5.
Coordinated growth and differentiation of external genitalia generates a proximodistally elongated structure suitable for copulation and efficient fertilization. The differentiation of external genitalia incorporates a unique process, i.e. the formation of the urethral plate and the urethral tube. Despite significant progress in molecular embryology, few attempts have been made to elucidate the molecular developmental processes for external genitalia. The sonic hedgehog (Shh) gene and its signaling genes have been found to be dynamically expressed during murine external genitalia development. Functional analysis by organ culture revealed that Shh could regulate mesenchymally expressed genes, patched 1 (Ptch1), bone morphogenetic protein 4 (Bmp4), Hoxd13 and fibroblast growth factor 10 (Fgf10), in the anlage: the genital tubercle (GT). Activities of Shh for both GT outgrowth and differentiation were also demonstrated. Shh(-/-) mice displayed complete GT agenesis, which is compatible with such observations. Furthermore, the regulation of apoptosis during GT formation was revealed for the first time. Increased cell death and reduced cell proliferation of the Shh(-/-) mice GT were shown. A search for alterations of Shh downstream gene expression identified a dramatic shift of Bmp4 gene expression from the mesenchyme to the epithelium of the Shh mutant before GT outgrowth. Regulation of mesenchymal Fgf10 gene expression by the epithelial Shh was indicated during late GT development. These results suggest a dual mode of Shh function, first by the regulation of initiating GT outgrowth, and second, by subsequent GT differentiation.  相似文献   

6.
Cellular and molecular mechanisms of development of the external genitalia   总被引:7,自引:0,他引:7  
The limb and external genitalia are appendages of the body wall. Development of these structures differs fundamentally in that masculine development of the external genitalia is androgen dependent, whereas development of the limb is not. Despite this fundamental difference in developmental regulation, epithelial-mesenchymal interactions play key roles in the development of both structures, and similar regulatory molecules are utilized as mediators of morphogenetic cell-cell interactions during development of both the limb and external genitalia. Given the relatively high incidence of hypospadias, a malformation of penile development, it is appropriate and timely to review the morphological, endocrine, and molecular mechanisms of development of the genital tubercle (GT), the precursor of the penis in males and the clitoris in females. Morphological observations comparing development of the GT in humans and mouse emphasize the validity of the mouse as an animal model of GT development and validate the results of experimental studies. Accordingly, the use of mutant mice provides important insights into the roles of specific regulatory molecules in development of the external genitalia. While our current understanding of the morphological and molecular mechanisms of mammalian external genitalia development is still rudimentary, this review summarizes the current state of our knowledge and whenever possible draws from the rich experimental embryology literature on other relevant organs such as the developing limb. Future research on the hormonal and molecular mechanisms of GT development may yield strategies to prevent or reduce the incidence of hypospadias and to elucidate the molecular genetic mechanisms of GT morphogenesis, especially in relation to common organogenetic pathways utilized in other organ systems.  相似文献   

7.
Murine reproductive tissues of the external genitalia and perineum develop with remarkably distinctive characteristics in males and females. Although many researches on such mouse organ development have been reported, there are still limited parameters that evaluate the developmental sexual differences of external genitalia and perineum. Furthermore, elucidation of the recent developmental signals for the external genitalia and perineum requires up‐to‐date knowledge of gene functions in reproductive science. To promote researches on reproductive organ formation, establishment of parameters for the androgen‐mediated formation of external genitalia and perineum is essential. In this study, we propose genital sex differentiation parameters (GSDP), a set of developmental parameters based on systematic three‐dimensional tissue reconstruction and cumulative histological analyses. We define the sexual differences of external genitalia and perineum by GSDP through analyzing mouse models, androgen inhibitor‐induced feminization experiments and Mafb mutant mouse with defective urethral differentiation. The urethral parameters displayed prominent reduction by the androgen inhibitor (finasteride) treatment. However, genital tubercle (GT) size parameters were not affected by such treatment. These results indicated that sensitivity to dihydrotestosterone was different between embryonic GT size and urethral formation. Furthermore, we evaluated the extent of urethral defects of Mafb mutant mice by GSDP. Thus, GSDP is a set of useful parameters to define the sexual differences during external genitalia and perineum development.  相似文献   

