首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
添加氧化铁对水稻土中H2、CO2和CH4形成的影响   总被引:8,自引:0,他引:8  
水稻土是甲烷产生的重要源地.厌氧条件下甲烷的形成与有机质厌氧降解产生的乙酸、H2和CO2有关.氧化铁作为电子受体可有效地竞争有机质向甲烷的转化,其抑制作用机理可能与乙酸、H2和CO2的有效消耗有关.通过向水稻土泥浆中添加无定形氧化铁和纤铁矿.分别测定了25℃厌氧恒温培养105d过程中的H2、CO2和CH4的浓度变化.结果表明,添加无定形氧化铁及纤铁矿可导致H2浓度显著降低;无定形氧化铁对H2消耗的影响明显大于纤铁矿;添加不同氧化铁对CO2浓度的影响与H2浓度的变化有相同的趋势;添加氧化铁能显著抑制水稻土中甲烷形成,并导致有机碳的转移发生变化,使得CH4—C显著降低,气相中CO2—C量减少,而由土壤泥浆固定的CO3^2-—C量显著增加.  相似文献   

2.
This study aims to determine suitable start-up conditions and inoculum sources for thermophilic anaerobic digestion. Within days of incubation MSW at 55 °C, methane was produced at a high rate. In an attempt to narrow down which components of typical MSW contained the thermophilic methanogens, vacuum cleaner dust, banana peel, kitchen waste, and garden waste were tested as inoculum for thermophilic methanogenesis with acetate as the substrate. Results singled out grass turf as the key source of thermophilic acetate degrading methanogenic consortia. Within 4 days of anaerobic incubation (55 °C), anaerobically incubated grass turf samples produced methane accompanied by acetate degradation enabling successful start-up of thermophilic anaerobic digestion. Other essential start-up conditions are specified. Stirring of the culture was not conducive for successful start-up as it resulted specifically in propionate accumulation.  相似文献   

3.
The performance of a mesophilic two-stage system generating hydrogen and methane continuously from sucrose (10-30 g/L) was investigated. A hydrogen-generating CSTR followed by an upflow anaerobic filter were both inoculated with anaerobically digested sewage sludge, and ORP, pH, gas output, %H(2), %CH(4) and %CO(2) monitored. pH was controlled with NaOH, KOH or Ca(OH)(2). Using NaOH as alkali with 10 g/L sucrose, yields of 1.62 +/- 0.2 mol H(2)/mol hexose added and 323 mL CH(4)/gCOD added to the hydrogen and methane reactors respectively were achieved. The overall chemical oxygen demand (COD) reduction was 92.6% with 0.90 +/- 0.1 g/L sodium and 316 +/- 40 mg/L residual acetate in the methane reactor. Operation at 20 g/L sucrose and NaOH as alkali led to impaired volatile fatty acid (VFA) degradation in the methane reactor with 2.23 +/- 0.2 g/L sodium, 1,885 mg/L residual acetate, a hydrogen yield of 1.47 +/- 0.1 mol/mol hexose added, a methane yield of 294 mL/gCOD added and an overall COD reduction of 83%. Using Ca(OH)(2) as alkali with 20 g/L sucrose gave a hydrogen yield of 1.29 +/- 0.3 mol/mol hexose added, a methane yield of 337 mL/gCOD added and improved the overall COD reduction to 91% with residual acetate concentrations of 522 +/- 87 mg/L. Operation at 30 g/L sucrose with Ca(OH)(2) gave poorer overall COD reduction (68%), a hydrogen yield of 1.47 +/- 0.2 mol/mol hexose added, a methane yield of 138 mL/gCOD added and residual acetate 7,343 +/- 715 mg/L. It was shown that sodium toxicity and overloading are important issues for successful anaerobic digestion of effluent from biohydrogen reactors in high rate systems.  相似文献   

