首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The squirrel family, Sciuridae, is one of the largest and most widely dispersed families of mammals. In spite of the wide distribution and conspicuousness of this group, phylogenetic relationships remain poorly understood. We used DNA sequence data from the mitochondrial cytochrome b gene of 114 species in 21 genera to infer phylogenetic relationships among sciurids based on maximum parsimony and Bayesian phylogenetic methods. Although we evaluated more complex alternative models of nucleotide substitution to reconstruct Bayesian phylogenies, none provided a better fit to the data than the GTR+G+I model. We used the reconstructed phylogenies to evaluate the current taxonomy of the Sciuridae. At essentially all levels of relationships, we found the phylogeny of squirrels to be in substantial conflict with the current taxonomy. At the highest level, the flying squirrels do not represent a basal divergence, and the current division of Sciuridae into two subfamilies is therefore not phylogenetically informative. At the tribal level, the Neotropical pygmy squirrel, Sciurillus, represents a basal divergence and is not closely related to the other members of the tribe Sciurini. At the genus level, the sciurine genus Sciurus is paraphyletic with respect to the dwarf squirrels (Microsciurus), and the Holarctic ground squirrels (Spermophilus) are paraphyletic with respect to antelope squirrels (Ammospermophilus), prairie dogs (Cynomys), and marmots (Marmota). Finally, several species of chipmunks and Holarctic ground squirrels do not appear monophyletic, indicating a need for reevaluation of alpha taxonomy.  相似文献   

2.
Phylogenetic methods can produce biased estimates of phylogeny when base composition varies along different lineages. Pettigrew (1994, Curr. Biol. 4:277-280) has suggested that base composition bias is responsible for the apparent support for the monophyly of bats (Chiroptera: megabats and microbats) from several different nuclear and mitochondrial genes. Pettigrew's "flying DNA" hypothesis makes several predictions: (1) that metabolic constraints associated with flying result in elevated levels of adenine and thymine throughout the genome of both megabats and microbats, (2) that the resulting base compositional bias in bats is sufficient to mislead phylogenetic methods and account for the support for bat monophyly from several nuclear and mitochondrial genes, and (3) that phylogenetic analysis using pairwise distances corrected for compositional bias should eliminate the support for bat monophyly. We tested these predictions by analyzing DNA sequences from two nuclear and three mitochondrial genes. The predicted base compositional bias does not appear to exist in some of the genes, and in other genes the differences in AT content are very small. Analyses under a wide diversity of criteria and models of evolution, including analyses that take base composition into account (using log-determinant distances), all strongly support bat monophyly. Moreover, simulation analyses indicate that even extreme bias toward AT-base composition in bats would be insufficient to explain the observed levels of support for bat monophyly. These analyses provide no support for the "flying DNA" hypothesis, whereas the monophyly of bats appears to be well supported by the DNA sequence data.  相似文献   

3.
Total evidence: molecules, morphology, and the phylogenetics of cichlid fishes   总被引:10,自引:0,他引:10  
We present a most comprehensive phylogenetic analysis of the family Cichlidae. New data analyzed include mitochondrial 16S rRNA sequences and two nuclear loci (Tmo-M27 and Tmo-4C4) for a large taxonomic sampling with emphasis on South American species. We also incorporate a published morphological data set for a total evidence analysis. Character congruence among mitochondrial (74 taxa) and nuclear data (50 taxa) was high. However, partition-homogeneity tests suggest significant heterogeneity among molecular and morphological data. In agreement with results obtained from molecular data alone, total evidence analysis (1,460 characters for 34 taxa) supports a robust phylogenetic hypothesis for the family Cichlidae that is congruent with drift-vicariance events associated with the fragmentation of Gondwana. Our analyses confirm the placement of Malagasy/Indian cichlids as the most basal lineages, with a sister-group relationship to the monophyletic African and Neotropical clades. Total evidence suggests that the controversial African genus Heterochromis is at the base of the African radiation. Among more than 50 Neotropical genera analyzed, Retroculus is identified as the basal taxon, with successive branching of Cichla, Astronotus, geophagines (including crenicichlines) + chaetobranchines, and cichlasomines + heroines. Relative rate tests applied to mitochondrial DNA suggest significantly higher rates of genetic variation in Neotropical than in African taxa, and both mitochondrial and nuclear sequences show that rate heterogeneity among Neotropical lineages is confined to the geophagine cichlids.  相似文献   