8.
Ogino Y  Katoh H  Yamada G 《FEBS letters》2004,575(1-3):119-126
Male external genitalia show structural variations among species. Androgenic hormones are essential for the morphological specification of male type copulatory organs, while little is known about the developmental mechanisms of such secondary sexual characters. Western mosquitofish Gambusia affinis may offer a clue to the sexual differentiation researches, because they show a prominent masculine sexual character for appendage development, anal fin to gonopodium (GP) transition, and its formation could be induced in early juvenile fry by exogenously supplied androgens. We show that GP development is promoted by androgen dependent augmentation of sonic hedgehog (Shh) expression. Two AR cDNAs were cloned and identified as ARalpha and ARbeta from western mosquitofish. Both ARs were predominantly expressed in the distal region of outgrowing anal fin rays. Exposure of fry to androgen caused anal fin outgrowth concomitant with the Shh induction in the distal anal fin ray epithelium. When AR signaling was inhibited by its antagonist flutamide in fry, the initial induction of the Shh was suppressed accompanying retarded anal fin outgrowth. Similar suppression of anal fin outgrowth was induced by treatment with cyclopamine, an inhibitor of Shh signaling. These observations indicate that androgen dependent Shh expression is required for anal fin outgrowth leading to the formation of a genital appendage, the GP in teleost fishes. Androgen-induced GP formation may provide insights into the expression mechanism regulating the specification of sexual features in vertebrates.  相似文献   

9.
The role of Arp3 in mouse development was investigated utilizing a gene trap mutation in the Arp3 gene. Heterozygous Arp3(WT/GT) mice are normal, however, homozygous Arp3(GT/GT) embryos die at blastocyst stage. Earlier embryonic stages appear unaffected by the mutation, probably due to maternal Arp3 protein. Mutant blastocysts isolated at E3.5 fail to continue development in vitro, lack outgrowth of trophoblast-like cells in culture and express reduced levels of the trophoblast marker Cdx2, while markers for inner cell mass continue to be present. The recessive embryonic lethal phenotype indicates that Arp3 plays a vital role for early mouse development, possibly when trophoblast cells become critical for implantation.  相似文献   

10.
Based on experience with cell cultures of adult insect neurons, we develop a serum-free culture system for embryonic locust neurons. Influences of trophic substances on survival and neurite outgrowth of developing neurons are investigated. For the first time, a positive trophic effect of 9-cis retinoic acid (9-cis RA) was shown in vitro on embryonic neurons of an insect. We observed longer cell survival of 50 % developmental stage neurons in cultures supplemented with 0.3 nM 9-cis RA. Furthermore, an influence on neuron morphology was revealed, as the addition of 9-cis RA to cell culture medium led to an increase in the number of neurites per cell. Although an RA receptor gene, LmRXR (Locusta migratoria retinoid X receptor), was expressed in the central nervous system throughout development, the influence of 9-cis RA on neuronal survival and outgrowth was restricted to 50 % stage embryonic cells.  相似文献   

11.
We present evidence for the existence of two phases of retinoic acid (RA) signaling required for vertebrate limb development. Limb RA synthesis is under the control of retinaldehyde dehydrogenase-2 (Raldh2) expressed in the lateral plate mesoderm, which generates a proximodistal RA signal during limb outgrowth. We report that Raldh2(-/-) embryos lack trunk mesodermal RA activity and fail to initiate forelimb development. This is associated with deficient expression of important limb determinants Tbx5, Meis2, and dHand needed to establish forelimb bud initiation, proximal identity, and the zone of polarizing activity (ZPA), respectively. Limb expression of these genes can be rescued by maternal RA treatment limited to embryonic day 8 (E8) during limb field establishment, but the mutant forelimbs obtained at E10 display a significant growth defect associated with a smaller apical ectodermal ridge (AER), referred to here as an apical ectodermal mound (AEM). In these RA-deficient forelimbs, a ZPA expressing Shh forms, but it is located distally adjacent to the Fgf8 expression domain in the AEM rather than posteriorly as is normal. AER formation in Raldh2(-/-) forelimbs is rescued by continuous RA treatment through E10, which restores RA to distal ectoderm fated to become the AER. Our findings indicate the existence of an early phase of RA signaling acting upstream of Tbx5, Meis2, and dHand, followed by a late phase of RA signaling needed to expand AER structure fully along the distal ectoderm. During ZPA formation, RA acts early to activate expression of dHand, but it is not required later for Shh activation.  相似文献   