4.
Krumholz LR  Suflita JM 《Anaerobe》1997,3(6):399-403
We evaluated the susceptibility of 2,4-dinitrophenol (2,4-DNP) and 2,4-diaminophenol to anaerobic biodegradation in aquifer slurries. Aquifer microorganisms depleted 2,4-DNP at rates of 25, 9 and 0.4 microM/day under methanogenic, sulfate-reducing and nitrate-reducing conditions, respectively. Rates of abiotic, 2,4-DNP loss in autoclaved control incubations were 7.2, 6.2 and 0.95 microM/day respectively. Abiotic, 2,4-DNP reduction was especially important as the first step in its transformation. 2-Amino-4-nitrophenol was produced by this process, but this compound was further metabolized in methanogenic and sulfate-reducing aquifer slurries. This partially reduced compound persisted in autoclaved controls and in the nitrate-reducing aquifer slurries. Aquifer slurries incubated with either 2,4-DNP or 2,4-diaminophenol produced methane when incubated with no other electron acceptor suggesting that mineralization had occurred under these conditions. In parallel experiments, aquifer slurries amended with 2,6-dinitrophenol or picric acid did not produce methane at levels above the substrate unamended controls.  相似文献   

5.
The aim of this paper was to analyze the biomethanization process of food waste (FW) from a university campus restaurant in six reactors with three different total solid percentages (20%, 25% and 30% TS) and two different inoculum percentages (20-30% of mesophilic sludge). The experimental procedure was programmed to select the initial performance parameters (total solid and inoculum contents) in a lab-reactor with V: 1100mL and, later, to validate the optimal parameters in a lab-scale batch reactor with V: 5000mL. The best performance for food waste biodegradation and methane generation was the reactor with 20% of total solid and 30% of inoculum: give rise to an acclimation stage with acidogenic/acetogenic activity between 20 and 60 days and methane yield of 0.49L CH4/g VS. Also, lab-scale batch reactor (V: 5000mL) exhibit the classical waste decomposition pattern and the process was completed with high values of methane yield (0.22L CH4/g VS). Finally, a protocol was proposed to enhance the start-up phase for dry thermophilic anaerobic digestion of food waste.  相似文献   

6.
The effect of temperature variation on biomethanation at high altitude   总被引:1,自引:0,他引:1  
The aim of the current study was to examine effects of daily temperature variations on the performance of anaerobic digestion. Forced square-wave temperature variations (between 11 and 25, 15 and 28, and 19 and 32 degrees C) were imposed on a bench-scale digester using a mixture of llama-cow-sheep manure in a semi-continuous process. The volumetric biogas production rate, methane yield, and the volatile solid reductions were compared with the results obtained from anaerobic digestion (AD) at constant temperatures. The forced cyclic variations of temperature caused large cyclic variations in the rate of gas production and the methane content. As much as 94-97% of the daily biogas was obtained in the 12h half-cycle at high temperature. The values for volumetric biogas production rate and methane yield increased at higher temperatures. The average volumetric biogas production rate for cyclic operation between 11 and 25 degrees C was 0.22Ld(-1)L(-1) with a yield of 0.07m3CH4kg(-1) VS added (VSadd), whereas for operation between 15 and 29 degrees C the volumetric biogas production rate increased by 25% (to 0.27Ld(-1)L(-1) with a yield of 0.08m3CH4kg(-1) VSadd). In the highest temperature region a further increase of 7% in biogas production was found and the methane yield was 0.089m(3)CH(4)kg(-1) VSadd. The employed digester showed an immediate response when the temperature was elevated, which indicates a well-maintained metabolic capacity of the methanogenic bacteria during the period of low temperature. Overall, periodic temperature variations appear to give less decrease in process performance than a priori anticipated.  相似文献   

7.
Experiments were done to test the hypothesis that atmospheric CH(4) oxidizers in a well-drained alpine tundra soil are supported by CH(4) production from anaerobic microsites in the soil. Soil was subjected to 22 days of anaerobic conditions with elevated H(2) and CO(2) in order to stimulate methanogenesis. This treatment stimulated subsequent atmospheric CH(4) consumption, probably by increasing soil methanogenesis. After removal from anaerobic conditions, soils emitted CH(4) for up to 6 h, then oxidized atmospheric CH(4) at 111 (+/- 5.7) pmol (g dry weight)(-1) h(-1), which was more than 3 times the rate of control soils. Further supporting our hypothesis, additions of lumazine, a highly specific inhibitor of methanogenesis, prevented the stimulation of atmospheric CH(4) oxidation by the anaerobic treatment. The method used to create anaerobic conditions with elevated H(2) and CO(2) also elevated headspace CH(4) concentrations. However, elevated CH(4) concentrations under aerobic conditions did not stimulate CH(4) oxidation as much as preexposure to H(2) and CO(2) under anaerobic conditions. Anaerobic conditions created by N(2) flushing did not stimulate atmospheric CH4 oxidation, probably because N2 flushing inhibited methanogenesis by removing necessary precursors for methane production. We conclude that anaerobic conditions with elevated H(2) and CO(2) stimulate atmospheric CH(4) oxidation in this dry alpine tundra soil by increasing endogenous CH(4) production. This effect was prevented by inhibiting methanogenesis, indicating the importance of endogenous CH(4) production in a CH(4-) consuming soil.  相似文献   

