首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endothelial cell has a unique intrinsic feature: it produces a most potent vasopressor peptide hormone, endothelin (ET-1), yet it also contains a signaling system of an equally potent hypotensive hormone, atrial natriuretic factor (ANF). This raises two related curious questions: does the endothelial cell also contain an ET-1 signaling system? If yes, how do the two systems interact with each other? The present investigation was undertaken to determine such a possibility. Bovine pulmonary artery endothelial (BPAE) cells were chosen as a model system. Identity of the ANF receptor guanylate cyclase was probed with a specific polyclonal antibody to the 180 kDa membrane guanylate cyclase (mGC) ANF receptor. A Western-blot analysis of GTP-affinity-purified endothelial cell membrane proteins recognized a 180 kDa band; the same antibody inhibited the ANF-stimulated guanylate cyclase activity; the ANF-dependent rise of cyclic GMP in the intact cells was dose-dependent. By affinity cross-linking technique, a predominant 55 kDa membrane protein band was specifically labeled with [125I]ET-1. ET-1 treatment of the cells showed a migration of the protein kinase C (PKC) activity from cytosol to the plasma membrane; ET-1 inhibited the ANF-dependent production of cyclic GMP in a dose-dependent fashion with an EC50 of 100 nM. This inhibitory effect was duplicated by phorbol 12-myristate 13-acetate (PMA), a known PKC-activator. The EC50 of PMA was 5 nM. A PKC inhibitor, 1-(5-isoquinolinyl-sulfonyl)-2-methyl piperazine (H-7), blocked the PMA-dependent attenuation of ANF-dependent cyclic GMP formation. These results demonstrate that the 180 kDa mGC-coupled ANF and ET-1 signaling systems coexist in endothelial cells and that the ET-1 signal negates the ANF-dependent guanylate cyclase activity and cyclic GMP formation. Furthermore, these results support the paracrine and/or autocrine role of ET-1.  相似文献   

2.
Almost four decades of research in the field of membrane guanylate cyclases is discussed in this review. Primarily, it focuses on the chronological development of the field, recognizes major contributions of the original investigators, corrects certain misplaced facts, and projects its future trend.  相似文献   

3.
The 98 amino acid (a. a.) N-terminus of the 126 a. a. atrial natriuretic factor (ANF) prohormone contains three peptides consisting of a. a. 1–30 (proANF 1–30), a. a. 31–67 (proANF 31–67) and a. a. 79–98 (proANF 79–98) with blood pressure lowering, sodium and/or potassium excreting properties similar to atrial natriuretic factor (a. a. 99–126, C-terminus of prohormone). ProANF 1–30 and proANF 31–67 have separate and distinct receptors from ANF in both vasculature and in the kidney to help mediate the above effects. At the cellular level proANFs 1–30, 31–67, and 79–98 as well as ANF's effects are mediated by enhancement of the guanylate cyclase (EC 4.6.1.2) — cyclic GMP system in vasculature and in the kidney. These peptides from the N-terminus of the ANF prohormone circulate normally in man and in all animal species tested. The object of the present investigation was to determine if these peptides have the ability to enhance either guanylate cyclase and/or adenylate cyclase in a variety of other tissues in addition to kidney and vasculature. ProANF 1–30, proANF 31–67, proANF 79–98, and ANF all increased rat lung, liver, heart and testes, but not spleen, particulate guanylate cyclase 2- to 3-fold at their 100 nM concentrations. Dose response curves revealed that maximal stimulation of particulate guanylate cyclase activity by these newly discovered peptides was at their 1 M concentrations, with no further increase in activity above their 1 M concentrations. Half-maximal (EC50) enhancement of particulate guanylate cyclase occurred at 0.15 ± 0.01, 0.3 ± 0.02, 0.5 ± 0.03, and 0.9 ± 0.03 nM for proANF 1–30, proANF 31–67, proANF 79–98 and ANF, respectively. ProANFs 1–30, 31–67, 79–98, and 99–126 (i.e., ANF) each increased cyclic GMP but not cyclic AMP levels in tissue slices of liver, lung, small intestine, heart, and testes. None of these peptides enhanced either adenylate cyclase or the soluble 100,000 G form of guanylate cyclase. The ability of these N-terminal peptides to enhance particulate guanylate cyclase activity in a wide variety of tissues suggests that they may have effects in a much wider variety of tissues than presently thought.  相似文献   

