共查询到20条相似文献,搜索用时 7 毫秒
1.
Roger G. Horn 《生物化学与生物物理学报:生物膜》1984,778(1):224-228
The force between two phosphatidylcholine bilayers is measured as a function of their separation, showing a strong hydration repulsion at short range, as previously reported by LeNeveu et al. (LeNeveu, D.M., Rand, R.P., Parsegian, V.A. and Gingell, D. (1977) (Biophys. J. 18, 209–230). The experimental technique also allows direct observation of the molecular process by which two bilayers fuse into one. 相似文献
2.
Facilitated nuclear transport of histone H1 and other small nucleophilic proteins. 总被引:50,自引:0,他引:50
Upon microinjection into the cytoplasm, three small nonnuclear (extracellular or mitochondrial) proteins diffused into nuclei of chilled or energy-depleted cells. In contrast, the facilitated transport of two large nuclear localization signal (NLS)-containing proteins was reversibly arrested by chilling or energy depletion. Surprisingly, the transport of two small nucleophilic proteins, histone H1 and P(Lys)-cytochrome c (cytochrome c cross-linked with synthetic peptide NLSs), was also arrested by either chilling or energy depletion. In situ titration studies indicate that the transport arrest of H1 in chilled cells is mediated by a cytoplasmic receptor. Therefore, even though they are potentially able to diffuse into nuclei, histones and other small NLS-containing proteins are localized by a receptor-mediated process that precludes their diffusion through the nuclear pores. 相似文献
3.
Competition between histone H1 and HMGN proteins for chromatin binding sites 总被引:3,自引:0,他引:3 下载免费PDF全文
The ability of regulatory factors to access their nucleosomal targets is modulated by nuclear proteins such as histone H1 and HMGN (previously named HMG-14/-17 family) that bind to nucleosomes and either stabilize or destabilize the higher-order chromatin structure. We tested whether HMGN proteins affect the interaction of histone H1 with chromatin. Using microinjection into living cells expressing H1–GFP and photobleaching techniques, we found that wild-type HMGN, but not HMGN point mutants that do not bind to nucleosomes, inhibits the binding of H1 to nucleosomes. HMGN proteins compete with H1 for nucleosome sites but do not displace statically bound H1 from chromatin. Our results provide evidence for in vivo competition among chromosomal proteins for binding sites on chromatin and suggest that the local structure of the chromatin fiber is modulated by a dynamic interplay between nucleosomal binding proteins. 相似文献
4.
Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin 下载免费PDF全文
Catez F Yang H Tracey KJ Reeves R Misteli T Bustin M 《Molecular and cellular biology》2004,24(10):4321-4328
Histone H1 and the high-mobility group (HMG) proteins are chromatin binding proteins that regulate gene expression by modulating the compactness of the chromatin fiber and affecting the ability of regulatory factors to access their nucleosomal targets. Histone H1 stabilizes the higher-order chromatin structure and decreases nucleosomal access, while the HMG proteins decrease the compactness of the chromatin fiber and enhance the accessibility of chromatin targets to regulatory factors. Here we show that in living cells, each of the three families of HMG proteins weakens the binding of H1 to nucleosomes by dynamically competing for chromatin binding sites. The HMG families weaken H1 binding synergistically and do not compete among each other, suggesting that they affect distinct H1 binding sites. We suggest that a network of dynamic and competitive interactions involving HMG proteins and H1, and perhaps other structural proteins, constantly modulates nucleosome accessibility and the local structure of the chromatin fiber. 相似文献
5.
We established a straightforward experimental system to investigate directly the requirements for nucleocytoplasmic transport in live cells. For this purpose, substrates were created containing nuclear localization signals (NLS) or nuclear export signals (NES) linked to a chimeric protein composed of the glutathione S-transferase (GST) fused to the green fluorescent protein (GFP). The combination of GST/GFP-tagging allowed us to control protein expression in bacteria and to monitor protein purification during chromatography. Following microinjection into somatic cells, nuclear export/import of the highly fluorescent substrates could be observed directly by fluorescence microscopy. This system sets the stage to quantitate, in real time, the kinetics of nuclear import/export in living cells and to evaluate qualitative differences in various NLS/NES signals and pathways. 相似文献
6.