8.
When methane (CH(4)) and O(2) are present, nitrogen can be removed from wastewater that does not contain other organic carbon sources. In this study, microbial activities during methane-dependent denitrification (MDD) were investigated by adding inhibitors of methane-oxidation and denitrification. Sludge susceptible to MDD showed methane oxidation activity in the presence of CH(4) and O(2), and denitrification activity with methanol and acetate under anoxic conditions. Methyl fluoride (CH(3)F) is known to inhibit methane oxidation. When CH(3)F was present, MDD did not occur, perhaps because methane oxidation was inhibited. Tungstate (WO(4)(2-)), a known inhibitor of nitrate reduction, also lowered denitrification activity in the sludge, and partly inhibited methane oxidation. When WO(4)(2-) was added to the medium, MDD almost ceased, perhaps because of a synergic inhibitory effect on denitrification and methane oxidation. These results show that both methane oxidation and denitrification contribute to MDD.  相似文献   

9.
The deep anoxic shelf of the northwestern Black Sea has numerous gas seeps, which are populated by methanotrophic microbial mats in and above the seafloor. Above the seafloor, the mats can form tall reef-like structures composed of porous carbonate and microbial biomass. Here, we investigated the spatial patterns of CH(4) and CO(2) assimilation in relation to the distribution of ANME groups and their associated bacteria in mat samples obtained from the surface of a large reef structure. A combination of different methods, including radiotracer incubation, beta microimaging, secondary ion mass spectrometry, and catalyzed reporter deposition fluorescence in situ hybridization, was applied to sections of mat obtained from the large reef structure to locate hot spots of methanotrophy and to identify the responsible microbial consortia. In addition, CO(2) reduction to methane was investigated in the presence or absence of methane, sulfate, and hydrogen. The mat had an average delta(13)C carbon isotopic signature of -67.1 per thousand, indicating that methane was the main carbon source. Regions dominated by ANME-1 had isotope signatures that were significantly heavier (-66.4 per thousand +/- 3.9 per thousand [mean +/- standard deviation; n = 7]) than those of the more central regions dominated by ANME-2 (-72.9 per thousand +/- 2.2 per thousand; n = 7). Incorporation of (14)C from radiolabeled CH(4) or CO(2) revealed one hot spot for methanotrophy and CO(2) fixation close to the surface of the mat and a low assimilation efficiency (1 to 2% of methane oxidized). Replicate incubations of the mat with (14)CH(4) or (14)CO(2) revealed that there was interconversion of CH(4) and CO(2.) The level of CO(2) reduction was about 10% of the level of anaerobic oxidation of methane. However, since considerable methane formation was observed only in the presence of methane and sulfate, the process appeared to be a rereaction of anaerobic oxidation of methane rather than net methanogenesis.  相似文献   

10.
The anaerobic biodegradation of picloram (3,5,6-trichloro-4-amino-2-pyridinecarboxylic acid) in freshwater sediment was favored under methanogenic conditions but not when sulfate or nitrate was available as a terminal electron acceptor. Under the former conditions, more than 85% of the parent substrate (340 μM) was removed from nonsterile incubations in 30 days, following a 50-day acclimation period. Concomitant with substrate decay, an intermediate transiently accumulated in the sediment slurries. By liquid chromatography-mass spectrometry, the intermediate was identified as an isomer of dichloro-4-amino-2-pyridinecarboxylic acid. Proton nuclear magnetic resonance evidence suggested that a chlorine was reductively removed from the parent substrate at the position meta to the nitrogen heteroatom. Upon continued incubation, the dechlorinated product was transformed into an unidentified compound which accumulated and resisted further decay. The addition of sulfate or bromoethanesulfonic acid to sediment slurries inhibited picloram dehalogenation, but molybdate reversed the inhibitory effect of sulfate on pesticide metabolism. These findings help clarify the fate of a halogenated nitrogen heterocyclic herbicide in anaerobic environments.  相似文献   