4.
The genus Pangio is one of the most species-rich of the loach family Cobitidae and widespread across South and Southeast Asia. Its species diversity has never been studied under a clear phylogenetic approach, but four 'species-groups' were proposed according to the most obvious morphological characters. We present here phylogenetic analyses of the genus Pangio based on sequence data of the mitochondrial cytochrome b gene, the nuclear recombination-activating gene 1 (RAG 1) and a combined dataset of 109 specimens from 18 morphologically identified species across the whole distribution area of the genus. Our data reveal the existence of three major lineages within Pangio. Two of our major lineages were congruent with formerly proposed species-groups, the remaining two species-groups together formed the third major lineage; herein we refer to the lineages as to anguillaris-group, kuhlii-oblonga group and shelfordii-group. The application of a molecular clock dated the age of the three lineages to 33-29 million years. At the species level, our data suggest about 30 distinct lineages, indicating that there is a high number of undescribed species within Pangio. The use of Pangio to address biogeographic questions is demonstrated with the example of the shelfordii-group, which is distributed across Sundaland.  相似文献   

5.
Cross-species chromosome painting has made a great contribution to our understanding of the evolution of karyotypes and genome organizations of mammals. Several recent papers of comparative painting between tree and flying squirrels have shed some light on the evolution of the family Sciuridae and the order Rodentia. In the present study we have extended the comparative painting to the Himalayan marmot (Marmotahimalayana) and the African ground squirrel (Xerus cf. erythropus), i.e. representative species from another important squirrel group--the ground squirrels--, and have established genome-wide comparative chromosome maps between human, eastern gray squirrel, and these two ground squirrels. The results show that 1) the squirrels so far studied all have conserved karyotypes that resemble the ancestral karyotype of the order Rodentia; 2) the African ground squirrels could have retained the ancestral karyotype of the family Sciuridae. Furthermore, we have mapped the evolutionary rearrangements onto a molecular-based consensus phylogenetic tree of the family Sciuridae.  相似文献   

6.
Phylogenetic methods can produce biased estimates of phylogeny when base composition varies along different lineages. Pettigrew (1994,Curr. Biol.4:277–280) has suggested that base composition bias is responsible for the apparent support for the monophyly of bats (Chiroptera: megabats and microbats) from several different nuclear and mitochondrial genes. Pettigrew's “flying DNA” hypothesis makes several predictions: (1) that metabolic constraints associated with flying result in elevated levels of adenine and thymine throughout the genome of both megabats and microbats, (2) that the resulting base compositional bias in bats is sufficient to mislead phylogenetic methods and account for the support for bat monophyly from several nuclear and mitochondrial genes, and (3) that phylogenetic analysis using pairwise distances corrected for compositional bias should eliminate the support for bat monophyly. We tested these predictions by analyzing DNA sequences from two nuclear and three mitochondrial genes. The predicted base compositional bias does not appear to exist in some of the genes, and in other genes the differences in AT content are very small. Analyses under a wide diversity of criteria and models of evolution, including analyses that take base composition into account (using log-determinant distances), all strongly support bat monophyly. Moreover, simulation analyses indicate that even extreme bias toward AT-base composition in bats would be insufficient to explain the observed levels of support for bat monophyly. These analyses provide no support for the “flying DNA” hypothesis, whereas the monophyly of bats appears to be well supported by the DNA sequence data.  相似文献   

7.
Because of the difficulties of constructing a robust phylogeny for Charadriiform birds using morphological characters, recent studies have turned to DNA sequences to resolve the systematic uncertainties of family-level relationships in this group. However, trees constructed using nuclear genes or the mitochondrial Cytochrome b gene suggest deep-level relationships of shorebirds that differ from previous studies based on morphology or DNA-DNA hybridization distances. To test phylogenetic hypotheses based on nuclear genes (RAG-1, myoglobin intron-2) and single mitochondrial genes (Cytochrome b), approximately 13,000 bp of mitochondrial sequence was collected for one exemplar species of 17 families of Charadriiformes plus potential outgroups. Maximum likelihood and Bayesian analyses show that trees constructed from long mitochondrial sequences are congruent with the nuclear gene topologies [Chardrii (Lari, Scolopaci)]. Unlike short mitochondrial sequences (such as Cytochrome b alone), longer sequences yield a well-supported phylogeny for shorebirds across various taxonomic levels. Examination of substitution patterns among mitochondrial genes reveals specific genes (especially ND5, ND4, ND2, and COI) that are better suited for phylogenetic analyses among shorebird families because of their relatively homogeneous nucleotide composition among lineages, slower accumulation of substitutions at third codon positions, and phylogenetic utility in both closely and distantly related lineages. For systematic studies of birds in which family and generic levels are examined simultaneously, we recommend the use of both nuclear and mitochondrial sequences as the best strategy to recover relationships that most likely reflect the phylogenetic history of these lineages.  相似文献   