《Epigenetics》2013,8(6):353-356
Maintenance of intact heterochromatin structure through epigenetic mechanisms is essential for cell survival. Defects in heterochromatin formation caused by loss of chromatin-modifying enzymes lead to genomic instability and cellular senescence. The NAD+-dependent histone deacetylase SIR-2 and the H1 linker histone are intriguing chromatin elements that are connected to chromatin regulation and cell viability in the single cellular eukaryotic organism yeast. However, it remains an open question how SIR-2 and H1 mediate heterochromatin formation in simple multi-cellular organisms such as C. elegans and in even more complex organisms such as mammals. Recently we have identified SIR-2.1 and the H1 histone subtype, HIS-24 as factors involved in heterochromatin regulation at subtelomeric regions in C. elegans. In addition we show that SIR-2.1, HIS-24, and MES-2, a ortholog to Enhancer of zeste E(Z) are functionally related in heterochromatin formation contributing to fertility and embryogenesis. Here we discuss the interplay between SIR-2, H1 histone and histone methyltransferases in modulation of chromatin structure in further detail. 相似文献
7.
Characterization of the six chicken histone H1 proteins and alignment with their respective genes 总被引:3,自引:0,他引:3
Six histone H1 subtypes and histone H5, isolated from chicken erythrocyte nuclei, were visualized on acid/urea polyacrylamide gels. Four of the H1 subtypes have been purified to homogeneity by fast protein liquid chromatography on a strong cation exchange column. The other two subtypes were obtained as enriched fractions from the same fast protein liquid chromatography experiments. Because six chicken H1 genes have been completely sequenced (Coles, L.S., Robins, A. J., Madley, L.K., and Wells, J. R. E. (1987) J. Biol. Chem. 262, 9656-9663), it was possible to assign each of the six H1 proteins to a specific gene after amino acid sequence analysis of peptides derived from the subtypes. 相似文献
8.
Bonenfant D Coulot M Towbin H Schindler P van Oostrum J 《Molecular & cellular proteomics : MCP》2006,5(3):541-552
The nucleosome, the fundamental structural unit of chromatin, contains an octamer of core histones H3, H4, H2A, and H2B. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function, analysis of histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2A and H2B variants derived from Jurkat cells. A combination of mass spectrometric techniques, HPLC separations, and enzymatic digestions using endoproteinase Glu-C, endoproteinase Arg-C, and trypsin were used to identify histone H2A and H2B subtypes and their modifications. We identified nine histone H2A and 11 histone H2B subtypes, among them proteins that only had been postulated at the gene level. The two main H2A variants, H2AO and H2AC, as well as H2AL were either acetylated at Lys-5 or phosphorylated at Ser-1. For the replacement histone H2AZ, acetylation at Lys-4 and Lys-7 was found. The main histone H2B variant, H2BA, was acetylated at Lys-12, -15, and -20. The analysis of core histone subtypes with their modifications provides a first step toward an understanding of the functional significance of the diversity of histone structures. 相似文献
9.
Sakata E Yamaguchi Y Miyauchi Y Iwai K Chiba T Saeki Y Matsuda N Tanaka K Kato K 《Nature structural & molecular biology》2007,14(2):167-168
Although cullin-1 neddylation is crucial for the activation of SCF ubiquitin E3 ligases, the underlying mechanisms for NEDD8-mediated activation of SCF remain unclear. Here we demonstrate by NMR and mutational studies that NEDD8 binds the ubiquitin E2 (UBC4), but not NEDD8 E2 (UBC12). Our data imply that NEDD8 forms an active platform on the SCF complex for selective recruitment of ubiquitin-charged E2s in collaboration with RBX1, and thereby upregulates the E3 activity. 相似文献
10.
Rab proteins, connecting transport and vesicle fusion 总被引:14,自引:1,他引:13
Small GTPases of the Rab family control timing of vesicle fusion. Fusion of two vesicles can only occur when they have been brought into close contact. Transport by microtubule- or actin-based motor proteins will facilitate this process in vivo. Ideally, transport and vesicle fusion are linked activities. Active, GTP-bound Rab proteins dock on specific compartments and are therefore perfect candidates to control transport of the different compartments. Recently, a number of Rab proteins were identified that control motor protein recruitment to their specific target membranes. By cycling through inactive and active states, Rab proteins are able to control motor protein-mediated transport and subsequent fusion of intracellular structures in both spatial and timed manners. 相似文献
11.