4.
Summary 1. Guanylate cyclase plays an important role in the visual cycle. Here we report the mRNA expression for the atrial natriuretic peptide receptor type A form of guanylate cyclase (ANPRA) in human retina.2. Polymerase chain reaction using two sets of primers on the cDNAs reverse-transcribed from human retinal poly(A)+ RNA amplified two products under two different reaction conditions. The primers used in the reaction were designed from the reported sequence of human placental ANPRA cDNA.3. Sequencing of the amplified products showed 100% sequence homology to the human placental ANPRA gene. Northern blot analysis indicated the presence of a 4.4-kb ANPRA mRNA in human retina, similar to that present in human brain.  相似文献   

5.
At present there are two recognized members of the ROS-GC subfamily of membrane guanylate cyclases. They are ROS-GC1 and ROS-GC2. A distinctive feature of this family is that its members are not switched on by the extracellular peptide hormones; instead, they are modulated by intracellular Ca2+ signals, consistent to their linkage with phototransduction. An intriguing feature of ROS-GC1, which distinguishes it from ROS-GC2, is that it has two Ca2+ switches. One switch inhibits the enzyme at micromolar concentrations of Ca2+, as in phototransduction; the other, stimulates. The stimulatory switch, most likely, is linked to retinal synaptic activity. Thus, ROS-GC1 is linked to both phototransduction and the synaptic activity. The present study describes (1) the almost complete structural identity of 18.5 kb ROS-GC1 gene; (2) its structural organization: the gene is composed of 20 exons and 19 introns with classical GT/AG boundaries; (3) the activity of the ROS-GC1 promoter assayed through luciferase reporter in COS cells; and (4) induction of the gene by phorbol ester, a protein kinase C (PKC) activator. The co-presence of PKC and ROS-GC1 in photoreceptors suggests that regulation of the ROS-GC1 gene by PKC might be a physiologically relevant phenomenon.  相似文献   

6.
The type C natriuretic peptide (CNP)-activated guanylate cyclase (CNP-RGC) is a single-chain transmembrane-spanning protein, containing both CNP binding and catalytic cyclase activities. Upon binding CNP to the extracellular receptor domain, the cytosolic catalytic domain of CNP-RGC is activated, generating the second messenger cyclic GMP. Obligatory in this activation process is an intervening signal transduction step which is regulated by ATP binding to the cyclase. This bridges the events of ligand binding and cyclase activation. A defined sequence motif (Gly499-Xa-Xa-Xa-Gly503), termed ATP regulatory module (ARM), is critical for this step. The present study shows that ATP not only amplifies the signal transduction step, it also concomitantly reduces the ligand binding activity of CNP-RGC. Reduction in the ligand binding activity is a consequence of the transformation of the high affinity receptor-form to the low affinity receptor-form. A single ARM residue Gly499 is critical in the mediation of both ATP effects, signal transduction and ligand binding activity of the receptor. Thus, this residue represents an ATP bimodal switch to turn the CNP signal on and off.  相似文献   

7.
To clarify the intracellular signalling mechanisms of atrial natriuretic factor (ANF), we studied its effect on protein phosphorylation in plasma membranes of bovine adrenal cortical cells. ANF (1×10–7 M) inhibited phosphorylation of the 78-kDa protein kinase C (PKC) and a 240-kDa protein in specific manner. In parallel experiments, cGMP (0.5 mM) inhibited phosphorylation of only the 78-kDa PKC but it did not affect phosphorylation of the 240-kDa protein. Phosphorylation of the 78-kDa PKC was enhanced in a Ca2+-/phospholipid-dependent manner. However, after prolonged preincubation of plasma membranes with Ca2+ (0.5 mM), the incorporation of32P-radioactivity rapidly decreased in the 78-kDa PKC and subsequently increased in the 45- and 48-kDa protein bands due to Ca2+-dependent proteolytic degradation of 78-kDa PKC. Polyclonal antibodies against brain PCK were used to immunoblot and immunoprecipitate the 78-kDa PKC. Preincubation of plasma membranes with Ca2+ for varying times, followed by immunoblotting revealed a gradual loss of the immunoreactive 78-kDa PKC band in a time-dependent manner. Immunoprecipitation of phosphorylated 78-kDa PKC in plasma membranes showed that its phosphorylation was significantly inhibited in the presence of ANF as compared to control membranes, phosphorylated in the absence of ANF. The results in this present study document a new signal transduction mechanism of ANF at molecular level which possibly involves dephosphorylation of the 78-kDa PKC and a 240-kDa protein in a cGMP-dependent and-independent manner in bovine adrenal glomerulosa cell membranes. (Mol Cell Biochem141: 103–111, 1994)  相似文献   