11.
Biogas production with horse dung in solid-phase digestion systems   总被引:1,自引:0,他引:1  
Experiments on methanogenesis from horse dung were conducted in laboratory-scale batch reactors in order to determine the substrate performance in a solid-phase digestion process, more specifically in terms of potential energy recovery and suitable process technology. Dung from a horse stable with straw bedding was used. The temperature was kept in the mesophilic range. In the percolation process (with process water sprinkled over the stacked biomass) a proportion of 10-20% of solid inoculum (pre-digested horse dung) was found to be suitable. Comparative experiments with both percolation and flooding revealed a higher biogas production per volume for the flooded process, as no addition of solid inoculum was necessary. Methane yield from fresh material was similar in both processes: around 170 L(N) CH(4) per kg VS added was obtained in six-week cycles with untreated material under optimized conditions. Methane production was increased after chopping the substrate. Pre-aeration resulted in decreased methane production.  相似文献   

12.
Two-phase anaerobic digestion for production of hydrogen-methane mixtures   总被引:5,自引:0,他引:5  
An anaerobic digestion process to produce hydrogen and methane in two sequential stages was investigated, using two bioreactors of 2 and 15 L working volume, respectively. This relative volume ratio (and shorter retention time in the second, CH(4)-producing reactor) was selected, in part, to test the assumption that separation of phase can enhance metabolism in the second methane producing reactor. The reactor system was seeded with conventional anaerobic digester sludge, fed with a glucose-yeast extract--peptone medium and operated under conditions of relatively low mixing, to simulate full scale operation. A total of nine steady states were investigated, spanning a range of feed concentrations, dilution rates, feed carbon to nitrogen ratios and degree of integration of the two stages. The performance of this two-stage process and potential practical applications for the production of clean-burning hydrogen-methane mixtures are discussed.  相似文献   

13.
水稻土是甲烷产生的重要源地.厌氧条件下甲烷的形成与有机质厌氧降解产生的乙酸、H2和CO2有关.氧化铁作为电子受体可有效地竞争有机质向甲烷的转化,其抑制作用机理可能与乙酸、H2和CO2的有效消耗有关.通过向水稻土泥浆中添加无定形氧化铁和纤铁矿,分别测定了25℃厌氧恒温培养105d过程中的H2、CO2和CH4的浓度变化.结果表明,添加无定形氧化铁及纤铁矿可导致H2浓度显著降低;无定形氧化铁对H2消耗的影响明显大于纤铁矿;添加不同氧化铁对CO2浓度的影响与H2浓度的变化有相同的趋势;添加氧化铁能显著抑制水稻土中甲烷形成,并导致有机碳的转移发生变化,使得CH4-C显著降低,气相中CO2-C量减少,而由土壤泥浆固定的CO32--C量显著增加.  相似文献   

14.
Rice field soils turn anoxic upon flooding. The complete mineralization of organic matter, e.g. cellulose, to gaseous products is then accomplished by the sequential reduction of nitrate, ferric iron, sulfate and finally by methanogenesis. Therefore, the anaerobic turnover of [U-(14)C]cellulose was investigated in fresh, non-methanogenic and in preincubated, methanogenic slurries of Italian rice field soil. In anoxic soil slurries freshly prepared from air-dried soil [U-(14)C]cellulose was converted to (14)CO(2) and (14)CH(4) in a ratio of 3:1. In methanogenic soil slurries, on the other hand, which had been preincubated for 45 days under anaerobic conditions, [U-(14)C]cellulose was converted to (14)CO(2) and (14)CH(4) in the ratio of 1:1. The turnover times (7-14 days) of cellulose degradation were not significantly different (P0.05) in fresh and methanogenic soil. Chloroform addition abolished CH(4) production, but only slightly (30%) inhibited cellulose degradation in both fresh and methanogenic soil. Under both soil conditions, [(14)C]acetate was the only labeled intermediate detected. A maximum of 24% of the applied radioactivity was transiently accumulated as [(14)C]acetate in both fresh and methanogenic soil slurries. However, when methanogenesis was inhibited by chloroform, 46% and 66% of the applied radioactivity were recovered as [(14)C]acetate in fresh and methanogenic soil, respectively. Only non-radioactive propionate accumulated during the incubation with [U-(14)C]cellulose, especially in the presence of chloroform, indicating that propionate was produced from substrates other than cellulose.  相似文献   