Autogenous regulation of histone mRNA decay by histone proteins in a cell-free system. 总被引:9,自引:8,他引:9 下载免费PDF全文
We tested the hypothesis that histone mRNA turnover is accelerated in the presence of free histone proteins. In an in vitro mRNA decay system, histone mRNA was degraded four- to sixfold faster in reaction mixtures containing core histones and a cytoplasmic S130 fraction than in reaction mixtures lacking these components. The decay rate did not change significantly when histones or S130 was added separately, suggesting either that the histones were modified and thereby activated by S130 or that additional factors besides histones were required. RecA, SSB (single-stranded binding), and histone proteins all formed complexes with histone mRNA, but only histones induced accelerated histone mRNA turnover. Therefore, the effect was not the result of random RNA-protein interactions. Moreover, histone proteins did not induce increased degradation of gamma globin mRNA, c-myc mRNA, or total poly(A)- or poly(A)+ polysomal mRNAs. This autoregulatory mechanism is consistent with the observed accumulation of cytoplasmic histone proteins in cells after DNA synthesis stops, and it can account, in part, for the rapid disappearance of histone mRNA at the end of S phase. 相似文献
12.
13.
14.
We have calculated the polypeptide flexibility index for mammalian histone H1 sequences obtained from the National Center for Biotechnology Information Histone Sequence Database. This database contains over 1000 histone protein entries, from various species, compiled from SWISS_PROT, PIR, the Protein Data Bank (PDB), and CDS translations from GenBank. Histone H1 proteins were analyzed because of their critical role in chromatin structure and gene expression. Flexibility calculations revealed that histone subtype H1.0, which accumulates during terminal differentiation, has the highest flexibility index of all mammalian H1 subtypes. Other mammalian H1 subtypes had lower flexibility indices, including the human H1.2 subtype whose mRNA contains both a hairpin loop sequence and a poly(A) addition sequence. Histone mRNAs containing both of these structures have been shown to be expressed prior to and after terminal differentiation, yet these proteins do not necessarily accumulate in the chromatin of terminally differentiated cells. H1.2 and the H1.t have the lowest flexibility index (most ridged) of all human H1 subtypes. All human H1 proteins of the replication dependent subtypes have intermediate values for their flexibility indices. 相似文献
15.
Izabela Sokal Andrei Alekseev Wolfgang Baehr Fran?oise Haeseleer Krzysztof Palczewski 《Biochemistry》2002,41(1):251-257
Among single-spanning transmembrane receptors (sTMRs), two guanylyl cyclase receptors, GC1 and GC2, are critically important during phototransduction in vertebrate retinal photoreceptor cells. Ca(2+)-free forms of guanylyl cyclase-activating proteins (GCAPs) stimulate GCs intracellularly by a molecular mechanism that is not fully understood. To gain further insight into the mechanism of activation and specificity among these proteins, for the first time, several soluble and active truncated GCs and fusion proteins between intracellular domains of GCs and full-length GCAPs were generated. The GC activity of myristoylated GCAP--(437-1054)GC displayed typical [Ca(2+)] dependence, and was further enhanced by ATP and inhibited by guanylyl cyclase inhibitor protein (GCIP). The myristoyl group of GCAP1 appeared to be critical for the inhibition of GCs at high [Ca(2+)], even without membranes. In contrast, calmodulin (CaM)--(437-1054)GC1 fusion protein was inactive, but could be stimulated by exogenous GCAP1. In a series of experiments, we showed that the activation of GCs by linked GCAPs involved intra- and intermolecular mechanisms. The catalytically productive GCAP1--(437-1054)GC1 complex can dissociate, allowing binding and stimulation of the GC1 fusion protein by free GCAP1. This suggests that the intramolecular interactions within the fusion protein have low affinity and are mimicking the native system. We present evidence that the mechanism of GC activation by GCAPs involves a dimeric form of GCs, involves direct interaction between GCs and GCAPs, and does not require membrane components. Thus, fusion proteins may provide an important advance for further structural studies of photoreceptor GCs and other sTMRs with and without different forms of regulatory proteins. 相似文献
16.