8.
We present a phylogenetic hypothesis and novel, rank-free classification for all extant species of softshell turtles (Testudines:Trionychidae). Our data set included DNA sequence data from two mitochondrial protein-coding genes and a approximately 1-kb nuclear intron for 23 of 26 recognized species, and 59 previously published morphological characters for a complimentary set of 24 species. The combined data set provided complete taxonomic coverage for this globally distributed clade of turtles, with incomplete data for a few taxa. Although our taxonomic sampling is complete, most of the modern taxa are representatives of old and very divergent lineages. Thus, due to biological realities, our sampling consists of one or a few representatives of several ancient lineages across a relatively deep phylogenetic tree. Our analyses of the combined data set converge on a set of well-supported relationships, which is in accord with many aspects of traditional softshell systematics including the monophyly of the Cyclanorbinae and Trionychinae. However, our results conflict with other aspects of current taxonomy and indicate that most of the currently recognized tribes are not monophyletic. We use this strong estimate of the phylogeny of softshell turtles for two purposes: (1) as the basis for a novel rank-free classification, and (2) to retrospectively examine strategies for analyzing highly homoplasious mtDNA data in deep phylogenetic problems where increased taxon sampling is not an option. Weeded and weighted parsimony, and model-based techniques, generally improved the phylogenetic performance of highly homoplasious mtDNA sequences, but no single strategy completely mitigated the problems of associated with these highly homoplasious data. Many deep nodes in the softshell turtle phylogeny were confidently recovered only after the addition of largely nonhomoplasious data from the nuclear intron.  相似文献   

9.
Short interspersed nuclear elements (SINEs) provide a near homoplasy free and copious source of molecular evolutionary markers with precisely defined character polarity. Used as molecular cladistic markers in presence/absence analyses, they represent a powerful complement to phylogenetic reconstructions that are based on sequence comparisons on the level of nucleotide substitutions. Recent sequence comparisons of large data sets incorporating a broad eutherian taxonomic sample have led to considerations of the different primate infraorders to constitute a paraphyletic group. Statistically significant support against the monophyly of primates has been obtained by clustering the flying lemur-also termed colugo-(Cynocephalus, Dermoptera) amidst the primates as the sister group to anthropoid primates (New World monkeys, Old World monkeys, and hominoids). We discovered retrotransposed markers that clearly favor the monophyly of primates, with the markers specific to all extant primates but definitively absent at the orthologous loci in the flying lemur and other non-primates. By screening the colugo genome for phylogenetic informative SINEs, we also recovered a novel family of dermopteran specific SINE elements that we call CYN. This element is probably derived from the isoleucine tRNA and appears in monomeric, dimeric, and trimeric forms. It has no long tRNA unrelated region and no poly(A) linker between the monomeric subunits. The characteristics of the novel CYN-SINE family indicate a relatively recent history. Therefore, this SINE family is not suitable to solve the phylogenetic affiliation between dermopterans and primates. Nevertheless it is a valuable device to reconstruct the evolutionary steps from a functional tRNA to an interspersed SINE element.  相似文献   

10.
The family Brassicaceae comprises 3710 species in 338 genera, 25 recently delimited tribes, and three major lineages based on phylogenetic results from the chloroplast gene ndhF. To assess the credibility of the lineages and newly delimited tribes, we sequenced an approximately 1.8-kb region of the nuclear phytochrome A (PHYA) gene for taxa previously sampled for the chloroplast gene ndhF. Using parsimony, likelihood, and Bayesian methods, we reconstructed the phylogeny of the gene and used the approximately unbiased (AU) test to compare phylogenetic results from PHYA with findings from ndhF. We also combined ndhF and PHYA data and used a Bayesian mixed model approach to infer phylogeny. PHYA and combined analyses recovered the same three large lineages as those recovered in ndhF trees, increasing confidence in these lineages. The combined tree confirms the monophyly of most of the recently delimited tribes (only Alysseae, Anchonieae, and Descurainieae are not monophyletic), while 13 of the 23 sampled tribes are monophyletic in PHYA trees. In addition to phylogenetic results, we documented the trichome branching morphology of species across the phylogeny and explored the evolution of different trichome morphologies using the AU test. Our results indicate that dendritic, medifixed, and stellate trichomes likely evolved independently several times in the Brassicaceae.  相似文献   