8.
Atrial natriuretic factor (ANF) receptor guanylate cyclase (ANF-RGC) is a single transmembrane spanning modular protein. It binds ANF to its extracellular module and activates its intracellular catalytic module located at its carboxyl end. This results in the accelerated production of cyclic GMP, which acts as a critical second messenger in decreasing blood pressure. Two mechanistic models have been proposed for the ANF signaling of ANF-RGC. One is ATP-dependent and the other ATP-independent. In the former, ATP works through the ARM (ATP-regulated transduction module) of ANF-RGC. This model has recently been challenged [Antos et al. (2005) J Biol Chem 280:26928-26932] in support of the ATP-independent model. The present in-depth study analyzes the major principles of this challenge and concludes that the challenge lacks merit. The study then moves on to dissect the ATP mechanism of ANF signaling of ANF-RGC. It shows that the ATP photoaffinity probe, [gamma(32)P]-8-azido-ATP, reacts with Cys(634) residue in the ATP-binding pocket of ARM, and also signals the ANF-dependent activation of ANF-RGC. The target site of the 8-azido (nitrene) group is between the Cys(634) and Val(635) bond of the ATP-binding pocket. Thus, the study experimentally validates the ARM model-predicted role of Val(635) in the folding pattern of the ATP-binding pocket. And, it also identifies another residue Cys(634) that along with eight already identified residues is a part of the fold around the adenine ring of the ATP pocket. This information establishes the direct role of ATP in ANF signal transduction model of ANF-RGC, and provides a significant advancement on the mechanism by which the ATP-dependent transduction model operates.  相似文献   

9.
Summary This minireview highlights the studies which suggest that guanylate cyclase is a single-component transducing system, containing distinct signaling modules in a single membrane-spanning protein. A guanylate cyclase signaling model is proposed which envisions the following sequential events: (1) a signal is initiated by the binding of the hormone to the ligand binding module; (2) the signal is potentiated by ATP at ARM; and (3) the amplified signal is finally transduced at the catalytic site. All of these signaling steps together constitute a switch, which when turned on, generates the second messenger cyclic GMP.  相似文献   

10.
One of the atrial natriuretic factor (ANF) receptors is a 180 kDa protein (180 kDa mGC) which possesses the extraordinary characteristic of being bifunctional: it is both a receptor and a guanylate cyclase. In addition to the 180 kDa mGC, there exists another 120–130 kDa protein which is also bifunctional and a 120 kDa disulfide-linked dimeric cell surface protein that is an ANF receptor, but is not a part of guanylate cyclase. A fundamental question that needs to be resolved is: Are these three apparently biochemically distinct ANF receptors structurally similar? With the aid of affinity crosslinking techniques, a highly specific antibody to the 180 kDa mGC, and GTP-affinity techniques, we now demonstrate the presence of three immunologically similar proteins in rat adrenal gland and testes. These proteins migrate as 180 kDa, 130 kDa and 65 kDa under denaturing sodium dodecyl sulfate polyacrylamide gel electrophoresis and specifically bind ANF, raising one or more of the following possibilities about their relationships: 1) Degradation of 180 kDa to 130 kDa and 65 kDa occurs during purification; 2) 180 kDa bears a precursor-product relationship with 130 kDa and 65 kDa, suggesting the role of a protease in the processing procedure; 3) these proteins are a result of gene splicing; or 4) they are the products of three separate, but very closely related genes.  相似文献   