15.
We have examined sediments from a fringing salt marsh in Maine to further understand marine CO metabolism, about which relatively little is known. Intact cores from the marsh emitted CO during dark oxic incubations, but emission rates were significantly higher during anoxic incubations, which provided evidence for simultaneous production and aerobic consumption in surface sediments. CO emission rates were also elevated when cores were exposed to light, which indicated that photochemical reactions play a role in CO production. A kinetic analysis of marsh surface sediments yielded an apparent K(m) of about 82 ppm, which exceeded values reported for well-aerated soils that consume atmospheric CO (65nM). Surface (0-0.2 cm depth interval) sediment slurries incubated under oxic conditions rapidly consumed CO, and methyl fluoride did not inhibit uptake, which indicated that neither ammonia nor methane oxidizers contributed to the observed activity. In contrast, aerobic CO uptake was inhibited by additions of readily available organic substrates (pyruvate, glucose and glycine), but not by cellulose. CO was also consumed by surface and sub-surface sediment slurries incubated under anaerobic conditions, but rates were less than during aerobic incubations. Molybdate and nitrate or nitrite, but not 2-bromoethanesulfonic acid, partially inhibited anaerobic uptake. These results suggest that sulfidogens and acetogens, but not dissimilatory nitrate reducers or methanogens, actively consume CO. Sediment-free plant roots also oxidized CO aerobically; rates for Spartina patens and Limonium carolinianum roots were significantly higher than rates for Spartina alterniflora roots. Thus plants may also impact CO cycling in estuarine environments.  相似文献   

16.
In anoxic paddy soil, rice straw is decomposed to CH(4) and CO(2) by a complex microbial community consisting of hydrolytic, fermenting, syntrophic and methanogenic microorganisms. Here, we investigated which of these microbial groups colonized the rice straw and which were localized in the soil. After incubation of rice straw in anoxic soil slurries for different periods, the straw pieces were removed from the soil, and both slurry and straw were studied separately. Although the potential activities of polysaccharolytic enzymes were higher in the soil slurry than in the straw incubations, the actual release of reducing sugars was higher in the straw incubations. The concentrations of fermentation products, mainly acetate and propionate, increased steadily in the straw incubations, whereas only a little CH(4) was formed. In the soil slurries, on the other hand, fermentation products were low, whereas CH(4) production was more pronounced. The production of CH(4) or of fermentation products in the separated straw and soil incubations accounted in sum for 54-82% of the CH(4) formed when straw was not removed from the soil. Syntrophic propionate degradation to acetate, CO(2) and H(2) was thermodynamically more favourable in the soil than in the straw fraction. These results show that hydrolysis and primary fermentation reactions were mainly localized on the straw pieces, whereas the syntrophic and methanogenic reactions were mainly localized in the soil. The percentage of bacterial relative to total microbial 16S rRNA content was higher on the straw than in the soil, whereas it was the opposite for the archaeal 16S rRNA content. It appears that rice straw is mainly colonized by hydrolytic and fermenting bacteria that release their fermentation products into the soil pore water where they are further degraded to CH(4). Hence, complete methanogenic degradation of straw in rice soil seems to involve compartmentalization.  相似文献   

17.
The metabolic fate of 2-hydroxybiphenyl under different anaerobic conditions was tested with sediment slurries and enrichment cultures obtained from a shallow anoxic aquifer. 2-Hydroxybiphenyl was depleted in aquifer slurries over the course of incubation, but substrate loss in methanogenic slurries was not significantly different from either filter-sterilized or autoclaved controls. In contrast, the rate of substrate removal was significantly higher in non-sterile, sulfate-reducing aquifer slurries relative to abiotic control incubations. A 2-hydroxybiphenyl-degrading enrichment was established that was inhibited by molybdate but not by bromoethane-sulfonic acid. For every mole of substrate consumed by the bacterial consortium, 6.1±0.2 moles of sulfate were depleted from the enrichment medium. This represents about 87% of the theoretical amount of sulfate consumed and suggests that the 2-hydroxybiphenyl was largely mineralized. Oxygen, nitrate, or carbon dioxide could not replace sulfate as a terminal electron acceptor for the enrichment. Other hydroxybiphenyl isomers were not metabolized by these cultures. This study shows that aromatic substrates with multiple ring systems can undergo biotransformation by anaerobic microorganisms under some ecological conditions.  相似文献   