11.
The musculature of the shoulder, arm, and forearm was studied in 19 genera of squirrels, representing the Pteromyinae (flying squirrels) and all 7 tribes of the Sciurinae (tree and ground squirrels). The objective was to locate derived anatomical features of functional or phylogenetic significance and to determine how much morphological variation underlies the diverse locomotor behavior of squirrels, which includes terrestrial and arboreal bounding, climbing, digging, and gliding. The fossil evidence suggests that arboreality is primitive for squirrels, and in fact tree squirrels appear to represent the primitive sciurid morphology. Ground squirrels are less uniform and exhibit a few derived features, including a clavobrachialis muscle not seen in other squirrels. Pygmy tree squirrels, which have evolved independently in three tribes, exhibit convergence of forelimb anatomy, including the loss or reduction of several muscles in the shoulder and forearm. The forelimb anatomy of flying squirrels is the most derived and differs from that of tree squirrels in details of shoulder, arm, and forearm musculature. Some of these muscular differences among squirrels have phylogenetic significance, being shared by closely related genera, but none has significance above the tribal level. Many of the differences suggest a variety of changes in function that are amenable to further study. J. Morphol. 234:155–182, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Angiosperm phylogeny has been investigated extensively using organellar sequences; recent efforts using nuclear genes have also been successful in reconstructing angiosperm phylogenies at family or deeper levels. However, it is not clear whether nuclear genes are also effective in understanding relationships between species in a genus. Here we present a case study of phylogeny at generic and specific levels with nuclear genes, using Brassicaceae taxa as examples. Brassicaceae includes various crops and the model plant Arabidopsis thaliana. A recent study showed that nuclear genes can provide well-resolved relationships between tribes and larger lineages in Brassicaceae, but few species were included in any given genus. We present a phylogeny with multiple species in each of five genera within Brassicaceae for a total of 65 taxa, using three protein-coding nuclear genes, MLH1, SMC2, and MCM5, with up to approximately 10 200 base pairs (in both exons and introns). Maximum likelihood and Bayesian analyses of the separate gene regions and combined data reveal high resolution at various phylogenetic depths. The relationships between genera here were largely congruent with previous results, with further resolution at the species level. Also, we report for the first time the affinity of Cardamine rockii with tribe Camelineae instead of other Cardamine members. In addition, we report sequence divergence at three levels: across angiosperms, among Brassicaceae species, and between Arabidopsis ecotypes. Our results provide a robust species-level phylogeny for a number of Brassicaceae members and support an optimistic perspective on the phylogenetic utility of conserved nuclear data for relatively recent clades.  相似文献   

13.
Phylogeny of the grass family (Poaceae) from rpl16 intron sequence data   总被引:3,自引:0,他引:3  
DNA sequence data from the chloroplast noncoding rpl16 intron are used to address phylogenetic relationships among the major lineages of the grass family, with particular emphasis on the highly heterogeneous subfamily Bambusoideae and the basal lineages. Thirty-five grass sequences representing all six currently recognized major groups of the family and one outgroup sequence were analyzed using both parsimony and distance methods. The phylogenetic analyses indicated: (1) Puelia, a traditionally isolated bambusoid genus, is the most basal lineage in the BOP clade (Bambusoideae, Oryzoideae, and Pooideae); (2) the bambusoid clade is a sister group to the pooid clade; and (3) the monophyletic oryzoid clade is well separated from the bambusoid clade. The study further confirmed the recognition of two primary groups in the grass family: the BOP clade and the PACC clade (Panicoideae, Arundinoideae, Chloridoideae, and Centothecoideae); it also provided further evidence that the traditional subfamily Bambusoideae is highly heterogeneous and phylogenetically unacceptable. The data support Streptochaeteae, Anomochloeae, and Phareae as the most basal lineages among the extant grasses. Within the BOP clade, oryzoids and pooids are confirmed as two monophyletic clades, but the bambusoid clade, including only the woody bamboo tribe Bambuseae and the herbaceous bamboo tribe Olyreae, is relatively weakly supported. The study also indicated that the chloroplast noncoding region sequence data could be useful in phylogenetic analysis at relatively high taxonomic levels.  相似文献   