11.
Atrial natriuretic factor inhibits adenylate cyclase activity   总被引:7,自引:0,他引:7  
The synthetic atrial natriuretic factor (ANF) (8- 33AA ) inhibited adenylate cyclase activity in aorta washed particles, mesenteric artery, and renal artery homogenates in a concentration dependent manner with an apparent Ki between 0.1 to 1nM . The extent of inhibition of adenylate cyclase by ANF varied from tissue to tissue. The adenylate cyclase from mesenteric artery and renal artery was inhibited to a greater extent as compared to that from aorta. ANF was also able to inhibit the stimulatory effects of hormones on adenylate cyclase activity and of agents such as F- and forskolin which activate adenylate cyclase by receptor- independent mechanism. In addition, ANF showed an additive effect with the inhibitory response of angiotensin II on adenylate cyclase from rat aorta. These studies for the first time demonstrate that ANF is an inhibitor of adenylate cyclase of several systems.  相似文献   

12.
The heat-stable enterotoxin STa of E. coli causes diarrhea by binding to and stimulating intestinal membrane-bound guanylyl cyclase, triggering production of cyclic GMP. Agents which stimulate protein kinase C (PKC), including phorbol esters, synergistically enhance STa effects on cGMP and secretion. We investigated whether PKC causes phosphorylation of the STa receptor in vivo and in vitro.Immunoprecipitation of the STa receptor-guanylyl cyclase was carried out from extracts of T84 colon cells metabolically labelled with [32P]-phosphate using polyclonal anti-STa receptor antibody. The STa receptor was phosphorylated in its basal state, and 32P content in the 150 kDa holoreceptor band increased 2-fold in cells exposed to phorbol ester for 1 h. In vitro, immunopurified STa receptor was readily phosphorylated by purified rat brain PKC. Phosphorylation was inhibited 40% by 5 M of a synthetic peptide corresponding to the sequence around Ser1029 of the STa receptor, a site previously proposed as a potential PKC phosphorylation site. Treatment of the immunopurified STaR/GC with purified PKC increased STa-stimulated guanylyl cyclase activity 2-fold. We conclude that PKC phosphorylates and activates the STa receptor/guanylyl cyclase in vitro and in vivo; Ser1029 of the STaR/GC remains a candidate phosphorylation site by PKC.Abbreviations STa the heat-stable enterotoxin of E. coli, which has also been called ST-I and STp. The 18 amino acid variant was used throughout - PBS phosphate-buffered saline - PDB 4--12, 13-phorbol dibutyrate - ANP atrial natriuretic peptide - STaR/GC STa receptor/guanylyl cyclase, also called GC-C - PKC protein kinase C  相似文献   

13.
Protein kinase C has recently attracted considerable attention because of its importance in the control of cell division, cell differentiation, and signal transduction across the cell membrane. The activity of this enzyme is altered by several lipids such as diacylglycerol, free fatty acids, lipoxins, gangliosides, and sulfatides. These lipids may interact with protein kinase C either directly or through calcium ions and produce their regulatory effect (activation or inhibition) on the activities of the enzymes phosphorylated by this kinase. These processes widen our perspective of the regulation of intercellular and intracelluular communication.Abbreviations used (PK-C) Protein kinase C - (cAMP-PK) cAMP dependent protein kinase - (DAG) diacylglycerol - (PtdSer) phosphatidylserine - (InsP 3) inositol 1,4,5-trisphosphate - (PtdIns 4,5-P2) inositol 4,5 bisphosphate - (FFA) free fatty acid - (MBP) myelin basic protein - (ATP) adenosine triphosphate - (GTP) guanine triphosphate - (TPA) 12-tetradecanoylphorbol-13-acetate - (EGF) epidermal growth factor - (PDGF) platelet derived growth factor - (NeuNAc) and N-acetylneuraminic acid  相似文献   