Seo JK Stephenson J Noga EJ 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2011,158(3):223-229
We have previously identified a histone H2B isomer (cvH2B-1) from tissue extracts of the bivalve mollusk, the American oyster (Crassostrea virginica). In this paper, we isolate an additional three antibacterial proteins from acidified gill extract by preparative acid-urea-polyacrylamide gel electrophoresis and reversed-phase high performance liquid chromatography. Extraction of these proteins from tissue was best accomplished by briefly boiling the tissues in a weak acetic acid solution. Addition of protease inhibitors while boiling resulted in somewhat lower yields, with one protein being totally absent with this method. Via mass spectrometry, the masses of one of these purified proteins was 13607.0Da (peak 2), which is consistent with the molecular weight of histone H2B. In addition, via western-blotting using anti-calf histone H2B antibody, all three proteins were positive and were thus named cvH2B-2, cvH2B-3 and cvH2B-4. The antibacterial activity of cvH2B-2 was similar to that of cvH2B-1, with activity against a Gram-positive bacterium (Lactococcus lactis subsp. lactis; minimum effective concentration [MEC] 52-57μg/mL) but inactive against Staphylococcus aureus (MEC>250μg/mL). However, both proteins had relatively potent activity against the Gram-negative oyster pathogen Vibrio parahemolyticus (MEC 11.5-14μg/mL) as well as the human pathogen Vibrio vulnificus (MEC 21.3-25.3μg/mL). cvH2B-3 and cvH2B-4 also had similarly strong activity against Vibrio vulnificus. These data provide further evidence for the antimicrobial function of histone H2B isomers in modulating bacterial populations in oyster tissues. The combined estimated concentrations of these histone H2B isomers were far above the inhibitory concentrations for the tested vibrios, including human pathogens. Our results indicate that the highly conserved histone proteins might be important components not only of immune defenses in oysters but have the potential to influence the abundance of a ubiquitous microbial resident of oyster tissues that is the major source of seafood-borne illness in humans. 相似文献
17.
DNA and histone H1 interact with different domains of HMG 1 and 2 proteins. 总被引:5,自引:5,他引:5 下载免费PDF全文
High mobility group (HMG) proteins 1 and 2 from calf thymus have been digested under structuring conditions (0.35 M NaCl, pH 7.1) with two proteases of different specificities, trypsin and V8. The two proteases give a different but restricted pattern of peptides in a time course digestion study. However, when the interactions of the peptides with DNA are studied by blotting, a closely related peptide from HMG-1 and -2 does not show any apparent binding. This peptide, from the V8 protease digestion, has been isolated by DNA-cellulose chromatography and has the amino acid composition predicted for a fragment containing the two C-terminal domains of the protein, i.e., approximately residues 74-243 for HMG-1. The same peptide shows the only interaction detectable with labelled histone H1. A separate function for the different domains of HMG proteins 1 and 2 is proposed. 相似文献
18.
19.
The primary function of cobalamin (Cbl; vitamin B12) is the formation of red blood cells and the maintenance of a healthy nervous system. Before cells can utilise dietary Cbl, the vitamin must undergo cellular transport using two distinct receptor-mediated events. First, dietary Cbl bound to gastric intrinsic factor (IF) is taken up from the apical pole of ileal epithelial cells via a 460 kDa receptor, cubilin, and is transported across the cell bound to another Cbl-binding protein, transcobalamin II (TC II). Second, plasma TC II-Cbl is taken up by cells that need Cbl via the TC II receptor (TC II-R), a 62 kDa protein that is expressed as a functional dimer in cellular plasma membranes. Human Cbl deficiency can develop as a result of acquired or inherited dysfunction in either of these two transmembrane transport events. This review focuses on the biochemical, cellular and molecular aspects of IF and TC II and their cell-surface receptors. 相似文献
20.
Isolation of yeast histone genes H2A and H2B 总被引:71,自引:0,他引:71
Analysis of cloned sequences for yeast histone genes H2A and H2B reveals that there are only two copies of this pair of genes within the haploid yeast genome. Within each copy, the genes for H2A and H2B are separated by approximately 700 bp of spacer DNA. The two copies are separated from one another in the yeast genome by a minimum distance of 35-60 kb. Sequence homology between the two copies is restricted to the genes for H2A and H2B; the spacer DNA between the genes is nonhomologous. In both copies, the genes for H2A and H2B are divergently transcribed. In addition, both plasmids code for other nonhistone proteins. Sequences coding for histones H3 and H4 have not been detected in the immediate vicinity of the genes for H2A and H2B. 相似文献