14.
15.
小飞鼠 (Pteromys volans) 为树栖夜行滑行类啮齿动物,在森林种子传播和维持生态系统平衡等方面发挥着重要的生态学作用。本研究利用mtDNA Cytb、控制区和nDNA微卫星3种分子标记,对黑龙江省张广才岭北部的小飞鼠种群进行遗传多样性与历史动态分析。检测出Cytb全序列 (1 140 bp) 的平均单倍型多样性为0.909,平均核苷酸多样性为0.616%;控制区全序列 (1 066 bp) 的平均单倍型多样性为0.945,平均核苷酸多样性为1.698%;微卫星检测出种群平均等位基因数13.167个,观测杂合度0.727,期望杂合度0.864,近交系数0.159。结果表明,小飞鼠种群遗传多样性丰富,但存在一定程度的杂合度不足和近亲繁殖;未检测到种群近期遗传瓶颈效应,种群内无遗传分化。高比例的稀有单倍型 (≥ 60%) 、低频率等位基因与近亲繁殖,提示未来种群面临遗传多样性下降的风险,建议加大对该物种的关注和保护力度。基于Cyt b基因的系统进化关系结果表明,小飞鼠存在3个明显的遗传谱系:远东、欧亚大陆北部和日本北海道,本研究中张广才岭和大兴安岭的样本单倍型归属为远东谱系。  相似文献   

16.
The Caesalpinieae grade (Leguminosae) forms a morphologically and ecologically diverse group of mostly tropical tree species with a complex evolutionary history. This grade comprises several distinct lineages, but the exact delimitation of the group relative to subfamily Mimosoideae and other members of subfamily Caesalpinioideae, as well as phylogenetic relationships among the lineages are uncertain. With the aim of better resolving phylogenetic relationships within the Caesalpinieae grade, we investigated the utility of several nuclear markers developed from genomic studies in the Papilionoideae. We cloned and sequenced the low copy nuclear gene sucrose synthase (SUSY) and combined the data with plastid trnL and matK sequences. SUSY has two paralogs in the Caesalpinieae grade and in the Mimosoideae, but occurs as a single copy in all other legumes tested. Bayesian and maximum likelihood phylogenetic analyses suggest the two nuclear markers are congruent with plastid DNA data. The Caesalpinieae grade is divided into four well-supported clades (Cassia, Caesalpinia, Tachigali and Peltophorum clades), a poorly supported clade of Dimorphandra Group genera, and two paraphyletic groups, one with other Dimorphandra Group genera and the other comprising genera previously recognized as the Umtiza clade. A selection analysis of the paralogs, using selection models from PAML, suggests that SUSY genes are subjected to a purifying selection. One of the SUSY paralogs, under slightly stronger positive selection, may be undergoing subfunctionalization. The low copy SUSY gene is useful for phylogeny reconstruction in the Caesalpinieae despite the presence of duplicate copies. This study confirms that the Caesalpinieae grade is an artificial group, and highlights the need for further analyses of lineages at the base of the Mimosoideae.  相似文献   

17.
Anomaluroidea, commonly known as the “scaly‐tailed squirrels,” are an emblematic group of tropical African mammals that includes gliding forms. The family Anomaluridae was until recently represented by three genera: the flying scaly‐tailed squirrels (Anomalurus), the flying mouse (Idiurus) and the flightless scaly‐tailed squirrels (Zenkerella). Idiurus and Zenkerella have long been grouped into the Zenkerellinae subfamily, and Zenkerella was interpreted as a rare case of evolutionary reversal to non‐gliding lifestyle. Recent studies have demonstrated that Zenkerella is sister to all other modern anomalurids, and represents in fact the monogeneric family Zenkerellidae. The Anomalurus genus was split into Anomalurus and Anomalurops, but no study has ever considered all Anomalurus species together in a phylogeny to test the status of Anomalurops. Here, we used mitogenomic next‐generation sequencing to infer the phylogenetic relationships among all extant anomalurids and to estimate their divergence ages. We found that the arboreal Zenkerella is the sister group of all extant gliding anomalurids (Idiurus and Anomalurus). We confirmed that Anomaluroidea only evolved the gliding adaptation once. A comparison based on morphological traits indicates that Zenkerella harbours several unique morphological features. We propose new morphological characters for the novel classification of modern Anomaluroidea, which includes the families Zenkerellidae and Anomaluridae. Using different calibration schemes, we demonstrated that classical dating methods relying only on mitogenomes provide rather young Miocene estimates between Zenkerellidae and the Anomaluridae. The use of published nuclear genes, internal calibrations and tip dating converged towards an Eocene split between gliding and non‐gliding scaly‐tailed squirrels, which is in agreement with the African fossil record. Finally, we provide the first exhaustive species‐level molecular phylogenetic inference for the genus Anomalurus. We found that Anomalurus beecrofti is the sister group of all other species of Anomalurus and branched off during the Miocene.  相似文献   