14.
Summary A line of kidney cells (PK,) which does not possess measurable ANP binding but has an active particulate guanylate cyclase has been identified. The physical characteristics of this enzyme were compared with those of particulate guanylate cyclase and ANP receptors isolated from rat lung. Although receptor and enzyme appear to reside on the same protein in the lung while the cyclase from PK1 cells does not possess ANP binding activity, these proteins exhibit identical physical characteristics. Guanylate cyclase from PK1 cells and rat lung and ANP receptor from lung co-eluted during gel filtration chromatography, with a Stokes radius of 6.1 nm. Also, these activities co-migrated through sucrose density gradients with S20,w values of 10.4 to 10.9. Using these parameters, a molecular weight of about 270 kD was estimated for all three activities. Furthermore, these enzyme activities exhibited similar mobilities in isoelectric focusing gels, with a pI of 6.1. Thus, although particulate guanylate cyclase from lung presumably possesses receptor binding activity, it is physically identical to a form of this enzyme associated with no measurable binding activity. Possible explanations for these observations are discussed.  相似文献   

15.
Hydrogen sulphide (H2S), one of the most common toxic air pollutants, is an important aetiology of atrial fibrillation (AF). Pulmonary veins (PVs) and left atrium (LA) are the most important AF trigger and substrate. We investigated whether H2S may modulate the arrhythmogenesis of PVs and atria. Conventional microelectrodes and whole‐cell patch clamp were performed in rabbit PV, sinoatrial node (SAN) or atrial cardiomyocytes before and after the perfusion of NaHS with or without chelerythrine (a selective PKC inhibitor), rottlerin (a specific PKC δ inhibitor) or KB‐R7943 (a NCX inhibitor). NaHS reduced spontaneous beating rates, but increased the occurrences of delayed afterdepolarizations and burst firing in PVs and SANs. NaHS (100 μmol/L) increased IKATP and INCX in PV and LA cardiomyocytes, which were attenuated by chelerythrine (3 μmol/L). Chelerythrine, rottlerin (10 μmol/L) or KB‐R7943 (10 μmol/L) attenuated the arrhythmogenic effects of NaHS on PVs or SANs. NaHS shortened the action potential duration in LA, but not in right atrium or in the presence of chelerythrine. NaHS increased PKC activity, but did not translocate PKC isoforms α, ε to membrane in LA. In conclusion, through protein kinase C signalling, H2S increases PV and atrial arrhythmogenesis, which may contribute to air pollution‐induced AF.  相似文献   

16.
The nature and regulation of atrial natriuretic peptide (ANP)-sensitive guanylate cyclase in rat renal glomerular membranes was examined. By affinity crosslinking techniques, three bands with apparent molecular masses of 180, 130 and 64 kDa were specifically labeled with [125I]ANP. A specific antibody to the 180 kDa membrane guanylate cyclase of rat adrenocortical carcinoma recognized a 180 kDa band on Western blot analysis of solubilized, GTP-affinity purified glomerular membrane proteins. The same antibody completely inhibited ANP-stimulated guanylate cyclase activity in glomerular membrane fractions. Partially purified protein kinase C inhibited ANP-stimulated guanylate cyclase activity in glomerular membrane fractions. It is concluded that a 180 kDa ANP-sensitive guanylate cyclase is present in glomerular membranes, and that this enzyme is inhibited directly by protein kinase C.  相似文献   

17.
Rod and cone cells of the mammalian retina harbor two types of a membrane bound guanylate cyclase (GC), rod outer segment guanylate cyclase type 1 (ROS-GC1) and ROS-GC2. Both enzymes are regulated by small Ca2+-binding proteins named GC-activating proteins that operate as Ca2+ sensors and enable cyclases to respond to changes of intracellular Ca2+after illumination. We determined the expression level of ROS-GC2 in bovine ROS preparations and compared it with the level of ROS-GC1 in ROSs. The molar ratio of a ROS-GC2 dimer to rhodopsin was 1 : 13 200. The amount of ROS-GC1 was 25-fold higher than the amount of ROS-GC2. Heterologously expressed ROS-GC2 was differentially activated by GC-activating protein 1 and 2 at low free Ca2+ concentrations. Mutants of GC-activating protein 2 modulated ROS-GC2 in a manner different from their action on ROS-GC1 indicating that the Ca2+ sensitivity of the Ca2+ sensor is controlled by the mode of target–sensor interaction.  相似文献   