12.
13.
14.
External genital development begins with formation of paired genital swellings, which develop into the genital tubercle. Proximodistal outgrowth and axial patterning of the genital tubercle are coordinated to give rise to the penis or clitoris. The genital tubercle consists of lateral plate mesoderm, surface ectoderm, and endodermal urethral epithelium derived from the urogenital sinus. We have investigated the molecular control of external genital development in the mouse embryo. Previous work has shown that the genital tubercle has polarizing activity, but the precise location of this activity within the tubercle is unknown. We reasoned that if the tubercle itself is patterned by a specialized signaling region, then polarizing activity may be restricted to a subset of cells. Transplantation of urethral epithelium, but not genital mesenchyme, to chick limbs results in mirror-image duplication of the digits. Moreover, when grafted to chick limbs, the urethral plate orchestrates morphogenetic movements normally associated with external genital development. Signaling activity is therefore restricted to urethral plate cells. Before and during normal genital tubercle outgrowth, urethral plate epithelium expresses Sonic hedgehog (Shh). In mice with a targeted deletion of Shh, external genitalia are absent. Genital swellings are initiated, but outgrowth is not maintained. In the absence of Shh signaling, Fgf8, Bmp2, Bmp4, Fgf10, and Wnt5a are downregulated, and apoptosis is enhanced in the genitalia. These results identify the urethral epithelium as a signaling center of the genital tubercle, and demonstrate that Shh from the urethral epithelium is required for outgrowth, patterning, and cell survival in the developing external genitalia.  相似文献   

15.
16.
Proximal-to-distal growth of the embryonic limbs requires Fgf10 in the mesenchyme to activate Fgf8 in the apical ectodermal ridge (AER), which in turn promotes mesenchymal outgrowth. We show here that the growth arrest specific gene 1 (Gas1) is required in the mesenchyme for the normal regulation of Fgf10/Fgf8. Gas1 mutant limbs have defects in the proliferation of the AER and the mesenchyme and develop with small autopods, missing phalanges and anterior digit syndactyly. At the molecular level, Fgf10 expression at the distal tip mesenchyme immediately underneath the AER is preferentially affected in the mutant limb, coinciding with the loss of Fgf8 expression in the AER. To test whether FGF10 deficiency is an underlying cause of the Gas1 mutant phenotype, we employed a limb culture system in conjunction with microinjection of recombinant proteins. In this system, FGF10 but not FGF8 protein injected into the mutant distal tip mesenchyme restores Fgf8 expression in the AER. Our data provide evidence that Gas1 acts to maintain high levels of FGF10 at the tip mesenchyme and support the proposal that Fgf10 expression in this region is crucial for maintaining Fgf8 expression in the AER.  相似文献   

17.
18.
19.
Regulation of retinoic acid signaling during lung morphogenesis   总被引:9,自引:0,他引:9  
Little is known about how retinoic acid (RA) synthesis, utilization and metabolism are regulated in the embryonic lung and how these activities relate to lung pattern formation. Here we report that early lung bud formation and subsequent branching morphogenesis are characterized by distinct stages of RA signaling. At the onset of lung development RA signaling is ubiquitously activated in primary buds, as shown by expression of the major RA-synthesizing enzyme, RALDH-2 and activation of a RARE-lacZ transgene. Nevertheless, further airway branching appears to require downregulation of RA pathways by decreased synthesis, increased RA degradation in the epithelium via P450RAI-mediated metabolism, and inhibition of RA signaling in the mesenchyme by COUPTF-II expression. These mechanisms controlling local RA signaling may be critical for normal branching, since we show that manipulating RA levels in vitro to maintain RA signaling activated as in the initial stage, leads to an immature lung phenotype characterized by failure to form typical distal buds. We show that this phenotype likely results from RA interfering with the establishment of a distal signaling center, altering levels and distribution of Fgf10 and Bmp4, genes that are essential for distal lung formation. Furthermore, RA upregulates P450RAI expression, suggesting the presence of feedback mechanisms controlling RA availability. Our study illustrates the importance of regional mechanisms that control RA availability and utilization for correct expression of pattern regulators and normal morphogenesis during lung development.  相似文献   

20.
Two studies were conducted to further our understanding of the inherited condition in mice known as C57BL/6J-Y(POS) (B6-Y(POS)) sex reversal. One study determined what proportion of B6 XY(POS) mice develop as females or hermaphrodites. We found that 75% develop as females and the remainder develop as hermaphrodites regardless of whether the analysis is conducted at 14.5-16 days of embryonic development (based on gonad phenotype) or at weaning (based on the appearance of external genitalia and presence of mammary-associated yellow pigmented hair). We also found that 75 % of the gonads in B6 XY(POS) mice develop as ovaries and the remainder develop as ovotestes; none develop as a testis. We conclude that if any testicular tissue develops, sufficient testosterone is produced to cause at least some masculinization of the external genitalia. The second study tested the hypothesis that development of testicular tissue in B6 XY(POS) mice is due to the presence of a POS-derived gene, whereas B6 homozygosity of this gene guarantees ovarian development. The results did not support the POS gene theory. Therefore, we conclude it is a matter of chance that 75 % of B6 XY(POS) mice develop as females and 25 % develop as hermaphrodites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号