18.
To provide a robust phylogeny of Pezizaceae, partial sequences from two nuclear protein-coding genes, RPB2 (encoding the second largest subunit of RNA polymerase II) and beta-tubulin, were obtained from 69 and 72 specimens, respectively, to analyze with nuclear ribosomal large subunit RNA gene sequences (LSU). The three-gene data set includes 32 species of Peziza, and 27 species from nine additional epigeous and six hypogeous (truffle) pezizaceous genera. Analyses of the combined LSU, RPB2, and beta-tubulin data set using parsimony, maximum likelihood, and Bayesian approaches identify 14 fine-scale lineages within Pezizaceae. Species of Peziza occur in eight of the lineages, spread among other genera of the family, confirming the non-monophyly of the genus. Although parsimony analyses of the three-gene data set produced a nearly completely resolved strict consensus tree, with increased confidence, relationships between the lineages are still resolved with mostly weak bootstrap support. Bayesian analyses of the three-gene data, however, show support for several more inclusive clades, mostly congruent with Bayesian analyses of RPB2. No strongly supported incongruence was found among phylogenies derived from the separate LSU, RPB2, and beta-tubulin data sets. The RPB2 region appeared to be the most informative single gene region based on resolution and clade support, and accounts for the greatest number of potentially parsimony informative characters within the combined data set, followed by the LSU and the beta-tubulin region. The results indicate that third codon positions in beta-tubulin are saturated, especially for sites that provide information about the deeper relationships. Nevertheless, almost all phylogenetic signal in beta-tubulin is due to third positions changes, with almost no signal in first and second codons, and contribute phylogenetic information at the "fine-scale" level within the Pezizaceae. The Pezizaceae is supported as monophyletic in analyses of the three-gene data set, but its sister-group relationships is not resolved with support. The results advocate the use of RPB2 as a marker for ascomycete phylogenetics at the inter-generic level, whereas the beta-tubulin gene appears less useful.  相似文献   

19.
How the often highly endemic biodiversity of islands originated has been debated for decades, and it remains a fervid research ground. Here, using mitochondrial and nuclear gene sequence analyses, we investigate the diversity, phylogenetic relationships, and evolutionary history of the mayfly Baetis gr. rhodani on the three largest northwestern Mediterranean islands (Sardinia, Corsica, Elba). We identify three distinct, largely co‐distributed, and deeply differentiated lineages, with divergences tentatively dated back to the Eocene–Oligocene transition. Bayesian population structure analyses reveal a lack of gene exchange between them, even at sites where they are syntopic, indicating that these lineages belong to three putative species. Their phylogenetic relationships with continental relatives, together with the dating estimates, support a role for three processes contributing to this diversity: (1) vicariance, primed by microplate disjunction and oceanic transgression; (2) dispersal from the continent; and (3) speciation within the island group. Thus, our results do not point toward a prevailing role for any of the previously invoked processes. Rather, they suggest that a variety of processes equally contributed to shape the diverse and endemic biota of this group of islands.  相似文献   

20.
The family Diplodactylidae is the most ecologically diverse and geographically widespread radiation of geckos within Australasia. Herein we present a first comprehensive phylogenetic analysis of relationships of diplodactylid geckos currently assigned to the genus Oedura, a group of relatively generalised arboreal Australian geckos. Maximum Likelihood, bayesian and Maximum Parsimony analyses of a combination of over two and a half kilobases of nuclear (PDC, Rag-1) and mitochondrial (ND2, ND4, tRNA) sequence data all identified four distinctive lineages within Oedura s.l. Based on their deep divergences and a suite of diagnostic morphological characters we recognise each of these four lineages as genera, two of which are monotypic and newly described herein. Our molecular data also suggest that Oedura s.l. is not monophyletic, but is instead a plesiomorphic grade restricted to islands of rocky or forested habitat around coastal and central Australia. In contrast, combined analysis of all data suggests the Australian arid zone is dominated by a single comparatively derived and relatively species rich clade including most other genera of Australian Diplodactylidae. Additional data are required to properly resolve basal divergence events within the Diplodactylidae, however the emerging pattern of relationships and divergence is consistent with the hypothesis that monsoonal and temperate lineages are ancestral to the arid zone fauna, but also indicate that arid zone lineages and radiations are relatively old, and potentially date back to the mid Miocene or earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号