18.
Atrial natriuretic peptide (ANP) is the first described member of the natriuretic peptide hormone family. ANP elicits natriuretic, diuretic, vasorelaxant and antiproliferative effects, important factors in the control of blood pressure homeostasis. One of the principal loci involved in the regulatory action of ANP is the guanylyl cyclase-linked ANP-receptor which has been designated as NPRA, also referred to as GC-A, whose ANP-binding efficiency and guanylyl cyclase activity vary remarkably in different target tissues. However, the cellular and molecular basis of these activities and the functional expression and regulation of NPRA are not well understood. The mature form of receptor resides in the plasma membrane and consists of an extracellular ligand-binding domain, a single transmembrane-spanning region, and intracellular protein kinase-like homology and guanylyl cyclase catalytic domains. In this review, emphasis has been placed on the interaction of ANP with NPRA, the ligand-mediated endocytosis, trafficking, and subcellular distribution of ligand-receptor complexes from cell surface to the intracellular compartments. Furthermore, it is implicated that after internalization, the ANP/NPRA complexes dissociate into the subcellular compartments and a population of receptor recycles back to the plasma membrane. This is an interesting area of research in the natriuretic peptide receptor field because there is currently debate over whether ANP/NPRA complexes internalize at all or whether cell utilizes some other mechanisms to release ANP from the bound receptor molecules. Indeed, controversy exist since it has been previously reported by default that among the three natriuretic peptide receptors only NPRC internalizes with bound ligand. Hence, from a thematic standpoint it is clearly evident that there is a current need to review this subject and provide a consensus forum that establishes the cellular trafficking, sequestration and processing of ANP/NPRA complexes in intact cells. Towards this aim the cellular life-cycle of NPRA will be described in the context of ANP-binding, internalization, metabolic processing, and/or inactivation, down-regulation, and degradation of ligand-receptor complexes in model cell systems.  相似文献   

19.
The influence of polyamines (putrescine, spermidine, and spermine) on the activity of human platelet soluble guanylate cyclase and the stimulation of the enzyme by sodium nitroprusside (SNP), YC-1 and their combination was investigated. All these polyamines stimulated the guanylate cyclase activity and potentiated its activation by sodium nitroprusside. The stimulatory effects of sodium nitroprusside and putrescine (or spermine) were addidive; spermidine produced a synergistic activation and increased the additive effect. All the polyamines inhibited the enzyme activation by YC-1 and decreased the synergistic activation of SNP-stimulated guanylate cyclase activity by YC-1 with nearly the same potency. The ability of the investigated polyamines to potentiate and to increase synergistically (similar to to YC-1, but less effective) NO-dependent activation of soluble guanylate cyclase represents a new biochemical effect of these compounds; this effect should be taken into consideration, especially due to the endogenous nature of polyamines. The data obtained suggest, that specific biological functions of polyamines in the processes of growth and differentiation of cells may be also related to the ability of compounds to activate soluble guanylate cyclase and to increase intracellular cGMP level.  相似文献   

20.
Atrial natriuretic factor (ANF) and C-type natriuretic peptide (CNP) receptors have been described in encephalic areas and nuclei related to the regulation of cardiovascular as well as sodium and water homeostasis. Stimulation of the anterior ventral third ventricular region of the brain modifies plasma ANF concentration, suggesting the participation of the central nervous system in the regulation of circulating ANF. The aim of this work was to study the effect of centrally applied ANF or CNP on plasma ANF. Normal and blood volume expanded rats (0.8 ml isotonic saline/100 g body weight) were intra cerebralventricularly injected with 1, 10 or 100 ng/μl/min ANF. Blood volume expanded animals were also centrally injected with the same doses of CNP. Blood samples were collected at 5 and 15 min. after intracerebralventricular administration of either ANF or CNP. Centrally applied ANF did not affect circulating ANF in normal blood volume rats. In blood volume expanded animals both ANF (1, 10 or 100 ng/μl/min) and CNP (1 ng/μl/min) decreased plasma ANF concentration after 15 min. Moreover, CNP (10 and 100 ng/μl/min) lowered circulating ANF levels not only at 15 min but also at 5 min. Neither ANF nor CNP elicited any change in mean arterial pressure and heart rate in normal and blood volume expanded rats. These results suggest the existence of a central regulation exerted by natriuretic peptides on circulating ANF levels. Furthermore, this is the first study reporting an effect on plasma ANF induced by centrally applied CNP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号