18.
Spent sugar beet pulp as received was digested in a single-stage, batch, unmixed, leach-bed, laboratory scale thermophilic anaerobic digester. Biogasification of each 0.450 kg (wet weight) batch of spent pulp was initiated by inoculating with anaerobically digested liquor from previous run. The average methane yield was 0.336 m3 CH4 at STP (kgVS)(-1), the maximum methane production rate was 0.087 m3 CH4 at STP (kgVS)(-1)d(-1), average lag time to initiate methanogenesis was only 0.44 days and time required to achieve 95% methane yield was 8 days. The pH in the digesters ranged between 8.0 and 9.5. High rates of methane generation were sustained even at high pH values. The equivalent organic loading rate in the batch digesters was 4 kgCODm(-3)d(-1). The digestion process used here offers significant improvements over one-stage and two-stage systems reported in the literature with comparable performance as it is a single-stage system where the feedstock does not require size reduction, and mixing is not required in the digester.  相似文献   

19.
Ruminal methane (CH(4)) production results in the loss of up to 12% of gross energy intake and contributes nearly 20% of the United States' annual emission of this greenhouse gas. We report the effects of select nitrocompounds on ruminal fermentation after 22 h in vitro incubation (39 degrees C) with or without additions of hydrogen (H(2)), formate or both. In incubations containing no added reductant, CH(4) production was inhibited 41% by 2-nitro-1-propanol (2NPOH) and >97% by 3-nitro-1-propionic acid (3NPA), nitroethane (NE) and 2-nitroethanol (2NEOH) compared to non-treated controls and H(2) did not accumulate. With formate as the sole added reductant, nitro-treatment reduced CH(4) production by >99% and caused 42% to complete inhibition of formate catabolism compared to controls, and the accumulation of H(2) increased slightly. Nitro-treatment decreased CH(4) production 57-98% from that of controls when supplied H(2) or formate plus H(2). Formate catabolism was decreased 42-84% from that in controls by all nitro-treatments except 3NPA with both formate and H(2). Greater than 97% of the added H(2) was catabolized within controls; >84% was catabolized in nitro-treated incubations. Acetate, propionate and butyrate accumulations were unaffected by nitro-treatment irregardless of reductant; however, effects on ammonia and branched chain fatty acid accumulations varied. These results suggest that nitro-treatment inhibited formate dehydrogenase/formate hydrogen lyase and hydrogenase activity.  相似文献   

20.
Anaerobic benzene degradation   总被引:1,自引:0,他引:1  
Although many studies have indicated that benzene persists under anaerobic conditions in petroleum-contaminated environments, it has recently been documented that benzene can be anaerobically oxidized with most commonlyconsidered electron acceptors for anaerobic respiration. These include: Fe(III),sulfate, nitrate, and possibly humic substances. Benzene can also be convertedto methane and carbon dioxide under methanogenic conditions. There is evidencethat benzene can be degraded under in situ conditions in petroleum-contaminatedaquifers in which either Fe(III) reduction or methane production is the predominant terminal electron-accepting process. Furthermore, evidence from laboratory studies suggests that benzene may be anaerobically degraded in petroleum-contaminated marine sediments under sulfate-reducing conditions. Laboratory studies have suggested that within the Fe(III) reduction zone of petroleum-contaminated aquifers, benzene degradation can be stimulated with the addition of synthetic chelators which make Fe(III) more available for microbial reduction. The addition of humic substances and other compounds that contain quinone moieties can also stimulate anaerobic benzene degradation in laboratory incubations of Fe(III)-reducing aquifer sediments by providing an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides. Anaerobic benzene degradation in aquifer sediments can be stimulated with the addition of sulfate, but in some instances an inoculum of benzene-oxidizing,sulfate-reducing microorganisms must also be added. In a field trial, sulfate addition to the methanogenic zone of a petroleum-contaminated aquifer stimulated the growth and activity of sulfate-reducing microorganisms and enhanced benzene removal. Molecular phylogenetic studies have provided indications of what microorganisms might be involved in anaerobic benzene degradation in aquifers. The major factor limiting further understanding of anaerobic benzene degradation is the lack of a pure culture of an organism capable of anaerobic benzene degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号